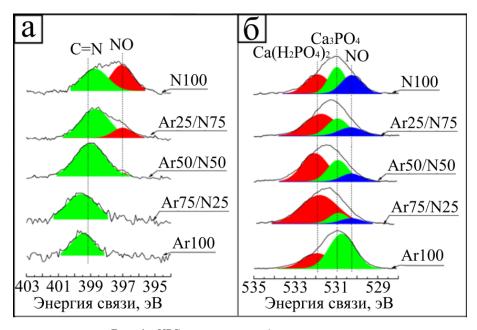
ПЛАЗМОХИМИЧЕСКИЙ СИНТЕЗ БИОАКТИВНЫХ ПОКРЫТИЙ ИМПЛАНТАТОВ ДЛЯ ОСТЕОСИНТЕЗА

А.Ю. Федоткин, П.В. Марьин

Научные руководители – к.ф-м.н., н.с. А.И. Козельская; к.ф-м.н., доцент С.И. Твердохлебов

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, fedotkin_sasha@mail.ru


Одним из перспективных методов формирования биоактивных кальций-фосфатных (КФ) покрытий на поверхности титановых имплантатов является метод ВЧ-магнетронного распыления (ВЧМР) КФ мишеней. ВЧМР позволяет осаждать покрытия на различные материалы, в том числе, на керамические. Этот метод является универсальным не только в плане материала подложки, но и мишени, используемой для распыления, что придает ему большую вариабельность по сравнению с другими методами. Использование в качестве рабочего газа смеси аргона и азота при распылении КФ мишени, например, из гидроксиапатита (ГАП) позволяет формировать на поверхности изделий КФ покрытия, содержащее NO, группы.

Оксид азота является важнейшим медиатором воспаления иммунной системы, с которым связаны регуляторное и защитное действие на организм. Как фактор антимикробной защиты NO включается в механизмы неспецифического иммунитета. В то же время, избыточное содержание NO оказывает повреждающее действие на ткани организма за счет модуляции воспалительного процесса и апоптоза. Поэтому особый интерес представляет получение на поверхности медицинских изделий покрытий с контролируемой концентрацией NO.

Целью данной работы является формирование покрытий на основе гидроксиапатита, доппированных оксидом азота, для реконструктивной хирургии в травматологии, ортопедии, стоматологии.

Формирование ГАП+NO покрытий осуществляли из плазмы ВЧ магнетронного разряда, возникающего при распылении твердотельной ГАП мишени, в атмосфере азота (N₂) и аргона (Ar) на установке, созданной на базе «Катод 1М». Параметры процесса: расстояние между мишенью и образцом – 38 мм, предварительное давление — $3 \cdot 10^{-3}$ Па, рабочее давление -0.5 Па, удельная мощность ~ 5.26 Bт/см², время осаждения – 3 ч. Для формирования исследуемых групп покрытий использовали различные объемные соотношения рабочего газа к реактив-HOMY (Ar/N₂): 100/0, 75/25, 50/50, 25/75, 0/100.

XPS спектры исследуемых покрытий представлены пиками, соответствующими группам CN, Ca(H₂PO₄)₂, Ca₃PO₄ (рис. 1 а,б). В группах Ar50/N50, Ar25/N75 и N100 наблюдается пик 397,5 эВ (рис. 1а), соответствующий NO, интенсивность которого увеличивается по мере увели-

Рис. 1. XPS спектры исследуемых покрытий

Таблица 1. Свойства исследуемых покрытий

Соотношение газов	Ar100	Ar75/N25	Ar50/N50	Ar25/N75	N100
Толщина покрытия, нм	499±10	370±16	632±11	480±42	598±55
Шероховатость, нм	16,368	11,121	32,867	19,82	28,471
Краевой угол смачивания, град	68,7±6,6	82,8±11,5	105,4±1,7	86,0±5,9	109,2±2,9

чения содержания азота в смеси рабочих газов. Наличие CN объясняется наличием остатков органических растворителей.

Наибольшей толщиной и шероховатостью характеризуется покрытие группы Ar50/N50. Наиболее гидрофобными являются покрытия групп N100 и Ar50/N50, а наиболее гидрофильными – покрытия группы Ar100.

Исследование жизнеспособности мультипотентных мезенхимальных стромальных клеток показало, что азот-содержащие покрытия групп Ar75/N25 и Ar50/N50 характеризуются достоверно лучшими показателями жизнеспособности. Дальнейшее снижение этого показателя по мере увеличения содержания азота в смеси рабочих газов объясняется возникновением цитотоксических свойств покрытий с дальнейшим ростом содержания NO.

Работа выполнена на средства субсидии на государственную поддержку ведущих университетов Российской Федерации в целях повышения их конкурентоспособности среди ведущих мировых научно-образовательных центров.

ВЛИЯНИЕ ТИПА УНТ НА УПЛОТНЕНИЕ, ФАЗОВЫЙ СОСТАВ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА КОМПОЗИТОВ НА ОСНОВЕ ${\rm ZrO_2}$, ПОЛУЧЕННЫХ СВОБОДНЫМ СПЕКАНИЕМ

Хаоце Лю, Цзин Ли, А.А. Леонов Научный руководитель – инженер, м.н.с. А.А. Леонов

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, laa91@tpu.ru

Институт сильноточной электроники СО РАН 634055, Россия, г. Томск, пр-т Академический 2/3

Углеродные нанотрубки (УНТ) широко используются для армирования различных материалов, с целью улучшения физико-механических, прочностных и трибологических свойств, а также для создания композитов с новыми функциональными свойствами. Существуют одностенные углеродные нанотрубки (ОУНТ), которые представляют собой полую цилиндрическую структуру, сформированную из слоя графена и многостенные (МУНТ), которые состоят из вложенных друг в друга концентрических слоев свернутого графена. ОУНТ и МУНТ имеют высокие механические свойства и, находясь в матрице композиционного материала, могут принимать на себя долю механической нагрузки, тем самым повышая физико-механические свойства композита. Однако такие волокнистые углеродные наноматериалы в композиционных порошках могут существенно влиять на процессы прессования и спекания, а также на фазовый состав спеченных композитов, что непременно сказывается на физико-механических свойствах. Таким образом, целью данной работы является исследование влияния добавок ОУНТ и МУНТ на уплотнение, фазовый состав и физико-механические свойства композитов на основе ${\rm ZrO}_2$, полученных свободным спеканием.

Нанопорошок ZrO_2+3 мол. Y_2O_3 (Tosoh, Япония) использовали в качестве матричного материала для создания композитов. ОУНТ марки «Tuball» с $S_{y\pi}=546$ м²/г (OCSiAl, г. Новосибирск, Россия) и МУНТ марки «Таунит» с $S_{y\pi}=103$ м²/г (НаноТехЦентр, г. Тамбов, Россия) использовали в качестве армирующих добавок. Смешивание УНТ с нанопорошком ZrO_2 осуществляли в среде этанола с использованием ультразвуковой ванны и магнитной мешалки [1, 2]. Получали композиционные порошки с 0,1, 0,5 и 1 мас.% ОУНТ и с 1, 5, 10 мас.% МУНТ. Из полученных порошков изготавливали компакты одноосным односторонним прессованием при 100 МПа, используя пресс ИП-500М-авто (ЗИПО, Россия).