АКТИВНОСТЬ ПОРОШКОВ МЕТАЛЛОВ НА ОСНОВЕ АЛЮМИНИЯ, БОРА И МАГНИЯ

И.В. Сорокин

Научный руководитель: профессор, д.ф.-м.н. А.Г. Коротких Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина 30, 634050

E-mail: <u>ivs9@tpu.ru</u>

ACTIVITY OF METAL POWDERS BASED ON ALUMINUM, BORON AND MAGNESIUM

I.V. Sorokin

Scientific Supervisor: Prof., Dr. A.G. Korotkikh

Tomsk Polytechnic University, Russia, Tomsk, Lenin prosp., 30, 634050

E-mail: ivs9@tpu.ru

Abstract. This study investigates the metal powders activity based on aluminum, boron and magnesium, used in composite solid propellant as fuel additives. The paper presents data of metal powders activity: the onset temperature of oxidation and the intense oxidation temperature, the weight gain in the temperature range of 400 - 1200 $^{\circ}$ C and the maximum oxidation rate of the metal powders.

Введение. Бор и его компоненты являются одним из наиболее перспективных металлических горючих для применения в твердом ракетном топливе, высвобождаемая при его окислении удельная энергия является одной из наибольших в пересчете на единицу массы и максимальной из возможных при пересчете на единицу объема [1]. Для улучшения параметров горения смесевых топлив используются добавки металлических порошков и их оксидов: магний, алюминий, титан, цирконий, церий, железо, медь [1-3].

В представленной работе приведены результаты исследования активности порошков металлов на основе алюминия, бора и магния, которые могут быть использованы в смесевых высокоэнергетических материалах в качестве добавок.

Исследуемые образцы. В исследовании основных параметров активности порошков использовались: ультрадисперсный порошок (УДП) алюминия марки Alex, полученный методом электрического взрыва проводников (ЭВП), порошок аморфного бора В, диборид алюминия AlB₂, сплав Al-Mg, механосмесь на основе Al и В. Массовое соотношение компонентов в смеси варьировалось.

Результаты и обсуждение. Проведены серии ТГ-ДСК измерений при нагреве исследуемых порошков металлов. Исследование процесса термического окисления порошков осуществлялось с использованием совмещенного анализатора Netzsch STA 449 F3 Jupiter в аргоне при скорости нагрева 10 °С/мин. Для ТГ-ДСК анализа использовались образцы массой ∼10 мг, которые помещались в тигель и затем устанавливались в нагревательную печь. Для исследуемых образцов, содержащие различные металлические горючие, получены данные ТГ и ДСК, линии которых представлены на рис. 1.

Окисление УДП Alex начинается при температуре \sim 570 °C с максимальным выделением тепла при 600 °C (рис. 1, a). При температуре \sim 660 °C происходит эндотермическое плавление алюминия с резким увеличением массы образца Alex за счет образования оксида алюминия Al_2O_3 . При температуре \sim 720 °C наблюдается вторая стадия окисления образца Alex с менее резким увеличением массы и максимальным

значением тепловыделения при температуре \sim 800 °C. Дальнейшее окисление образца до температуры 1200 °C происходит с плавным увеличением массы образца Alex (\sim 13%).

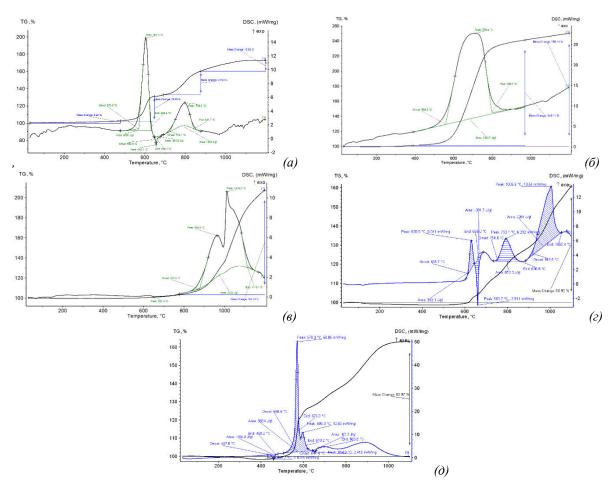


Рис. 1. Данные ТГ-ДСК анализа порошков (а) Alex, (б) бор, (в) AlB₂, (г) Al/B и (д) Al/Mg

Для порошка аморфного бора окисление начинается при температуре \sim 560 °C и сопровождается интенсивным тепловыделением при температуре 710 °C. При нагреве до 800 °C наблюдается увеличение массы образца. Окисление диборида алюминия AlB_2 начинается при температуре \sim 880°C, происходит с увеличением массы образца и интенсивными тепловыделениями при температурах 960 и 1010 °C (рис. 1, s).

Окисление механосмеси Al/B начинается при температуре \sim 616 °C и протекает с резким увеличением массы образца. Окисление сопровождается несколькими экзотермическими пиками с максимальным выделением тепла при температурах 630, 793 и 1006 °C. Анализируя данные термограмм видно, что пики тепловыделения при 630 и 793 °C соответствуют окислению порошка алюминия (рис. 1, a и a), а пики тепловыделения при 1006 °C (рис. 1, a) соответствует окислению порошка диборида алюминия (рис. 1, a). Для Al/Mg-сплава окисление начинается при температуре \sim 560 °C. Максимальное выделение тепла происходит при температуре 570 °C, которое сопровождается резким увеличением массы образца (\sim 20%). Дальнейшее окисление смеси Al/Mg c 600 до 1100 °C протекает с менее резким увеличением массы образца. Следует отметить, что для образцов AlB₂ и смесях Al/B и Al/Mg (см. рис. 1, a, a, a, a) при температуре a640–660 °C наблюдаются экзотермические пики, переходящий в

эндотермический, который соответствует температура плавления алюминия. Наличие эндотермического пика для диборида алюминия может свидетельствовать о наличии свободных частиц алюминия [3].

Параметры активности используемых порошков представлены в табл. 1. По данным табл. 1 видно, что наибольшие скорости окисления наблюдаются у порошков аморфного бора ($v_{ok} = 0,00958 \text{ мг/c}$) и Al/Mg-сплава ($v_{ok} = 0,0101 \text{ мг/c}$), наименьшее значение скорости окисления ($v_{ok} = 0.00159 \text{ мг/c}$) наблюдается у УДП Alex.

Таблица 1 Температуры начала и интенсивного окисления, изменение массы и скорость окисления металлов

Образец	T₀n, °C	T _{int} , °C	Увеличение массы Δm , %			Максимальная скорость окисления
			400 –	660 –	400 –	v_{ok} , M Γ /C
			660°C	1200°C	1200°C	(диапазон температур, °С)
Alex	570	604	29.5	41.5	71.0	0.00159 (590 – 610)
	724	799				
В	559	708	47.8	101.0	148.7	0.00958 (655 – 735)
AlB_2	877	965	1.3	106.6	107.9	0.00544 (1010 – 1060)
Al/B	616	970	5.5	56.9	62.4	0.00454 (965 – 1010)
Al/Mg	559	570	32.0	33.0	65.0	0.0101 (559 – 578)

Заключение. В работе проведено исследование химической активности порошков алюминия, бора, диборида алюминия, Al/Mg и Al/B. Получены данные процесса термического окисления исследуемых порошков металлов при нагреве в печи с использованием совмещенного анализатора Netzsch STA 449 F3 Jupiter. Установлены значения температуры начала окисления и интенсивного окисления, изменения массы исследуемых образцов в диапазоне температур 400 – 1200 °C. Определена максимальная скорость окисления исследуемых порошков: наибольшим значением обладает Al/Mg-сплав (0.0101 мг/с), наименьшим – УДП алюминия Alex (0.00159 мг/с).

Исследование выполнено при финансовой поддержке РФФИ, проект № 19-33-90015.

СПИСОК ЛИТЕРАТУРЫ

- Gany A., Timnat Y. M. Advantages and drawbacks of boron-fueled propulsion // Acta Astronautica. 1993.
 V. 29., № 3. P. 181-187.
- 2. Chintersingh K.-L., Schoenitz M., Dreizin E.L. Boron doped with iron: Preparation and combustion in air // Combustion and Flame. 2019. V. 200. P. 286–295.
- 3. Гусейнов Ш.Л., Федоров С.Г., Тузов А.Ю., Малашин С.И., Драчев А.И., Киселев М.Р., Певченко Б.В., Воронько О.В. Нанодисперсные бориды алюминия, полученные плазменной переконденсацией микронных порошков алюминия и бора // Российские нанотехнологии. 2015. Т. 10., № 5-6. С. 79–85.