

СПИСОК ЛИТЕРАТУРЫ

- 1. Монахов В. И. Измерение расхода и количества жидкости, газа и пара. М.–Л., Госэнергоиздат, 1962, 128 с.
- 2. Перистальтические насосы. URL: https://encepumps.ru/peristalticheskiy_nasos/ (дата обращения 25.07.2020)
- 3. Параметры «OBEH» ПЛК 154-220 A.M. URL: http://www.owen.ru/catalog/programmiruemij_logicheskij_kontroller_oven_plk_154/74961994 (дата обращения 25.07.2020)

СИСТЕМА ИЗМЕРЕНИЯ УРОВНЯ И ПЛОТНОСТИ РАДИОАКТИВНЫХ РАСТВОРОВ

Г.В. Сумин, А.А. Денисевич

Национальный исследовательский Томский политехнический университет,

Россия, г.Томск, пр. Ленина, 30, 634050

E-mail: gvs9@tpu.ru

Развитие ядерной и химической отраслей в наше время позволяет получать уникальные продукты, находящиеся на стыке производств. Вещества, получаемые на производствах ядерно-химической отрасли, применяются при производстве медицинских препаратов, моделировании процессов происходящих в космосе и множестве других направлений. Однако на предприятиях данных отраслей существует проблема, связанная с необходимостью измерения плотности и уровня агрессивных технологических растворов. Классические методы измерения плотности и уровня зачастую неприменимы из-за высокой радиоактивности и высокой химической активности, которые ставит ограничения на применяемую аппаратуру. Для решения данной проблемы была разработана установка для измерения плотности и уровня с учетом всех заявленных требований.

Для функционирования установки используются две емкости: емкость с водой для промыва капилляров и емкость с исследуемой жидкостью. Управление подачей жидкостей из емкостей происходит с помощью ПЛК и реле. Команды управления ПЛК получает от ПК, на котором расположена SCADA система для взаимодействия оператора и установки.

Для определения плотности и уровня используются датчики перепада давления ДМ 5017, щупы которых заведены в герметичную емкость с исследуемой жидкостью. Данные о перепаде давления поступают с датчика напрямую на ПК через интерфейс RS-485 по протоколу Modbus RTU.

Щупы внутри герметичной емкости располагаются следующим образом: два погружено в жидкость на разном уровне, один сообщается с атмосферой. Зная разность давления между щупами, используя формулу гидростатического давления можно получить данные о плотности жидкости и в дальнейшем, зная плотность, определить текущий уровень жидкости.

Управление насосами для подачи жидкости в герметичную емкость осуществляется с помощью реле расположенных в модуле расширения датчика ДМ 5017.

Для визуализации процесса управления используется SCADA-система TRACE MODE 6, загруженная на ПК оператора установки. Связь между ПК и датчиками осуществляется с помощью преобразователя интерфейса USB – RS-485.

СПИСОК ЛИТЕРАТУРЫ

- 1. Виды и разновидности датчиков измерения уровня жидкости [Электронный ресурс] Режим доступа: https://rusautomation.ru/datchiki_urovnya/datchiki-urovnya-zhidkosti, свободный. Загл. с экрана (дата обращения: 6.05.2020).
- 2. Методы контроля технологических параметров ядерных энергетических установок: учебное пособие / А.А. Денисевич, Е.В. Ефремов, С.Н. Ливенцов; Национальный исследовательский Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2014.

СИСТЕМА АВТОМАТИЧЕСКОГО ДОЗИРОВАНИЯ ПЛАВИКОВОШПАТОВОГО КОНЦЕНТРАТА ПЕЧНЫХ АГРЕГАТОВ ПРОИЗВОДСТВА БЕЗВОДНОГО ФТОРИСТОГО ВОДОРОДА

Д.И. Тетерин, Н.С. Криницын, В.Ф. Дядик

Национальный исследовательский Томский политехнический университет,

Россия, г.Томск, пр. Ленина, 30, 634050

E-mail: TeterinDI@yandex.ru

Получение фтористого водорода на Сублиматном заводе Сибирского химического комбината осуществляется разложением плавиковошпатового концентрата (ПШК) серной кислотой в печных агрегатах производства безводного фтористого водорода (БФВ)[1]. От качества поддержания на заданном уровне расхода ПШК зависит качество получаемого продукта и срок службы технологического оборудования. Существующая методика управления расходом ПШК, путем ручной корректировки частоты вращения шнеков дозаторов, не удовлетворяет требованиям к качеству управления.

Рассмотрев различные варианты стратегий управления расходом ПШК, было решено применить систему автоматического управления (САУ) с переменной структурой. Во время опустошения бункера структура САУ представлена одноконтурной системой управления, построенной на принципе «по отклонению» с использованием ПИ-регулятора, критерием управления которого является величина рассогласования заданного расхода ПШК от расчетного по показаниям весоизмерительных устройств[2]. Во время пополнения бункера происходит останов расчета расхода и управляющего воздействия с сохранением предыдущих выходных параметров регулятора. Определение начала и окончания процесса пополнения расходных бункеров происходит автоматически по набору условий, учитывающих состояние транспортного шнека и динамику изменения расчетных расходов ПШК. Метод фильтрации данных с весоизмерительных устройств выбран на основе анализа результатов применения наиболее зарекомендовавших себя на практике методов фильтрации к производственным данным[3].

По производственным данным, полученных в разомкнутом контуре управления, составлена математическая модель процесса дозирования плавиковошпатового концентрата как объекта управления с использованием программного комплекса Matlab Simulink. Произведен структурный и параметрический синтез регулятора. Методом математического моделирования произведены испытания САУ с последующим уменьшением пропорционального коэффициента с целью снижения динамики управляющего воздействия. В ходе производственных испытаний САУ доказана эффективность и работоспособность разработанной системы автоматического дозирования ПШК.