Ab initio МЕТОДЫ РАСЧЕТА ВЛИЯНИЯ ВЗАИМОДЕЙСТВИЙ ВАН-ДЕР-ВААЛЬСА НА АДГЕЗИЮ НА ГРАНИЦЕ РАЗДЕЛА ТИТАН-КЕРАМИКА НА ОСНОВЕ ФОСФАТОВ КАЛЬЦИЯ

И.Ю. Грубова, Р.А. Сурменев, М.А. Сурменева, Э. Нейтс Научный руководитель – к.ф.-м.н., доцент Р.А. Сурменев

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, rodeo_88@mail.ru

Известно, что керамика на основе гидроксиапатита [Ca₁₀(PO₄)₆(OH)₂, ГА] широко используется в медицинской практике в качестве биосовместимого покрытия на внутрикостных имплантатах из сплавов титана (Ti). Однако сформированным на Ті каркасе ГА покрытиям присущи дефекты структуры, ограничивающие их долговременную стойкость в процессе эксплуатации [1]. Таким образом, достаточная прочность сцепления между поверхностями ГА покрытия и Ті основы является критическим фактором продления срока службы таких металлокерамических медицинских изделий. В настоящей работе представлены расчеты из первых принципов (ab initio), описывающие влияние замещения фосфатных групп анионами кремния в структуре ГА на прочность сцепления на границе раздела аморфного ГА (а-ГА) и аморфного диоксида титана (a-TiO₂) с применением обменно-корреляционного потенциала GGA по Perdew-Burke-Ernzerhof (PBE) [2] и метода коррекции Гримме (DFT-D3) [3], который позволяет описывать влияние Ван-дер-Ваальсовых (vdW) взаимодействий на механизм межфазной связи. В частности, в данной работе обсуждается влияние дисперсионных сил на величину работы адгезии (W_{ad}), равновесную геометрию, и распределение разности зарядовых плотностей (CDD). Все вычисления проводились в программном пакете VASP-4.6. В качестве базиса был использован метод PAW. Величина энергии обрезания для изучаемых систем интерфейсов была равна 500 эВ. Для всех ионов были использованы следующие конфигурации валентных электронов: 1s¹ для Н, 3s²3p³ для Р, 3s²3p⁶4s² для Са, 2s²2p⁴ для О, 3s²3p² для Si и 3d³4s¹ для Ti. Интегрирование по зоне Бриллюэна проводилось с использованием сетки k-точек 6×6×1, полученной по схеме Монхорста-Пака. Атомные структуры в работе были визуализированы с помощью программы VESTA-3.

Проведённые расчёты показывают, что замещение атома Р атомом Si в структуре а-ГА (a-Si-ГА) при учёте образования ОН-вакансий в качестве компенсации заряда приводит к значительному увеличению прочности связи покрытия с подложкой в случае использования PBE-GGA функционала. Работа адгезии кремний-замещённых интерфейсов, с оптимизированной геометрией, достигает значения – 2,855 Дж/м², что значительно выше, чем для стехиометрического интерфейса a-ГА/а-ТіО₂ (Таблица 1). Тем не менее, было обнаружено, что включение в расчёт взаимодействия Ван-дер-Ваальса может привести как к уменьшению, так и к увеличению значения работы адгезии и длины равновесных связей на границе раздела двух фаз (Таблица 1). В частности, расчёт W_{аd} показал, что вклад взаимодействий vdW довольно высок, так как значение разности ($W_{ad} - W_{ad}$ (vdW)) в среднем превышает 1,1 Дж/м² и 0,5 Дж/м² для а-ГА/а-ТіО, и a-Si-ГА/а-ТіО₂ соответственно (Таблица 1). Таким образом, представленные результаты показывают, что включение взаимодействия сил Ван-дер-Ваальса имеет важное значение для точного описания характера и сил химических связей, образованных на границе раздела а-ГА/а-ТіО₂, и, что эти взаимодействия особенно важны для практического медицинского применения биоматериалов на основе ГА.

Работа выполнена при финансовой поддержке гранта президента РФ для поддержки молодых ученых кандидатов наук МК-330.2020.8.

Таблица 1. Значения работа адгезии, рассчитанные с использованием различных обменно-корреляционных функционалов

Сжатажа	W_{ad} (J/m ²)								
Система	a-ГА/	a-TiO ₂	a-Si- $\Gamma A/a$ -Ti O_2						
Состыковочная позиция ато- мов на грани- це раздела	Ι	II	Ι	II					
Функционал									
PBE	-0,690	-2,030	-1,370	-2,855					
DFT-D3	-1,740	-0,930	-0,870	-2,315					

Список литературы

- 1. Early failure of hemispheric hydroxyapatite-coated acetabular cups / S.Y. Kim, D.H. Kim, Y.G. Kim [et al.] // Clinical Orthopaedics and Related Research, 2006.– V.446.– P.233– 238.
- Perdew J.P. Generalized gradient approximation made simple / J.P. Perdew, K. Burke, M. Ernzerhof // Physical Review Letters, 1996.– V.77.– №18.– P.3865–3868.
- A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu / S. Grimme, J. Antony, S. Ehrlich, H. Krieg // The Journal of Chemical Physics, 2010.– V.132.– №15.– Art.– №154104 [19 p.].

ОЦЕНКА ЭФФЕКТИВНОСТИ ИНГИБИТОРА КОРРОЗИИ НА ОСНОВЕ НАНОЧАСТИЦ ОКСИДА ЦИРКОНИЯ МЕТОДОМ ПОТЕНЦИОМЕТРИИ

М.Е. Егамкулов, И.Н. Шевченко, Цзя Лицзе Научный руководитель – к.х.н., доцент Г.В. Лямина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, Yegamkulov@mail.ru

В последнее время использование наночастиц (НЧ) в качестве ингибиторов коррозии привлекло особое внимание. Обширные исследования были проведены для улучшения коррозионной стойкости металлов с использованием в качестве ингибиторов наночастиц TiO_2 , ZnO, SiO_2 , Al_2O_3 и др. [1, 2]. Положительный эффект усиления коррозионной зашиты таких ингибиторов обусловлен малым размером и большим, по сравнению с макрочастицами, содержанию поверхностных атомов и молекул. Благодаря этому, при использовании НЧ наблюдается эффективное заполнение пор и дефектов на поврехности, что препятствует проникновению молекул агрессивных сред.

В нашей работе мы предлагаем использовать для коррозионной защиты стали комбинированные растворы традиционных ингибиторов (полиэтиленгликоль (ПЭГ), тиомочевина (Тио)) с наночастицами ZrO₂, который хорошо известен своими адгезионными свойствами. Оценку эффективности ингибитора проводили методом

потенциометрии. Исследования проводили в трех средах: кислой щелочной и нейтральной. В качестве рабочего электрода использовали исследуемый металл – низколегированную сталь У8А.

На рис. 1 представлено влияние ингибиторов на изменение равновесного потенциала в

Рис. 1. *Потенциал стали У8А в 0,1 М NaOH:* 1 – У8А; 2 – У8А + Тио; 3 – У8А + ПЭГ-400; 4 – У8А + Тио + НЧ ZrO₂; 5 – У8А + ПЭГ-400 + НЧ ZrO₂.

Таблица	1.	Равновесные	потенциалы,	E _{Dabh} ,	мΒ
---------	----	-------------	-------------	---------------------	----

Образцы \ среда	0,1 M HCl (pH=1)	0,1 M NaCl (pH=7)	0,1 M NaOH (pH=13)
У8А	-430	-500	-385
У8А+Тио	-450	-490	-475
У8А+ПЭГ-400	-425	-440	-385
У8А+Тио+НЧ ZrO ₂	-275	-410	-125
У8А+ПЭГ-400+НЧ ZrO ₂	-150	-445	-150