Таблица

Химический состав оливина из ультрамафитов Улорского массива

Порода	Дуниты				Гарцбургиты	
№ образца	У-1	У-11	У-12/1	У-14	У-9	У-15
MgO	48,88	48,83	49,83	51,02	47,76	48,24
SiO2	43,08	42,25	42,92	43,02	42,37	42,53
FеОобщ	7,77	8,55	6,89	5,51	9,61	8,79
NiO	0,31	0,37	0,36	0,43	0,29	0,39
Fa	8,19	7,20	5,71	10,14	8,95	9,27

Примечание: Fa = $\overline{\text{Fe}/(\text{Fe} + \text{Mg})*100 \%}$.

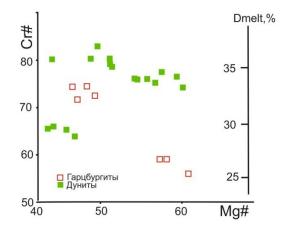


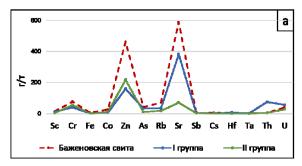
Рис. 2. Соотношение значений параметров (Cr#, Mg#) в акцессорных хромшпинелидах из ультрамафитов Улорского массива. $Cr\#=Cr/(Cr+Al)~\%,~Mg\#=Mg/(Mg+Fe^{2+})~\%,~Dmelt=0,426\times Cr\#+1,538~\%$ (по методике Φ .П. Леснова [4])

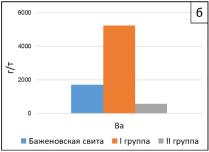
Литература

- Гоникберг В.Е. Роль сдвиговой тектоники в создании орогенной структуры ранних каледонид Юго-Восточной Тувы // Геотектоника. – 1999. – № 3. – С. 9 – 103.
- 2. Гончаренко А.И. Деформация и петроструктурная эволюция альпинотипных гипербазитов. Томск: Изд-во Томского университета, 1989. 404 с.
- 3. Леснов Ф.П., Подлипский М.Ю. Геохимия акцессорных хромшпинелидов из пород Эргакского хромитоносного гипербазитового массива и условия его формирования (Западный Саян) // Доклады Академии наук. 2008. № 422. С. 660 664.

ОСОБЕННОСТИ СОСТАВА И СТРОЕНИЯ ЛЮМИНЕСЦИРУЮЩИХ ПРОСЛОЕВ БАЖЕНОВСКОЙ СВИТЫ ЗАПАДНО-СИБИРСКОГО ОСАДОЧНОГО БАССЕЙНА Е.С. Кондрашова1, 2

Научный руководитель профессор С.И. Арбузов1


¹Национальный исследовательский Томский политехнический университет, г. Томск. Россия ²Томский научно-исследовательский и проектный институт нефти и газа, г. Томск. Россия


На территории распространения баженовской свиты в Томской области и Ханты-Мансийском автономном округе обнаружены люминесцирующие в ультрафиолетовом освещении прослои, мощностью от нескольких мм до 15 см. По ранее проведённым исследованиям люминесцирующие прослои имеют разный минеральный состав и отчётливо разделяются на две группы. Изучение прослоев І группы показало, что в минеральном составе преобладают глинистые минералы (до 80 %) – каолинит и смешаннослойные минералы (ССМ) ряда иллит-смектит. В составе прослоев ІІ группы преобладает кварц (до 90 %) [4, 7]. Химический состав выделенных прослоев был изучен только для образцов І группы.

Целью работы является определение химического состава и геохимических особенностей пород каждой из выделенных ранее групп прослоев и вмещающих их пород с использованием современных методов исследований. Для определения химического состава исследуемых пород применялись методы инструментального нейтронно-активационного анализа (ИНАА) и масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС). Изучение

минеральных форм элементов, тонкодисперсных и акцессорных минералов и элементов-примесей проводилось на сканирующем электронном микроскопе.

Сравнительный анализ средних содержаний элементов для пород каждой группы и данных о химическом составе пород баженовской свиты (БС), опубликованных в работе Л.П. Рихванова и соавторов [5], приведен на рис. 1.

Puc. 1. a – среднее содержание химических элементов в люминесцирующих прослоях и в отложениях баженовской свиты, б – среднее содержание бария в люминесцирующих прослоях и в отложениях баженовской свиты

По результатам сравнительного анализа выделено несколько элементов, для которых отмечено повышенное среднее содержание относительно пород баженовской свиты.

Породы БС характеризуются повышенной радиоактивностью. Изучение содержания и распределения радиоактивных элементов, таких как уран и торий, в породах БС проводилось с 60-х-70-х годов рядом исследователей (И.Н. Плуманым, Н.П. Запиваловым, В.М. Гавшиным, В.А. Бобровым, Ф.Г. Гурари, М.Ю. Зубковым и др.). В исследуемых прослоях содержание урана в среднем составляет 56,6 г/т (для прослоев І группы) и 28,4 г/т (для прослоев II группы). Содержания урана в целом не противоречат данным о его содержании в породах БС. Согласно [5] диапазон содержаний урана в породах БС составляет 2,37...171 г/т. В исследуемых прослоях повышенные содержания урана приурочены к минеральным включениям фосфатно-кальциевого состава.

Диапазон содержания тория в исследуемых образцах для прослоев I группы составляет 45...91 г/т, для II группы – 1...5 г/т. Содержание тория в глинистых прослоях I группы в несколько раз превышает средние значения для пород баженовской свиты [5] и кларка для глинистых сланцев (10 г/т согласно [1]). Торий может поступать в бассейн осадконакопления с обломочной примесью речного стока, а также как компонент вулканогенного пирокластического материала, что, вероятно, и обуславливает его повышенное содержание в исследуемых образцах. При этом, в прослоях II группы уровни его накопления не превышают средних значений для пород БС. Это может быть связано с минеральным составом отложений. Так, по данным Ю.Н. Занина, повышенные содержания тория характерны для пород с преобладанием глинистого материала над кремнистым [3].

Для изученных отложений характерно повышенное содержание бария (диапазон значений 284...22372 г/т, среднее содержание для I группы 5245 г/т, для II группы – 586 г/т) (рис. 2 б). Наибольшие значения отмечены в глинистых прослоях I группы. Значительные концентрации бария в баженовских отложениях отмечались многими исследователями. По данным J. Dymond [9] барий высвобождается из некромассы фитопланктона и мигрирует в составе растворов, а затем осаждается в субоксидных условиях. Имеются данные о вулканической природе бария в черносланцевых отложениях [8].

Анализ редкоземельных элементов (РЗЭ) проводился по результатам ИСП-МС. Средние содержания редкоземельных элементов в исследуемых люминесцирующих прослоях и вмещающих их пород, нормированные на хондрит [6], приведены на графике (рис. 2 а).

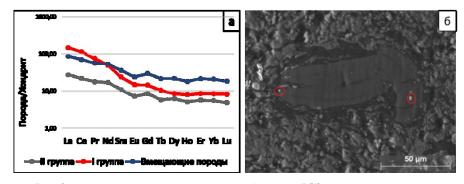


Рис. 2. a— нормированные кривые распределения РЗЭ в люминесцирующих прослоях и во вмещающих их породах. Нормировано на хондрит; б— микровключение фосфата с РЗЭ в кремниево-фосфатно-кальциевом минеральном агрегате

Среднее содержание РЗЭ в основных типах пород баженовской свиты колеблется от 83 до 175 г/т, что близко к среднему их значению в черных сланцах (131,5 г/т). В изучаемых прослоях средние содержания РЗЭ составляют 208 г/т (для І группы) и 30,7 г/т (для ІІ группы). Предполагается, что такое различие в содержаниях элементов обусловлено минеральным составом: повышенные концентрации РЗЭ приурочены к глинистым по составу прослоям, обогащенным фосфатным детритом [2].

По результатам электронно-микроскопического анализа в исследуемых прослоях выявлены микроминеральные фазы различного состава, распределение которых в основной минеральной массе неравномерное. В прослоях обеих групп было отмечено большое количество минеральных включений, связанных с серой, вероятно, представляющих сульфиды (соединения с Fe, Zn) и сульфаты (соединения с Ba, реже со Sr).

Отмечены минеральные агрегаты кальциево-фосфатно-кремнистого состава, содержащие уран, которые, предположительно, связаны с остатками органического материала. Выявлены включения фосфатов редкоземельных элементов (предположительно, монацит), содержащие La, Pr, Nd, Sm, Nd и Th (рис. 2 б), а также фосфаты кальция. Следует отметить, что в прослоях II группы фосфатные включения встречаются реже, также это относится к микровключениям с Ва.

Таким образом, по результатам проведенных исследований можно заключить, что повышенные концентрации некоторых химических элементов в аномально люминесцирующих прослоях непосредственно связаны с особенностями формирования их минерального состава. Повышенные концентрации урана обусловлены высоким содержанием органического вещества в период накопления осадка. Высокие содержания тория, предположительно, связаны с примесью вулканогенного пирокластического материала. Аномальные концентрации бария могут быть связаны с высоким содержанием органического вещества в бассейне в период осадконакопления, а также с присутствием вулканогенного пирокластического материала. Повышенные содержания редкоземельных элементов отмечаются только в составе прослоев І группы.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-35-90008.

Литература

- Григорьев Н.А. Среднее содержание химических элементов в горных породах, слагающих верхнюю часть континентальной коры // Геохимия. – 2003. – № 7. – С. 785 – 792.
- Занин Ю.Н., Замирайлова А.Г., Эдер В.Г., Красавчиков В.О. Редкоземельные элементы в баженовской свите Западно-Сибирского осадочного бассейна // Литосфера. – 2011. – № 6. – С. 38 – 54. Занин Ю.Н., Замирайлова А.Г., Эдер В.Г. Уран, торий и калий в черных сланцах баженовской свиты Западно-
- Сибирского морского бассейна // Литология и полезные ископаемые. 2016. № 1. С.82 94.
- Кондрашова Е.С., Шалдыбин М.В. Комплексные исследования аномально люминесцирующих прослоев баженовской свиты Западно-Сибирского осадочного бассейна // Материалы Всероссийской молодежной научной конференции с участием иностранных ученых / ИНГГ СО РАН – Новосибирск. 2019. – С. 289 – 292.
- Рихванов Л.П., Усольцев Д.Г. и др. Минералого-геохимические особенности баженовской свиты Западно Сибири по данным ядерно-физических и электронно-микроскопических методов исследований // Известия Томского политехнического университета. – 2015. – Т. 326. – № 1. – С. 50 – 63. The composition of the Earth / W.F. McDonough, S.-s. Sun // Chemical Geology. – 1995. – V. 120. – pp. 223 – 253.
- Шалдыбин М.В., Крупская В.В., и др. Петрография и минералогия глин аномально люминесцирующих прослоев баженовской свиты Западно-Сибирского осадочного бассейна // Нефтяное хозяйство. – 2018. – № 2. – С. 36 – 40.
- Юдович Я.Э., Кетрис М.П. Геохимические индикаторы литогенеза (литологическая геохимия). Сыктывкар: Геопринт, 2011. – 742 с.
- Dymond J., Suess E., Lyle M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity // Paleoceanography. 1992. V. 7. № 2. P. 163 181.

ПЛАСТИЧЕСКИЕ ДЕФОРМАЦИИ ДУНИТОВ ТАРЛАШКИНСКОГО МАССИВА (ЮГО-ВОСТОЧНАЯ ТЫВА)

А.В. Кулагина

Научный руководитель профессор А.И. Чернышов

Национальный исследовательский Томский государственный университет, г. Томск, Россия

Объектом изучения является Тарлашкинский ультрамафитовый массив. Он является фрагментом Южно-Тувинского офиолитового пояса, который структурно приурочен к Агардагской шовной зоне разделяющей Сангиленский докембрийский срединный массив и раннекаледонскую Восточно-Таннуольскую складчатую область [1]. Тарлашкинский массив сложен главным образом дунитами.

Целью настоящего петрографического исследования является количественная оценка степени пластического деформирования дунитов Тарлашкинского массива.

Среди дунитов Тарлашкинского массива нами установлены четыре микроструктурных типа: протогранулярный, порфирокластовый, порфиролейстовый, мозаичный (рис.), которые образовались в результате наложенных пластических деформаций посредством внутрикристаллического, трансляционного скольжения и синтектонической рекристаллизации. Количественная оценка степени деформации в выделенных типах отражается в удельной протяженности зёрен оливина и степени их ориентации, определенных по методике С.А. Салтыкова [2].

Протогранулярный тип характеризуется значительными размерами зёрен оливина – до 8 мм и более. Зерна оливина имеют субизометричную форму. В них в незначительной степени проявлены признаки пластического