XIII Международная научно-техническая конференция «Современные проблемы машиностроения»

МЕТОДИКА РАСЧЕТА ГИДРОДИНАМИЧЕСКОГО ГЕНЕРАТОРА

Н.В. Пилипец, к.т.н., и.о. заведующего НПЛ «Чистая вода» Д.Д. Авзалов, аспирант А.И. Сечин, д.т.н., профессор Томский политехнический университет, 634050, г.Томск, пр.Ленина,30, тел.+7 9234212997

E-mail: chemy@tpu.ru

Жесткость воды - это общая проблема для муниципальных систем водоснабжения, промышленных предприятий и тепловых станций. Особенно чувствительна данная проблема там, где для хозяйственно-питьевого водоснабжения используют подземные и грунтовые воды. Например, в Западно-Сибирском регионе для водоснабжения, в основном, используются подземные воды, которые характеризуются жесткостью, связанной с наличием в составе минеральных примесей до 70-80 % мас. гидрокарбоната кальция.

Многие отрасли производства предъявляют высокие требования к качеству используемой воды, в частности к общей жесткости. Одним из способов умягчения воды является обработка воды с использованием гидродинамического генератора и гидроксида аммония [1], показавшего неплохую эффективность [2]. Целью настоящей работы является разработка методики расчета гидродинамического генератора.

Гидродинамический генератор, представляет собой вертикальный аппарат с решеткой, имеющей значение проходного сечения, равное 5 % (доля свободного сечения в решетке S_0), выбор процентного соотношения обусловлен эффективным гидродинамическим режимом работы генератора (избыточным давлением P и величиной Re). Выбор диаметра отверстий обусловлен образованием устойчивой микропузырьковой газожидкостной среды, сохраняющей дисперсное состояние в течение 10 мин с гарантированной дисперсностью 50 ± 30 мкм [3].

При выполнении расчета гидродинамического генератора необходимо определить такие параметры, как диаметр отверстий решетки, конструктивные размеры решетки и перепад давления, создаваемый решеткой при определенном расходе воды. При истечении водных растворов через отверстия в решетке сечение потока сужается, поэтому принимаем каждое отверстие в решетке в качестве сопла и выполняем расчеты на основе определения параметров сопла [4-6].

Исходными данными для расчета являются массовый расход среды (q_m) , давление среды (p), температура среды (t), диаметр трубопровода (D_{20}) . Рассчитываем коэффициент, учитывающий изменение внутреннего диаметра трубопровода, обусловленное отклонением температуры среды от 20 °C, вычисляемый по формуле

$$K_T = 1 + a_{tT}(t - 20)$$

где α_{tT} – температурный коэффициент линейного расширения материала трубопровода.

Значение относительного диаметра отверстия – отношения диаметра отверстия к внутреннему диаметру трубы:

$$\beta = \frac{d}{D}$$

Используя значение β, вычисляем диаметр отверстия решетки по формуле

$$d=\beta\cdot D$$
,

где β — относительный диаметр отверстия; D — внутренний диаметр трубы при рабочей температуре, м.

Для вычисления величины перепада давления рассчитываем значение вспомогательной величины S по формуле:

XIII Международная научно-техническая конференция «Современные проблемы машиностроения»

$$S = \frac{8}{\rho} \left(\frac{q_{mmax}}{\pi \cdot C \cdot E \cdot K_{u} \cdot d^{2}} \right)^{2}$$

где ρ – плотность среды, кг/м³; q_m – массовый расход среды, кг/с; C – коэффициент истечения для отверстия в решетке; E – коэффициент скорости входа; K_m – поправочный коэффициент, учитывающий шероховатость внутренней поверхности трубы.

При разбивке по равностороннему треугольнику шаг между отверстиями определяется по выражению

$$t = d\sqrt{0.91/S_o}$$

Из экспериментальных данных известно, что доля свободного сечения в решетке S_0 равна 0,05 [2].

Толщина решетки δ численно равна длине канала отверстий L, для которой выполняется условие $L{\ge}10d$.

Проведенные экспериментальные исследования показали хорошие результаты по умягчению воды.

В данной работе не нашло отражение выбора материала решетки, имеющее несомненно определяющее значение. Так же находятся в состоянии исследования и другие технические характеристики устройства.

В результате проделанной работы была разработана методика расчета гидродинамического генератора, являющимся устройством для умягчения воды при ее подготовке.

Список литературы:

- 1. Маланова Н.В., Косинцев В.И., Коробочкин В.В. Микрогетерогенные процессы в технологии умягчения подземных вод Западной Сибири // Известия высших учебных заведений. Серия: Химия и химическая технология. 2014. Т.57. –. № 11. С. 39-42.
- 2. Маланова Н.В., Косинцев В.И., Сечин А.И., Цыро Л.В., Журавков С.П., Яворовский Н.А., Бошенятов Б.В., Валиев Х.Х., Беркова М.Д. Исследование физико-химических свойств осадков солей временной жесткости современными методами анализа // Ж. Фундаментальные исследования. 2013. № 6-2. С. 323-327.
- 3. Маланова Н.В., Коробочкин В.В., Косинцев В.И. Применение микропузырьковой обработки для снижения жесткости воды. // Известия Томского политехнического университета.. -2014. -T.324. -. № 3. С. 108-42.
- 4. Волкотруб Л.П. Питьевая вода Томска. Гигиенический аспект / Л.П. Волкотруб, И.М. Егоров. Томск: Изд-во НТЛ, 2003. 195 с.
- 5. Патент на изобретение RUS 2462422 04.03.2011. Косинцев В.И., Сечин А.И., Куликова М.В., Бордунов С.В. Способ умягчения воды от солей жесткости.
- 6. Касаткин А.Г. Основные процессы и аппараты химической технологии М.: ООО ТИД «Альянс», 2004. 753 с.
- 7. ГОСТ 8.586.1.—2005. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода и общие требования.
- 8. ГОСТ 8.586.3.—2005. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 3. Сопла и сопла Вентури. Технические требования.
- 9. Маланова Н.В., Косинцев В.И., Сечин А.И. Физико-химические основы устранения солей временной жесткости при применении жидкофазного катализатора. // Ж. Современные проблемы науки и образования. 2012. № 6. С. 31.