ВЛИЯНИЕ РАСХОДА ЛИНЕЙНОГО АЛКИЛБЕНЗОЛА В ПЛЕНОЧНОМ РЕАКТОРЕ СУЛЬФИРОВАНИЯ НА СКОРОСТЬ ОБРАЗОВАНИЯ ПОБОЧНЫХ ПРОДУКТОВ И.М. Долганов, А.А. Солопова, И.О. Долганова

Научный руководитель – научный сотрудник И.О. Долганова Национальный исследовательский Томский политехнический университет, г. Томск, Россия

пациональный исслеоовательский томский политехнический университет, г. томск, госсия

Алкилбензолсульфокислоты применяются в качестве ключевого компонента при производстве бытовых и промышленных поверхностно-активных веществ. В нефтяной промышленности поверхностно-активные вещества имеют разнообразное применение.

Использование существующих моделирующих систем для прогнозирования и оптимизации процесса сульфирования линейного алкилбензола серным ангидридом невозможно ввиду его специфичности. Разработка математической модели процесса сульфирования в многотрубном пленочном реакторе позволяет оценивать влияние конструкционных и технологических параметров на выход и качество получаемой продукции.

Целью настоящей работы является исследование влияния конструкции многотрубного реактора сульфирования и линейного алкилбензола, подаваемого в реактор на концентрацию целевого и побочного продуктов с применением метода математического моделирования.

На рисунке 1 приведена формализованная схема превращений в процессе сульфирования линейного алкилбезола триоксидом серы.

Рис. 1 Схема превращений веществ в процессе сульфирования ЛАБ

Здесь: ЛАБ — линейный алкилбензол с углеводородным радикалом C_{10} — C_{13} ; АБСК — алкилбензолсульфокислота с углеводородным радикалом C_{10} — C_{13} ; ПСК — пиросульфокислота; ангидрид АБСК — ангидрид сульфоновой кислоты; ЛАБнепр — остаточный линейный алкилбензол с углеводородным радикалом C_{10} — C_{13} ; несульфированные соединения — сульфоны и тетралины.

Разработаная математическая модель позволяет количественно оценить скорости превращения углеводородов в зависимости от исходных параметров в системе при допущении о режиме идеального вытеснения. Константы скоростей химических реакций определены решением обратной кинетической задачи. Предложенная модель реактора сульфирования может быть описана следующим образом:

$$\begin{cases} G \frac{\partial C_{ЛАБ}}{\partial Z} + G \frac{\partial C_{ЛАБ}}{\partial V} = -k_1 a_1 C_{ЛАБ} C_{SO3} - k_5 a_5 C_{\Pi C K} C_{ЛАБ} - k_4 a_4 C_{ЛАБ} C_{SO3} - k_2 a_2 C_{A B C K} C_{ЛАБ} + k_{-2} a_{-2} C_{H e c y Л b \phi} C_{H 2 O} \\ G \frac{\partial C_{A B C K}}{\partial Z} + G \frac{\partial C_{A B C K}}{\partial V} = k_1 a_1 C_{Л A B} C_{SO3} + k_5 a_5 C_{Л A B} C_{\Pi C K} - k_3 a_3 C_{A B C K} C_{SO3} + \\ + k_6 a_6 C_{a H \Gamma A B C K} C_{H 2 O} - k_2 a_2 C_{Л A B} C_{A B C K} + k_{-2} a_{-2} C_{H e c y Л b \phi} C_{H 2 O} \\ G \frac{\partial C_{\Pi C K}}{\partial Z} + G \frac{\partial C_{\Pi C K}}{\partial V} = k_4 a_4 C_{Л A B} C_{SO3} - k_5 a_5 C_{\Pi C K} C_{Л A B} \\ G \frac{\partial C_{a H \Gamma A B C K}}{\partial Z} + G \frac{\partial C_{a H \Gamma A B C K}}{\partial V} = k_3 a_3 C_{A B C K} C_{SO3} - k_6 a_6 C_{a H \Gamma A B C K} C_{H 2 O} \\ G \frac{\partial C_{H e c y Л b \phi}}{\partial Z} + G \frac{\partial C_{H e c y Л b \phi}}{\partial V} = k_2 a_2 C_{Л A B} C_{A B C K} - k_{-2} a_{-2} C_{H e c y Л b \phi} C_{H 2 O} + k_7 a_7 C_{Л A B H e n p} C_{SO3} \\ G \frac{\partial C_{A A B H e n p}}{\partial Z} + G \frac{\partial C_{A A B H e n p}}{\partial V} = -k_7 a_7 C_{Л A B H e n p} C_{SO3} \\ G \frac{\partial C_{A A B H e n p}}{\partial Z} + G \frac{\partial C_{A A B H e n p}}{\partial V} = -k_7 a_7 C_{Л A B H e n p} C_{SO3} \\ G \frac{\partial C_{A A B H e n p}}{\partial Z} + G \frac{\partial C_{A A B C K C S O 3}}{\partial V} + Q_2 k_2 a_2 C_{A A B C K} C_{A B C K} + Q_2 k_{-2} a_{-2} C_{H e c y Л b \phi} C_{H 2 O} + Q_3 k_3 a_3 C_{A B C K} C_{SO3} + C_4 k_4 a_4 C_{A A B C C S O 3} + Q_5 k_5 a_5 C_{\Pi C K} C_{A A B C} + Q_6 k_6 a_6 C_{a H \Gamma A B C K} C_{H 2 O} + Q_7 k_7 a_7 C_{A A B H e n p} C_{SO3}) \\ Z = 0, C_i = C_i^{in}, T = T^{in}; V = 0, C_i = C_i^{in}, T = T^{in}; \end{cases}$$

Активность реакционной смеси определяется как $a_i = e^{-\alpha C_{v.c.}}$. При Z = 0, $C_{v.c.} = 0$, $\alpha = 1$, $a_i = 1$.

СЕКЦИЯ 12. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПОДГОТОВКИ И ПЕРЕРАБОТКИ ПРИРОДНЫХ РЕСУРСОВ. ПОДСЕКЦИЯ 2 – ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ ПОДГОТОВКИ И ПЕРЕРАБОТКИ ГОРЮЧИХ ИСКОПАЕМЫХ.

Образование и накопление побочных продуктов – сульфонов и тетралинов приводит к закупориванию трубок реактора, вследствие чего ухужшается качество получаемой продукции. Для удаления вязких компонентов производится промывка реактора водой [1].

Коэффициент массоотдачи определяет интенсивность процесса переноса вещества внутри пленки и зависит от значния критерия Рейнольдса пленки жидкости и скорости газа: $\beta_{\rm ж} = 0.55 \cdot 10^{-6} {\rm Re}_{\rm пл}^{1/3} {\rm w}_{\rm r}^{3/2}$ [2].

Для исследования влияния конструкции реактора и расхода линейного алкилбензола на выход целевого продукта и динамику накопления высоковязкого компонента, производился расчет по трем межпромывочном циклам при варьировании диаметра и количества трудок в реакторе. В таблице 1 приведены результаты расчетов на модели при оптимизации по конструкции.

Оптимизация по конструкции реатора

Таблица 1

Количество трубок	120	100	80	60	40	20
Диметр трубки, мм	25	27	31	35	43	61
Объем трубного пространства, м3	0,353					
Время контакта, сек	27	26	24	22	19	15
Коэффициент массоотдачи, м/с·10²	1,73	1,79	1,85	1,95	2,08	2,34

Уменьшение количества трубок с увеличением их диаметра при постоянном расходе 3500 кг/ч, приводит к снижению времени контакта и как следствие увеличению коэффициента массоотдачи, что позволяет увеличить продолжительность межпромывочного цикла до 45 % (табл. 3).

Однако изменение конструкции реактора трудоемкий и дорогостоящий процесс. Снизить время контакта возможно так же путем увеличесния расхода линейного алкилбензола, подаваемого в реактор при преждей контсрукции реактора n=120, d=25 мм. В таблице 2 приведены результаты расчетов на модели при оптимизации по расходу линейного алкилбензола.

Оптимизация по расходу

Таблица 2

Массовый расход ЛАБ, кг/час	3500	4000	4500	5000	5500	6000
Время контакта, сек	27	25	23	22	20	19
Коэффициент массоотдачи, м/с·10²	1,73	2,21	2,75	3,33	3,97	4,66

Увеличение расхода ЛАБ при прежней конструкции приводит к снижению времени контакта и как следствие увеличению коэффициента массоотдачи, что позволяет увеличить продолжительность межпромывочного цикла. Однако максимально допустимый расход составляет 4500 кг/ч, такое знаение позволяет увеличить длительность межпромывочных циклов до 25 % (табл. 3).

Увеличение длительности межпромывочных циклов при оптимизации

Таблица 3

	Продолжительность цикла, дней				
Цикл	Без оптимизации	Оптимизация по конструкции (G = 3500 кг/час п = 40, d = 43 мм)	Оптимизация по расходу (G = 4500 кг/час n = 120, d = 25 мм)		
23.01.2019 - 08.02.2019	16	23 (+43,7 %)	20 (+25,0 %)		
17.10.2019 - 03.11.2019	18	25 (+38,9 %)	21 (+16,7 %)		
17.11.2019 - 09.12.2019	22	32 (+45,5 %)	26 (+18,2 %)		

Таким образом, можно сделть вывод, что уменьшение количества трубок в реакторе, как и увеличение расхода сырья, подаваемого в реактор, ведет к увеличению коэффициента массоотдачи, вследствие чего снижается концентрация высоковязкого компонента, что позволяет увеличивать продолжительность межпромывочных циклов.

Работа выполнена при поддержке гранта Президента Российской Федерации для государственной поддержки молодых российских ученых № МК-163.2020.3.

Литература

- Dolganova I.O., Dolganov I.M., Ivanchina E.D., Ivashkina E.N. Alkylaromatics in Detergents Manufacture: Modeling and Optimizing Linear AlkylbenzeneSulfonation / Journal of Surfactants and Detergents. – 2018 – Vol. 21 – №. 1. – pp. 175-184
- 2. Газожидкостные реакторы / Соколов В. Н., Долманский И. В. Л.: «Машиностроение», 1976. 216 с.