Фитерер Елена Петровна

ОЛИГОМЕРИЗАЦИЯ ФРАКЦИЙ ЖИДКИХ ПРОДУКТОВ ПИРОЛИЗА ПРЯМОГОННОГО БЕНЗИНА ПОД ДЕЙСТВИЕМ КАТАЛИТИЧЕСКИХ СИСТЕМ ТЕТРАХЛОРИД ТИТАНА – АЛЮМИНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Специальность 02.00.06 – высокомолекулярные соединения

АВТОРЕФЕРАТ

диссертации на соискание учёной степени кандидата химических наук

Работа выполнена на кафедре технологии основного органического синтеза Томского политехнического университета

Научный руководитель: кандидат химических наук,

доцент

Бондалетов Владимир Григорьевич

Официальные оппоненты: доктор химических наук,

профессор

Базарнова Наталья

Григорьевна

кандидат химических наук, доцент Березина Елена Михайловна

Ведущая организация: Кузбасский государственный

технический университет

Защита состоится «23» июня 2006 года в <u>15.00</u> часов, в ауд. № 304, на заседании диссертационного совета К 212.004.06 в Алтайском государственном техническом университете им. И. И. Ползунова по адресу: 656038, г. Барнаул, пер. Некрасова 64 (химический корпус).

С диссертацией можно ознакомиться в библиотеке Алтайского государственного технического университета им. И. И. Ползунова.

Автореферат разослан «23» мая 2006 г.

Учёный секретарь диссертационного совета к.х.н., доцент

Напилкова О. А.

- 14. Пат. № 2233846 Российская Федерация, МПК⁷ Способ получения нефтеполимерных смол. Способ получения нефтеполимерных смол. /Бондалетов В. Г., Приходько С. И., Антонов И. Г., Бондалетова Л. И., Фитерер Е. П. № 2003101483; зявл. 20.01.2003; опубл. 10.08.2004, Бюл. № 22. 6 с.
- 15. Пат. № 2235140 Российская Федерация, МПК⁷ Способ получения нефтеполимерных смол. /Бондалетов В. Г., Приходько С. И., Антонов И. Г., Бондалетова Л. И., Фитерер Е. П. № 2003107629; зявл. 20.03.2003; опубл. 27.08.2004, Бюл. № 24. 6 с.
- 16. Пат. 2261872 Российская Федерация, МПК 7 Способ получения масляно-смоляного плёнкообразующего. /Бондалетов В. Г., Приходько С. И., Антонов И. Г., Бондалетова Л. И., Вахрамеева О. В., Фитерер Е. П. № 2004107822; зявл. 16.03.2004; опубл. 10.10.2005, Бюл. № 28. 4 с.
- 17. Фитерер Е. П. Получение нефтеполимерных смол каталитической полимеризацией непредельных углеводородов жидких продуктов пиролиза /Е. П. Фитерер, В. Г. Бондалетов, С. И. Приходько, С. С. Новиков. //Химия XXI век: новые технологии, новые продукты: VIII Международная научно-практическая конференция. Кемерово, 2005. С. 353-356.
- 18. Фитерер Е. П. Новые плёнкообразующие материалы для лакокрасочной промышленности. /Е. П. Фитерер Т. И. Соловьёва, И. В. Головкова. //Всероссийская научно-практическая конференция студентов и молодых учёных «Лакокрасочные материалы и покрытия современное состояние и тенденции развития» Казань, 2005. С. 43-47.

- 5. Фитерер Е. П. Исследование взаимодействия некоторых фракций пироконденсата с каталитической системой $TiCl_4$ – $Al(C_2H_5)_2Cl$. /Е. П. Фитерер, В. Г. Бондалетов, С. С. Новиков, С. И. Приходько. //Изв. ВУЗов Химия и химическая технология, 2004. Том 47. вып. 10. С. 101-105.
- 6. Фитерер Е. П. Полимеризация высококипящих фракций пироконденсата на каталитических системах типа Циглера Натта. /Е. П. Фитерер, В. Г. Бондалетов, Л. И. Бондалетова. //Изв. ВУЗов. Химия и химическая технология, 2004. Том 47. вып. 1. С. 127-130.
- 7. Фитерер Е. П. Получение олигомерных смол полимеризацией побочных продуктов пиролиза на катализаторе $TiCl_4$ $Al(C_2H_5)_2Cl$. /Е. П. Фитерер, В. Г. Бондалетов, Л. И. Бондалетова. //Материалы III Всероссийской научной конференции «Химия и химическая технология на рубеже тысячелетий» Томск, 2004. С. 101-102.
- 8. Фитерер Е. П. Системы четыреххлористый титан алюминийорганические соединения в полимеризации дициклопентадиеновой фракции. /Е. П. Фитерер, В. Г. Бондалетов, С. И. Приходько. //Материалы Международной научно-практической конференции "Химия — XXI век: новые технологии, новые продукты" — Кемерово, 2004. — С. 75-77.
- 9. Бондалетов В. Г. Исследование процесса взаимодействия эпоксидных соединений с компонентами каталитической системы $TiCl_4$ $Al(C_2H_5)_2Cl$. /В. Г. Бондалетов, В. Я. Толмачёва, Л. И. Бондалетова, Е. П. Фитерер. //Изв. ВУЗов Химия и химическая технология, 2004, Том 47. вып. 10. С. 105-108.
- Fiterer E. P. Experimental study of the reaction between epoxy compounds and titanium tetrachloride. /E. P. Fiterer V. G. Bondaletov, V. Ya. Tolmacheva, L. V. Timoshenko. //8th Korea-Russia International Symposium on Science and Technolody, KORUS 2004. At Tomsk Polytechnic Universiti. P. 26-28.
- 11. Бондалетов В. Г. Разработка рациональных методов получения олигомерных продуктов пиролиза установки ЭП 300 ООО «Томскнефтехим». /В. Г. Бондалетов, С. И. Приходько, И. Г. Антонов, К. В. Ермизин, Н. Н. Кузнецов, Е. П. Фитерер. //Пластические массы, 2004. № 5. С. 48-50.
- 12. Бондалетов В. Г. Синтез и модификация нефтеполимерных смол. /В. Г. Бондалетов, Л. И. Бондалетова, А. А. Троян, Е. П. Фитерер. //Ползуновский вестник г. Барнаул. 2004. № 4. С. 42-49.
- 13. Бондалетов В. Г. Влияние условий дезактивации каталитической системы $TiCl_4$ – $Al(C_2H_5)_2Cl$ эпоксидными соединениями на свойства нефтеполимерных смол. /В. Г. Бондалетов, Е. П. Фитерер, В. Я. Толмачёва, Л. И. Бондалетова. //Известия ВУЗов. Химия и химическая технология, 2005. Том 48. вып. 11. С. 73–76.

1 ОБШАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Одним из весьма востребованных олигомерных углеводородных продуктов являются так называемые нефтеполимерные смолы (НПС), получаемые путем соолигомеризации непредельных соединений, содержащихся в продуктах высокотемпературной переработки углеводородного сырья. Для получения НПС также могут быть использованы смеси индивидуальных олефинов и побочные продукты, образующиеся при получении мономеров в процессах гидрирования, дегидрирования и конденсации.

Углеводородные олигомеры природного и искусственного происхождения с невысокой молекулярной массой (смолы) используются в различных областях промышленности, в качестве пластификаторов полимерных компаундов и бетонов, модификаторов битумов, компатибилизаторов и аппретов, компонентов лакокрасочных материалов, алгезивов.

Стоимость природных олигомеров, как правило, велика, и часто отдельные свойства не позволяют использовать их в требуемой области применения. В настоящее время в мировой практике реализуются как направление модификации природных олигомерных продуктов, так и направленный синтез синтетических материалов.

Наибольшее распространение получили способы радикальной олигомеризации, в которых устранены стадии отделения инициатора. Однако они требуют либо высоких температур при термическом способе, либо наличия нестабильных инициаторов – при инициированном. При этом не достигаются высокие выходы целевых продуктов, и требуется дополнительная переработка непрореагировавших углеводородов. Отчасти вышеупомянутые проблемы решаются при реализации способа ионной олигомеризации с использованием AlCl₃ и его комплексов, ранее широко представленного в промышленности. Однако и этот способ требует стадии приготовления комплекса и стадии его утилизации по окончании процесса.

В настоящей работе рассмотрен способ получения углеводородных олигомеров из фракций жидких продуктов пиролиза прямогонного бензина в присутствии эффективных каталитических систем на основе тетрахлорида титана и алюминийорганических соединений ($Al(C_2H_5)_3$, $Al(u_{30}-C_4H_9)_3$, $Al(C_2H_5)_2Cl$). Олигомеризация с использованием данных каталитических систем протекает в гомогенной среде, что позволяет точно контролировать параметры течения процесса и, соответственно, получать смолы требуемого качества. Также предложен способ безотходной дезактивации каталитических комплексов. Исследования, проводимые в данном направлении, позволят создать теоретические предпосылки для производства НПС, обеспечивающего высокие техническую и экологическую эффективность процесса. Работа имеет широкий характер, так как ее результаты могут быть использованы

при реализации процессов с использованием технических смесей мономеров, так и заранее заданных модельных.

Целью работы является исследование закономерностей олигомеризации ароматической и циклоалифатической фракций жидких продуктов пиролиза прямогонных бензинов с использованием каталитических систем на основе $TiCl_4$ и $Al(C_2H_5)_3$, $Al(uso C_4H_9)_3$, $Al(C_2H_5)_2Cl$, а также изучение особенностей их дезактивации оксидами олефинов.

Для достижения поставленной цели решались следующие задачи:

- исследовать состав некоторых фракций жидких продуктов пиролиза с использованием различных физических и спектральных методов;
- подобрать приемлемые условия процесса олигомеризации с использованием каталитических систем на основе $TiCl_4$ и $Al(C_2H_5)_3$, $Al(C_2H_5)_2Cl$, $Al(изо-C_4H_9)_3$ стирольной (СИФ) и дициклопентадиеновой фракций (ДЦПДФ);
- определить состав полученных олигомерных продуктов с использованием ИК-, ЯМР 1 H- спектроскопии и физико-химических методов;
- установить механизм протекания процесса дезактивации каталитических систем оксидами олефинов и структуры полученных продуктов методами ИК- и ЯМР 1 H- спектроскопии.
- выявить возможности практического применения полученных олигомерных результатов.

Научная новизна. Впервые исследован процесс олигомеризации высококипящих пиролизных фракций с использованием каталитических систем на основе $TiCl_4$ и $Al(C_2H_5)_3$, $Al(C_2H_5)_2Cl$, $Al(u3o-C_4H_9)_3$.

Установлено, что активность каталитических систем $TiCl_4$ с различными алюминийорганическими соединениями зависит от соотношения стирол : дициклопентадиен в исследуемых фракциях.

Показано, что выход олигомера и его физико-химические характеристики зависят от природы алюминийорганического соединения и соотношения Al: Тi и имеют экстремальный характер с максимумами в области от 0,3 до 1,0.

Впервые исследована зависимость физико-химических свойств олигомеров от вида оксида олефина. Определены оптимальные соотношения катализатор: дезактиватор для получения смол с улучшенными характеристиками.

Полученные результаты являются теоретическим основанием для создания непрерывного безотходного производства синтетических углеводородных олигомеров с использованием каталитических систем на основе $TiCl_4$ и алюминийорганических соединений.

- $Al(C_2H_5)_2Cl \ge Al(C_2H_5)_3 > Al(изо-C_4H_9)_3$, выход и физико-химические характеристики НПС зависят от мольного соотношения Al : Ті и имеют экстремальный характер с максимумами в области от 0,3 до 1,0
- 4. Рассчитаны константы соолигомеризации модельных смесей ДЦПД: стирол в присутствии каталитической системы $TiCl_4$: $Al(C_2H_5)_3$ в мольном соотношении 1:1. Установлено, что образующийся (со)олигомер обогащён звеньями стирола.
- 5. Разработан способ безотходной дезактивации каталитических систем с использованием ряда эпоксидных соединений. Установлено, что эпоксиды превращаются в органорастворимые 2-алкоксипроизводные титана и алюминия. Увеличение количества используемого эпоксида свыше стехиометрического приводит к повышению температуры размягчения, адгезии, эластичности и водостойкости.
- 6. Предложена принципиальная непрерывная технологическая схема получения НПС. Выпущены две опытно-промышленные партии НПС с использованием каталитических систем тетрахлорид титана алюминийорганические соединения, на основе которых получены эмали и пропиточные лаки. Результаты испытаний показали, что опытные эмали и лаки по качеству не уступают стандартным.

Основное содержание работы изложено в следующих публикациях:

- 1. Фитерер Е. П. Полимеризация жидких продуктов пиролиза на каталитических системах типа Циглера Натта. /Е. П. Фитерер, В. Г. Бондалетов, И. А. Ли. //Материалы II научной конференции «Химия и химическая технология на рубеже тысячелетий» Томск, 2002, Том 1, С. 322—325.
- 2. Фитерер Е. П. Выбор каталитической системы для полимеризации жидких продуктов пиролиза углеводородов. /Е. П. Фитерер, В. Г. Бондалетов, Л. И. Бондалетова. //Материалы Международной конференции «XVII Менделеевский съезд по общей и прикладной химии» Казань, 2003. С. 365.
- 3. Фитерер Е. П. Исследование закономерностей каталитической полимеризации жидких продуктов пиролиза на катализаторе $TiCl_4$ $Al(C_2H_5)_3$. /Е. П. Фитерер, В. Г. Бондалетов, Л. И. Бондалетова. //Материалы Региональной научно практической конференции «Технология органических веществ и высокомолекулярных соединений» Томск, 2003. С. 160-163.
- 4. Фитерер Е. П. Исследование возможности использования кубовых продуктов ЭП 300 и закономерностей синтеза полимерных продуктов на их основе. /Е. П. Фитерер, В. Г. Бондалетов, Л. И. Бондалетова, С. И. Приходько. //Материалы Международной научно-практической конференции «Химия XXI век: новые технологии, новые продукты» Кемерово, 2003. С. 68-69.

Наиболее светлыми являются НПС, полученные с использованием ОП в качестве дезактиватора каталитической системы, в то время как наиболее тёмным цветом обладают смолы, полученные с применением ЭПХГ.

Использование глицидиловых эфиров приводит к продуктам с повышенным цветом по сравнению с ОП, причем существенной разницы между НПС с $\Phi\Gamma$ Э и с Γ Э практически нет.

Учитывая недостатки, связанные со стадией дезактивации и отмывки катализатора при производстве НПС в данной работе разработана технологическая схема синтеза НПС с использованием тетрахлорида титана и алюминийорганических соединений и дезактивации каталитических систем оксидами олефинов (рис. 3.2).

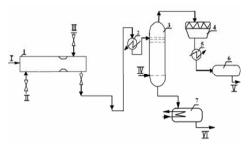


Рисунок 3. 2 Принципиальная технологическая схема производства НПС с использованием каталитических систем на основе тетрахлорида титана и алюминийорганических соединений

1, реактор полимеризатордезактиватор; 2- подогреватель; 3- отгонная колонна; 4 воздушный холодильник; 5-холодильник; 6- сборникотстойник; 7-сборник расплава НПС.

Описание потоков:

І- исходное сырьё ЖПП; ІІ-каталитический комплекс; ІІІ-раствор оксидов олефинов; ІV-водяной пар; V- отгон; VІ- смола на растворение или на грануляцию.

выволы

- 1. Разработан способ олигомеризации ароматической и цикло-алифатической фракций жидких продуктов пиролиза с использованием каталитических систем на основе $TiCl_4$ и $Al(C_2H_5)_3$, $Al(C_2H_5)_2Cl$, $Al(изо-C_4H_9)_3$. Фракции как стирольного типа, так и дициклопентадиенового типа успешно вступают в реакции олигомеризации в интервале температур 60-80 °C и концентрации $TiCl_4$ от 1,5 до 2 % с образованием олигомеров с молекулярной массой 500-700 г/моль.
- 2. Установлено, что индивидуальные $TiCl_4$ и алюминий-органические компоненты обладают низкой каталитической активностью, а образующиеся олигомеры высокой цветностью и низкой температурой размягчения. Использование систем приводит к повышению выхода олигомеров с улучшенными характеристиками.
- 3. Активность каталитических систем зависит от природы алюминийорганического компонента и изменяется следующим образом:

Практическая значимость. Разработан способ олигомеризации ароматических и циклоалифатических высококипящих фракций жидких продуктов пиролиза с использованием каталитических систем на основе $TiCl_4$ и $Al(C_2H_5)_3$, $Al(C_2H_5)_2Cl$, $Al(u3o-C_4H_9)_3$.

Установлены связи между основными параметрами процесса, свойствами олигомеров и покрытий на их основе.

Предложен способ дезактивации каталитических систем оксидами олефинов, позволяющий устранить стадии центрифугирования отстаивания, и сушки. Способ также устраняет образование подсмольных вод и шламов.

Разработана принципиальная технологическая схема непрерывного производства углеводородных олигомеров из жидких продуктов пиролиза. Разработаны технические условия и выпущена опытно-промышленная партия НПС. Из опытных партий НПС были изготовлены эмали и пропиточные лаки.

Положения, выносимые на защиту.

- 1. Новый способ олигомеризации ароматических и циклоалифатических фракций жидких продуктов пиролиза с использованием каталитических систем на основе $TiCl_4$ и $Al(C_2H_5)_3$, $Al(C_2H_5)_2Cl$, $Al(изо-C_4H_9)_3$. Связь условий полимеризации с характеристиками полученных олигомеров.
- 2. Процесс дезактивации каталитических систем эпоксидными соединениями. Зависимость свойств полученных олигомеров от структуры используемых дезактиваторов и соотношения катализатор : дезактиватор.

Апробация работы. Результаты работы представлены в докладах на Международных научно-практических конференциях «Химия – XXI век: новые технологии, новые продукты» г. Кемерово, 2003 – 2005 гг.; Региональной научно—практической конференции «Технология органических веществ и высокомолекулярных соединений» г. Томск, 2003 г.; VII Российско-Корейском симпозиуме KORUS г. Томск, 2004 г.; Международной конференции «Перспективы и развитие фундаментальных наук» г. Томск 2005 г.; Всероссийской научно—практической конференции «Лакокрасочные материалы и покрытия современное состояние и тенденции развития» г. Казань 2005 г, КГТУ.

<u>Публикации.</u> Основные положения диссертации опубликованы в 31 работе, из них статей в центральной печати -6, патентов Российской Федерации -3.

<u>Объём и структура работы.</u> Диссертация состоит из введения, четырёх глав, выводов и изложена на 145 стр., включающих 17 таблиц, 39 рисунков и списка литературы из 158 наименований.

<u>Достоверность</u> <u>результатов</u> подтверждается применением современных химических и физико-химических методов исследования, выполненных на оборудовании с высоким классом точности.

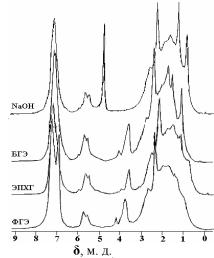
КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введение кратко сформулирована актуальность, цель, задачи исследования и научная новизна работы.

<u>В первой главе</u> рассмотрены аспекты переработки фракций жидких продуктов пиролиза, являющихся побочными продуктами получения низших олефинов. Детально рассмотрено одно из перспективных направлений рационального использования фракций – получение олигомерных углеводородных продуктов - нефтеполимерных смол. Показаны преимущества и недостатки каждого из способов получения НПС, осуществлён их сравнительный анализ. Сделан обзор по основным направлениям применения олигомеров. Представлено литературное обобщение результатов многолетних исследований в данном направлении, выполненных как зарубежными, так и отечественными авторами.

Во второй главе рассматриваются основные методы исследования, применяемые в рамках данной работы. Идентификацию фракций продуктов пиролиза и полученных олигомеров осуществляли методами ЯМР ¹Н-, ИК- спектроскопии и газожидкостной хроматографии. Исследование процесса олигомеризации проводили гравиметрически и с помощью ЯМР ¹Н- спектроскопии. Молекулярную массу определяли криоскопически, степень ненасыщенности- по величине бромного числа. Физико-химические характеристики НПС определяли с использованием методов, описанных в ГОСТах. Термостабильность олигомеров определяли при помощи дифференциально-термического анализа.

<u>В третьей главе</u> изложены результаты исследования состава фракций жидких продуктов пиролиза прямогонного бензина, которые отличаются содержанием основных мономеров и их соотношением. Один из представленных вариантов фракций, названный нами стирольной (СИФ), содержит преимущественно алкенилароматические углеводороды, другой образец содержит преимущественно диеновые соединения типа дициклопентадиена, соответственно, дициклопентадиеновая фракция (ДЦПДФ).


<u>В чемвёртой главе</u> рассмотрены способы дезактивации $TiCl_4$ и каталитических систем на основе $TiCl_4$ и $Al(C_2H_5)_3$, $Al(C_2H_5)_2Cl$, $Al(изо-C_4H_9)_3$ и предложена принципиальная схема производства НПС.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

2 Изучение закономерностей олигомеризации с использованием каталитических систем на основе тетрахлорида титана и алюминийорганических соединений

Природа процесса полимеризации катализаторами Циглера-Натта всегда являлась предметом серьёзных дискуссий по поводу его механизма.

олигомерных эфиров. Дезактивация каталитической системы водным

Рисунок 3. 1 ЯМР 1 Н — спектры НПС $_{\text{СИФ}}$; Al(C_{2} Н $_{5}$) $_{2}$ Cl:TiCl $_{4}$ в мольном соотношении равном 1:1

каталитической системы водным раствором NaOH приводит к продукту, не имеющему в ЯМР ¹Н – спектрах сигналов в области 3,9 – 4,4 м.д., что позволяет отнести данную спектральную область к области алкоксидов Ті и АІ (рис. 3.1) и использовать ее в качестве аналитической при анализе НПС.

Физико-химические характеристики полученных олигомеров представлены в таб. 3.2, откуда следует, что, меняя условия их выделения, можно целенаправленно в определенпределах варьировать температуру размягчения, молекулярную массу, растворимость обычно используемых растворителях (сольвент, бензол, хлороформ) и их способность к плёнкообразованию.

Таблица 3. 2 – Физико-химические свойства нефтеполимерных смол

Дезакти-	Молекулярная	Бромное	Эластич-	Т _{РАЗМ} . по	Цвет по	Адгезия,		
вирующий	масса, г/моль	число,	ность, мм		ИМШ 50%	балл.		
агент		г Br ₂ /100г			р-р НПС			
NaOH	596	52	20	94	600	4		
соотношение катализатор : эпоксид 1 : 7								
ФГЭ	714	56	20	103	220	2		
ОП	690	54	25	96	230	3		
БГЭ	757	56	15	114	200	2		
ЭПХГ	696	50	20	119	250	2		
	соотн	ошение ката	ализатор : эп	оксид 1:10				
ФГЭ	647	59	15	109	220	1		
ОП	533	56	10	100	130	2		
БГЭ	835	60	10	108	200	2		
ЭПХГ	515	58	15	103	250	2		
соотношение катализатор : эпоксид 1 : 20								
ΘГЭ	980	55	8	118	150	1		
ОП	698	58	10	112	100	2		
БГЭ	750	54	10	115	180	2		
ЭПХГ	885	57	10	109	250	2		

использовали фенилглицидиловый эфир (ФГЭ), бутилглицидиловый эфир (БГЭ), эпихлоргидрин (ЭПХГ), оксид пропилена (ОП).

Идентификация структуры образующихся продуктов необходима для прогнозирования дальнейших путей их взаимодействия с кислородом и влагой воздуха и другими веществами, которые могут вступить в контакт на поверхности покрытий, содержащих углеводородные олигомеры.

Известно, что при раскрытии окисного цикла окисей несимметричного строения возможно образование двух изомеров:

Для изучения механизма процесса дезактивации реакцию $TiCl_4$ с оксидами олефинов изучали в растворе петролейного эфира при температуре 80 °C и концентрации $TiCl_4$ 2 %. Мольные соотношения $TiCl_4$ с оксидами составляли 1 : 4.

Исчезновение сигналов протонов метиленовых групп в области с хим. сдвигом 2,70-2,78 м.д. свидетельствует о раскрытии эпоксидного кольца.

Для установления структуры полученных продуктов были проведены расчёты ЯМР ¹Н спектров возможных алкоксидов титана (1) и (2). Сравнение параметров экспериментальных спектров с расчётными данными, полученными с использованием программы Chem office 2000 Ultrem, указывает на образование структуры (2), то есть раскрытие эпоксидного цикла происходит по механизму II.

Таблица 3. 1 – Спектры ЯМР 1 Н соединений алкоксидов титана (структура 2)

	Заместитель, R-	Химический сдвиг, 8, м.д.
I	C ₆ H ₅ O	3,54 (д, 2 Н,СНО); 3,95 (д, 2 Н СН ₂ С1)
		4,28 (м, 1 H CHO); 6,7 – 7,3(м,5 H, аром.)
II	C ₄ H ₉ O	0,96 (T, 3 H, CH ₃); 1,18 (д, 2 H, CH ₂ O)
		1,81 (д, 2 H, CH ₂ Cl); 4,28 (м, 1 H, CHO)
III	CH ₃	1,32 (д, 3 H, CH ₃); 3,82 (д, 2 H, CH ₂ Cl)
		4,18 (м, 1 H, CHO)
IV	Cl	3,90 (M, 4 H, 2 CH ₂ Cl); 4,31 (M, 1 H, CHO)

При проведении олигомеризации стирольной фракции и дезактивации были получены $H\Pi C_{CU\Phi}$, идентифицированные с помощью ИК-, $SMP^{1}H$ – спектроскопических методов.

При использовании избытка оксидов олефинов (более 7 молей относительно стехиометрического) в спектрах ЯМР ¹Н возрастает интенсивность сигналов в области 3,9 м. д., соответствующие протонам –СНО-

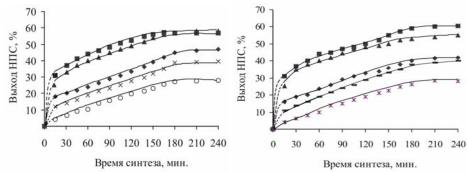
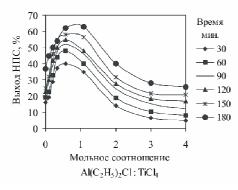
Взаимодействие алкилов алюминия с тетрахлоридом титана в процессе полимеризации является сложной реакцией, которая может осуществляться разными путями. Однако основной реакцией в процессе взаимодействия с алкенами является координация молекулы мономера у атома Ті и внедрение мономера в состав комплекса за счёт разрыва связи Ті-СІ в катализаторе. При этом мономер выступает в роли донора π -электронов, а переходный металл катализатора благодаря наличию вакантных d-орбиталей является акцептором.

$$\begin{array}{c} \text{Cl} & \text{Cl} & \text{C2H}_5 \\ \text{Cl} & \text{Cl}_4 & \text{C2H}_5 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_4 & \text{CH}_5 & \text{CH}_5 & \text{CH}_5 \\ \text{CH}_5 \text{CH}_5 & \text{C$$

С целью установления основных закономерностей процессов и разработки на основе полученных результатов эффективного способа получения смол нами был рассмотрен процесс олигомеризации непредельных углеводородов, входящих в состав СИФ и ДЦПДФ, с использованием $TiCl_4$ и каталитических систем $TiCl_4$ – $Al(C_2H_5)_2Cl$, $TiCl_4$ – $Al(C_2H_5)_3$, $TiCl_4$ – $Al(uso-C_4H_9)_3$.

Исследование зависимости выхода олигомера от времени протекания процесса олигомеризации непредельных соединений СИФ (рис. 2.1) и ДЦПДФ (рис. 2.2) в присутствии каталитического комплекса $TiCl_4$ – $Al(C_2H_5)_2Cl$ показало, что реакция в основном заканчивается за 180 мин.

Полученные результаты свидетельствуют о том, что выход олигомера существенно зависит от мольного соотношения компонентов каталитического комплекса, что явилось предметом дальнейших исследований.

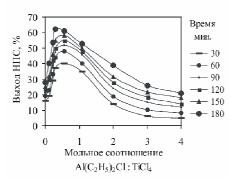

Рисунок 2.1 Зависимость выхода $H\Pi C_{CИ\Phi}$ от времени олигомеризации. Мольное соотношение $TiCl_4$: $Al(C_2H_5)_2Cl$ ♦ 1,0:0,1; ■ 1,0:0,3; ▲ 1,0:1,0; -1,0:2,0; x 1,0:3,0

Рисунок 2. 2 Зависимость выхода $H\Pi C_{\Pi U\Pi D\Phi}$ от времени олигомеризации. Мольное соотношение $TiCl_4:Al(C_2H_5)_2Cl$, 1,0:0,1; ■ 1,0:0,3; ▲ 1,0:1,0; x 1,0:2.0: ○ 1.0:3.0

Было установлено, что все кинетические кривые, независимо от используемых алюминийорганических соединений, имеют аналогичный характер.

Результаты зависимости выхода олигомера от мольного соотношения $Al(C_2H_5)_2Cl:TiCl_4$ (концентрация $TiCl_4-2$ %), представлены в виде графиков на рис. 2.3, 2.4.

Рисунок 2.3 Зависимость выхода $H\Pi C_{\Pi U\Pi D\Phi}$ от мольного соотношения $Al(C_2H_5)_2Cl:TiCl_4$

Рисунок 2.4 Зависимость выхода $H\Pi C_{CИ\Phi}$ от мольного соотношения $Al(C_2H_5)_2Cl: TiCl_4$

Из рисунков 2.3, 2.4 следует, что выход олигомера в каждом временном интервале существенно зависит от мольного соотношения компонентов каталитической системы, и зависимость имеет

затруднено для интерпретации вследствие неустановленного состава части углеводородов фракции.

С целью установления реакционной способности мономеров (со)олигомеризации при синтезе НПС на основе пиролизных фракций была изучена кинетика бинарных модельных смесей ненасыщенных углеводородов, входящих в состав используемых фракций ДЦПД и стирола (таб. 2.3). Процесс проводили с использованием каталитической системы $TiCl_4$:Al(C_2H_5)3, с мольным соотношением 1:0,33 при температуре 60 °C, в течении 60 мин. Константы (со)олигомеризации рассчитывали по методу Келена и Тюдеша.

Таблица 2. 3 – Показатели процесса (со)олигомеризации моно-

меров ДППД (M_1) :стирол (M_2) при различных соотношениях

Ī	Соотношение	Соотношение Соотношение мономеров, % мол.					
	$(M_1):(M_2), \%$ macc.		\mathbf{r}_1	r_2			
	(1V1]).(1V12), 70 Macc.	в исходной					
		$(M_1)_0$	$(M_2)_0$	(M_1)	(M_2)		
ĺ	100:0	100	-	12,2	-		
	80:20	75,9	24,1	71,7	28,3	Ī	
	70:30	64,8	35,2	59,6	40,4	0,14	0,95
	50:50	44,1	55,9	38,5	61,5	Ī	
	30:70	25,3	74,7	21,1	78,9	Ī	
ĺ	20:80	16,5	83,5	13,9	86,1	Ī	
	0:100	100	-	-	100		

Результаты исследований (со)олигомеризации ДЦПД и стирола, свидетельствуют о наибольшей активности стирола. Во всём исследуемом интервале стирол расходуется практически полностью, ДЦПД является менее активным мономером полученный (со)олигомер обогащён звеньями стирола.

3. Дезактивация каталитических систем эпоксидными соединениями

Для эффективного завершения процессов ионной полимеризации требуется использование соединений, при взаимодействии с которыми компоненты каталитического комплекса переходят в неактивное состояние. Ранее для дезактивации катионных катализаторов применялись водные растворы гидроокисей щелочных металлов или аммиака, после чего требовалось разделение эмульсий, удаление солей и воды из получаемого олигомера. Эти операции чрезвычайно трудоемки, и приводят к потерям олигомера и образованию загрязненных подсмольных вод.

В данной работе для дезактивации каталитических комплексов предложено использовать оксиды олефинов, реакции которых с TiCl₄ и алюминийорганическими соединениями приводят к образованию органорастворимых соединений. В качестве эпоксидных соединений

Сигналы протонов были распределены по типам следующим образом: А - ароматические (6,2-8,0 м.д.); В - олефиновые (4,0-6,2 м.д.),

Рисунок 2. 7 ЯМР 1 Н-спектры СИФ и НПС_{СИФ}, мольное соотношение TiCl₄ : Al(C₂H₅)₃ 1:1, температура 80 $^{\circ}$ С. Отбор проб: **1**- 10 мин; **2**- 20 мин; **3**- 60 мин; **4**- 180 мин; **5**- 16 часов

Рисунок 2. 8 Изменение содержания протонов от времени олигомеризации

(С) - метильные и метиленовые в α -положении κ ароматическому кольцу и к двойным связям (2,0-3,6 м.д.), D - метиновые парафиновые и нафтеновые протоны (1,5-2,0 м.д.), E - метиленовые парафиновые и нафтеновые (1,05-1,50 м.д.) и F - метильные (0,50-1,05 м.д.).

Значения нормализованных интегральных интенсивностей групповых сигналов приведены на рис. 2.7. Рассматривая изменения значений интегральных интенсивностей всех типов протонов, происходящих в реакционной массе, следует отметить уменьшение в группе олефиновых (4,0-6,2 м.д.) протонов, а также антибатное изменение интенсивностей сигналов групп С и D.

В первые 10 мин. олигомеризация протекает в основном за счёт производных стирола, что характеризует снижение интенсивности от 13,2 до 7,9 % протонов в группе (В). В дальнейшем процесс олигомеризации продолжается за счёт непредельных протонов менее реакционноспособных ά- метил-ДЦПД, (также стирола, изменение в группе В). Это подтверждает антибатность поведения кривых (рис. 2.8) для групп В и D сигналов протонов ЯМР ¹Н- спектров. Исследование в области от 1,0 до 4,0 м.д.

экстремальный характер с максимумом в области соотношений $Al(C_2H_5)_2Cl$: $TiCl_4$ от 0,3 до 1,0. Совместный анализ графиков зависимостей выходов олигомеров от мольного соотношения Al: Ti показывает, что независимо от используемого сокатализатора — $Al(C_2H_5)_2Cl$, $Al(C_2H_5)_3$ или $Al(uso-C_4H_9)_3$, кривые носят экстремальный характер с максимумом в области 0,3 — 1,0 с резким уменьшением значения выхода при дальнейшем увеличении содержания алюминийорганических соединений. Следует отметить, что активность каталитической системы с $Al(uso-C_4H_9)_3$ ниже, нежели с другими алюминийорганическими соединениями.

На рис. 2.5 и 2.6 представлены результаты исследования зависимости выходов НПС от соотношения $Al(C_2H_5)_2Cl: TiCl_4$ и температуры синтеза.

75 60 45 30 15 0 1 2 3 4 Мольное соотношение Al(C₂H₅)₂Cl: TiCl₄

Рисунок 2.5 Влияние температуры процесса на выход НПС дцпдф. Температура олигомеризации (°C): х 60; \blacktriangle 70; \Box 80; \diamondsuit 90

Рисунок 2.6 Влияние температуры процесса на выход НПС_{СИФ.} Температура олигомеризации (°C): \times 60; \triangle 70; ■ 80; • 90

Температура, при которой достигается максимальный выход олигомера (40–65 %), находится в интервале 70-90 °C, но следует отметить, что повышение температуры реакции до 90 °C помимо увеличения выхода приводит к образованию продуктов, плохо растворимых в ароматических растворителях (толуол, ксилол), с высокой цветностью и меньшей температурой размягчения.

Результаты анализа физико-химические характеристик смол (таб. 2.1) позволяют охарактеризовать полученные продукты как олигомеры со средней молекулярной массой от 500 до 800, температурой размягчения 80-105 °С и цветом 180-300 ед., что позволяет рекомендовать их как компонент плёнкообразующего материала в лакокрасочной промышленности.

Таблица 2. 1 – Физико-химические свойства НПС (80 °C, 180 мин.)

Тип смолы	Соотношение компонентов	Выход смолы,	Т _{РАЗМ} . по КиШ, °С	Мол. масса	Цвет по ИМШ
	катализатора	%	,	г/моль	50 % р-р НПС
НПССИФ	TiCl ₄	28	96	500	1500
НПСДЦПДФ	TiCl ₄	38	99	500	1400
НПССИФ	TiCl ₄ :Al(<i>u30</i> -C ₄ H ₉) ₃				
	1,0:0,3-0,5	37-43	78-82	500-600	200-300
	1,0:1,0	28	60	520	300
НПС _{ДЦПДФ}	1,0:0,3-0,5	48-50	75-80	550-770	220-250
	1,0:1,0	44	68	520	250
НПС _{СИФ}	$TiCl_4$ - $Al(C_2H_5)_3$				
	1,0:0,3-0,5	48-56	95-104	680-850	200-220
	1,0:1,0	59	114	870	180
НПСДЦПДФ	1,0:0,3-0,5	57-65	91-105	580-750	250-280
	1,0:1,0	54	101	560	280
$H\Pi C_{CM\Phi}$	$H\Pi C_{CИ\Phi}$ $TiCl_4$ - $Al(C_2H_5)_2Cl$				
	1,0:0,3-0,5	62-63	92-102	600-850	200-250
	1,0:1,0	53	96	690	300
	1,0:2,0	38	89	560	300
НПС _{ДЦПДФ}	1,0:0,3-0,5	54-63	87-91	520-630	200-220
	1,0:1,0	68	109	600	250
	1,0:2,0	43	103	580	250

Олигомеризация с использованием индивидуального $TiCl_4$ в качестве катализатора приводит к невысоким выходам НПС с высоким цветом. При оценке каталитической активности рассматриваемых систем по отношению к фракциям следует учитывать, что для каждого алюминийорганического соединения существует собственное оптимальное соотношение Ti:Al. Так, каталитические системы с $Al(uso-C_4H_9)_3$ наименее активны, а в активностях каталитических систем с участием $Al(C_2H_5)_2Cl$ и $Al(C_2H_5)_3$ в олигомеризации CИФ и ДЦПДФ происходит некоторая инверсия, но в целом они приблизительно одинаковы.

В процессе исследований установлено, что наиболее активными при олигомеризации непредельных соединений являются каталитическими системы $TiCl_4$ с $Al(C_2H_5)_2Cl$ и $Al(C_2H_5)_3$ позволяющие работать с разнообразными составами сомономеров, в том числе содержащими диены. Дальнейшие исследования проводились с использованием систем $TiCl_4$ — $Al(C_2H_5)_3$.

На основании хроматографических исследований состава исходных фракций и вакуумного отгона непрореагировавших углеводородов синтеза олигомерных продуктов составлен компонентный материальный баланс (табл. 2.2).

Таблица 2. 2 — Компонентный материальный баланс синтеза $H\Pi C_{\text{СИФ}}$ при мольном соотношении Al: Ti, равном 0,3:1,0; температура синтеза $80\,^{\circ}\text{C}$ время $180\,\text{мин}$

синтеза 80 °С, время 180 мин.							
	ДЦПДФ	СИФ,	Углеводороды, вступившие в				
состав фракции	%	%	полимері	изацию, %	(через дробь указана		
			конверси	я углеводор	одов)		
			TiCl ₄ -Al($C_2H_5)_2C1$	$TiCl_4$ - $Al(C_2H_5)_3$		
			НПССИФ	НПСДЦПДФ	НПС _{СИФ}	НПСДЦПДФ	
Бензол	2,3	1,9	_	_	_	_	
Толуол	8,3	10,5	_	_	_	_	
Этилбензол	1,7	3,8	_	_	_	_	
м, п-Ксилолы	6,2	10,9	_	_	_	_	
Мезитилен	1,8	2,4	_	_	_	_	
Стирол	9,8	17,8	16,4/92	9,2/93	17,4/97	8,7/88	
α-Метилстирол	1,9	2,8	2,6/92	1,7/89	2,6/92	1,7/89	
Дициклопентадиен	34,6	19,3	12,4/65	26,5/77	15,4/79	21,5/67	
Циклопентадиен	12,6	_	_	12/95	_	9,5/75	
Винилтолуолы	0,8	2,8	2,6/92	0,7/87	2,6/92	0,7/87	
Индан	_	0,7	_	_	_	_	
Инден	_	2,3	2,1/91	_	2,3/100	_	
Неароматические							
углеводороды	13,6	14,1	9,2/65	12,2/89	10,2/72	10,2/75	
$C_6 + C_8$							
Неидентифици-							
рованные							
ароматические	6,4	10,7	7,8/72	2,7/42	6,0/56	1,7/26	
углеводороды			,	,	, i	,	
Всего	100	100	53,0	65,0	59,0	54,0	

Полученные результаты подтверждают данные спектральных анализов. Так, $H\Pi C_{\text{СИФ}}$ содержит значительное количество мономерных звеньев ароматического характера, а в структуре $H\Pi C_{\text{ДЦПДФ}}$ наряду с незначительным количеством ароматических звеньев присутствует повышенное содержание дициклопентадиеновых звеньев.

С помощью ЯМР 1 Н — спектроскопии исследован процесс олигомеризации СИФ с использованием каталитической системы $Al(C_2H_5)_3$: $TiCl_4$, мольное соотношение 1:1. Процесс проводили в течение 180 мин. при температуре 80 ± 2 °C. Регистрация спектров проводилась через 10, 20, 30 мин. с использованием внешнего стандарта (D_2O). Для определения состояния завершённости реакции через 16 час. был снят последний спектр (рис. 2.7).