алюминия с пентаоксидом ванадия не требует сложного оборудования. Синтез получения нитридов основан на связывании азота воздуха в присутствии кислорода при атмосферном дав-

Список литературы

- Synthesis, electron transport properties of transition metal nitrides and applications / R.S. Ningthoujam, N.S. Gajbhiye // Progress in Materials Science, 2015. – V.70. – P.50–154.
- Ternary nitrides: a rapidly growing class of new materials / F.J. DiSalvo, S.J. Clarke // Current Opinion in Solid State and Materials Science, 1996. – V.1. – P.241–249.

лении. Кристаллическая фаза нитрида ванадия в конечных продуктах сгорания содержит максимальный выход VN=61 отн. %.

 Synthesis, structure, thermal, transport and magnetic properties of VN ceramics / S. Huber, O. Jankovsky, D. Sedmidubsky, J. Luxa // Ceramics International, 2016.– №42(16).– P.18779–18784.

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОЙ ЗАГРУЗКИ МИКРОЧАСТИЦ ДЕКСАМЕТАЗОНОМ И БСА-ФИТЦ ДЛЯ АДРЕСНОЙ ДОСТАВКИ ЛЕКАРСТВ

Е.А. Чудинова, М.А. Сурменева, А.С. Прядко Научный руководитель – к.ф-м.н., с.н.с. М.А. Сурменева

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, e_chudinova93@mail.ru

Одной из существенных проблем в современной биомедицине является непродолжительное нахождение многих лекарственных средств в организме. Данная задача может быть решена путем микрокапсулирования, обеспечивающего преобразование жидкости в твердые вещества, изменение коллоидных и поверхностных свойств, а также контроль характеристик высвобождения, в частности – пролонгированный выход лекарственного средства [1–2].

Настоящая работа посвящена определению эффективности загрузки частиц противовоспалительным препаратом дексаметазоном и модельным белком БСА-ФИТЦ. В качестве ядер для капсул послужили микрочастицы кальций карбоната (CaCO₃), позволяющие значительно увеличить сорбционную способность загружаемых компонентов. Формирование оболочки ядер осуществлялось методом послойной адсорбции противоположно заряженных полимеров – полиалиламина гидрохлорида (PAH) и полистиролсульфоната натрия (PSS).

Образующиеся в результате синтеза микрокапсулы с дексаметазоном и БСА-ФИТЦ имеют сферическую форму диаметром 1,16±0,06 µм и 0,79±0,32 µм, соответственно (рис. 1).

Контроль знака заряда при послойной адсорбции осуществлялся измерением зета-потенци-

Рис. 1. СЭМ-изображения капсул, синтезированных с дексаметазоном (А) и БСА-ФИТЦ (Б)

ала препарата и белка методом динамического рассеяния света (Malvern Zetasizer Nano ZS) при нанесении каждого слоя (табл. 1).

Методом УФ спектроскопии (Cary 300 Bio UV-Vis-spectrophotometer, Varian) были определены концентрации дексаметазона и БСА-ФИТЦ в эталонном растворе и в супернатанте после синтеза ядра, что позволило определить эффективную загрузку для препарата и модельного белка как 36 и 48%, соответственно.

Идентификация химических связей осуществлялась методом ИК спектроскопии (Vertex 70, Bruker). Анализ показал наличие С–Н, С–О, О–Н, О–С–О, С=О связей. Стоит отметить, что полосы адсорбции при 876, 745 и 1450 см⁻¹ являлись характерными полосами CaCO₂.

Таким образом, проведен ряд исследований по характеризации микрокапсул с противовоспалительным препаратом дексаметазон и модельным белком БСА-ФИТЦ, оценена эффективность их загрузки. Представленные результаты

Список литературы

1. Yashchenok A.M., Jose J., Trochet P., Sukhorukov G.B., Gorin D.A. // Journal of biophotonics, 2016.- V.9.- №8.- P.792-799.

Нанесен- ный слой	Зета-потенциал, мВ	
	Дексаметазон	БСА-ФИТЦ
Ядро СаСО ₃	-17,61±1,56	-16,17±1,43
PAH ₁	10,32±1,1	12,9±1,2
PSS ₂	-17,14±1,52	-10,4±1,12
PAH ₃	7,72±0,85 мВ	7,31±0,82
PSS ₄	-16,84±1,46	-17,62±1,56
PAH ₅	7,34±0,82 мВ	-2,52±0,28
PSS ₆	-17,7±1,58	-18±1,6

Таблица 1. Зета-потенциал капсул с дексаметазоном и БСА-ФИТЦ

дают основание полагать о возможности дальнейшего использования полученных капсул для разработки систем доставки лекарств.

Авторы выражают благодарность профессору М. Эппле, Р.А. Сурменеву, В. Соколовой и С. Букерша за помощь в проведении экспериментов, а также А. Тимину за консультирование по вопросам синтеза микрокапсул.

 Volodkin D. // Advances in colloid and interface science, 2014.– V.207.– P.306–324.

ПОЛУЧЕНИЕ СУЛЬФИДА ЦИНКА В СРЕДЕ н-АЛКАНОВ

М.И. Чуркин, Л.В. Затонская Научный руководитель – к.х.н., доцент Е.П. Харнутова Алтайский государственный университет 656049, Россия, г. Барнаул, пр. Ленина 61, harnutova@chem.asu.ru

Сульфиды – соединения металлов с серой – являются важными в практическом отношении классов неорганических соединений. Сульфиды как полупроводниковые соединения широко используются в радиоэлектронике, телемеханике, вычислительной и измерительной технике, электрооптике, атомной энергетике и т.д. [1].

В частности, к полупроводниковым материалам относится сульфид цинка. Его применяют, например, в полупроводниковых лазерах, а также в качестве люминофора. Сульфид цинка, легированный серебром служит для производства экранов; легированный медью – при изготовлении светящихся табло, панелей.

В настоящее время физические и химические свойства, а также кристаллическое строение сульфидов уже изучены. Легко осуществимы и разработаны методы получения сульфидов их водных сред, зачастую приводящие к получению аморфных соединений. По этой причине современная технология получения кристаллических люминофорных материалов связано с переводом их в расплавленное состояние или с газовыми транспортными реакциями при повышенных температурах. Сульфиды как соли слабой кислоты подвержены гидролизу и поэтому их осадки при получении из водных растворов могут содержать продукты гидролиза и кристаллизационную воду.

В связи с этим представляет интерес применение неводных растворителей для синтеза кристаллических сульфидов.

В работе [2] предлагается метод синтеза сульфидов металлов в органических растворителях. Метод заключается в получении сульфи-