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I. INTRODUCTION

The N-dimensional oscillator and Coulomb problem
plays a special role among other integrable systems for
many reasons. One of the main reasons, for which these
models continue to attract permanent interest during the
past centuries, is the “maximal superintegrability,” i.e., the
existence of the maximally possible number, 2N − 1, of
functionally independent constants of motion. The rational
Calogero model with the oscillator potential [1] and its
generalization associated with arbitrary Coxeter systems
[2] is a superintegrable system as well [3]. The oscillator
and Coulomb systems admit obvious separation of the
radial and angular variables, which is useful for formulating
in terms of conformal algebra soð1; 2Þ≡ slð2;RÞ defined
by the following Poisson bracket relations:

fH0;Dg ¼ 2H0; fH0;Kg ¼ D; fK;Dg ¼ −2K:

ð1Þ
The generators H0;K;D could be identified, respectively,
with the Hamiltonian of some N-dimensional mechanical
system, and with the generators of conformal boost
and dilatation. This system is usually called “conformal
mechanics,” and soð1; 2Þ symmetry appears as its dynami-
cal symmetry [4]. The effective “radius” and conjugated
momentum are introduced,

r ¼
ffiffiffiffiffiffiffi
2K

p
; pr ¼

Dffiffiffiffiffiffiffi
2K

p ; fpr; rg ¼ 1; ð2Þ

and a Casimir of conformal algebra is defined,

I ¼ 2H0K −
1

2
D2∶ fI ;H0g ¼ fI ;Kg ¼ fI ;Dg ¼ 0:

ð3Þ

It is obviously a constant of motion independent of the
radial coordinate and momentum, and thus could be
expressed via appropriate angular coordinates ϕa and
canonically conjugate momenta πa which are independent
on radial ones: I ¼ Iðϕa; πaÞ. In these terms the generators
of conformal algebra read

H0 ¼
p2
r

2
þ I
r2

; D ¼ rpr; K ¼ r2

2
: ð4Þ

Hence, such a separation of angular and radial parts could
be defined for any system with dynamical conformal
symmetry, and those with additional potentials could be
functions of conformal boost K. In particular, such gen-
eralized oscillator and Coulomb systems assume adding the
potential

Vosc ¼ ω2K; VCoul ¼ −
γffiffiffiffiffiffiffi
2K

p ; ð5Þ

so that their Hamiltonian takes the form

Hosc=Coul ¼
p2
r

2
þ I
r2

þ Vosc=CoulðrÞ: ð6Þ

Well-known generalizations of oscillator and Coulomb
systems to N-dimensional spheres and two-sheet hyper-
boloids (pseudospheres) [5] can be described in a similar
way (see Sec. V).
In Refs. [6,7] a separation of “radial” and “angular”

variables has been used for constructing the integrable
deformations of oscillator and Coulomb systems [and of
their (pseudo)spherical generalizations] via replacement
of the spherical part of pure oscillator and Coulomb
Hamiltonians [quadratic Casimir of SOðNÞ algebra] by
some other integrable system formulated in terms of the
action-angle variables. By analyzing these deformations in
terms of action-angle variables, it was found that they are
superintegrable iff the spherical part has the form
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I ¼ 1

2

�XN−1

a¼1

kaIa þ c0

�2

ð7Þ

with c0 as an arbitrary constant and ka as rational numbers.
Moreover, it was demonstrated, by the use of the results of
Ref. [8], that the angular part of the rational Calogero
model belongs to this set of systems. Thus, it was
concluded that the rational Calogero model with the
Coulomb potential (Calogero-Coulomb system) is a super-
integrable system. Besides, superintegrable generalizations
of the rational Calogero models with oscillator and
Coulomb potentials on the N-dimensional spheres and
two-sheet hyperboloids have been suggested there. The
explicit expressions of their symmetry generators and
respective algebras have been given in Refs. [9,10]. An
integrable two-center generalization of the Calogero-
Coulomb systems (and those in the presence of a Stark
term, which was called the Calogero-Coulomb-Stark
model) has also been revealed [11]. Other superintegrable
deformations of the two-dimensional oscillator and
Coulomb systems of this kind are known as the
Trembley-Turbiner-Wintenitz (TTW) system [12] and the
Post-Winternitz (PW) system [13]. They are defined by
the Hamiltonians (6) with the angular part given by the
Pöschl-Teller system on a circle that is a particular case of
the Calogero-oscillator system, and their generalizations to
sphere and hyperboloid [6]

IPT ¼ p2
φ

2
þ k2α2

sin2kφ
þ k2β2

sin2kφ
; ð8Þ

where k is an (half-)integer. The superintegrability of these
systems was observed initially by numerical simulations,
and only later was an analytic expression for the additional
constant of motion presented [14]. Initially these systems
were invented as new superintegrable models, but soon it
was observed that they coincide with the two-dimensional
rational Calogero model with the oscillator and Coulomb
potential associated with the dihedral group Dk [15].
(Super)integrability of their (pseudo)spherical counterparts
was noticed in Ref. [6]. Nevertheless, their study has
attracted much attention up to now. Among interesting
observations on this subject was the so-called “holomor-
phic factorization” of constants of motions of these systems
developed by Ranada [16], which could be viewed as a
classical counterpart of the factorization of the Schrödinger
operator. In this approach all constants of motion of the
two-dimensional oscillator and Coulomb systems were
presented as a single complex integral, which was repre-
sented as a product of two complex functions: one of the
latter involves only angular variables, and the other radial
ones and on (8). In our recent paper [17] it was observed
that the radial part of this complex function is related to the
coordinate parametrizing Klein model Lobachevsky plane
so that the soð1; 2Þ generators define its Killing potentials

(Hamiltonian generators of the isometries of the Kähler
structure), while the angular part is related to the angle
variable of the Pöschl-Teller Hamiltonian (8), in agreement
with Ref. [18]. This allowed them to suggest the extension
of that construction to higher-dimensional (super)inte-
grable systems with the oscillator and Coulomb potential.
The goal of this paper is to present holomorphic

factorization to the superintegrable generalizations of
oscillator and Coulomb systems on N-dimensional
Euclidean space, sphere, and two-sheet hyperboloid (pseu-
dosphere). For this purpose we parametrize the phase
spaces of that system by the complex variable z ¼ pr þ
{

ffiffiffiffiffiffi
2I

p
=r identifying the radial phase subspace with the

Klein model of Lobachevsky plane (compare with
Refs. [17,18]), and by the complex variables ua ¼ffiffiffiffiffi
Ia

p
e{Φa unifying action-angle variables of the angular part

of the systems. We formulate, in these terms, the constants
of motion of the systems under consideration and calculate
their algebra. Besides, we extend to these systems the
known oscillator-Coulomb duality transformation.
The paper is organized as follows:
In Sec. II we introduce the appropriate complex coor-

dinates unifying radial and angular variables and formulate
the Poisson brackets and generators of conformal algebra in
these terms. Then we give the “holomorphic factorization
formulation” of the constants of motion of higher-
dimensional superintegrable conformal mechanics and
calculate their algebra.
In Sec. III we formulate in these terms, the higher-

dimensional superintegrable generalizations of oscillator
and Coulomb systems given by (4) and (7) and calculate the
algebra of their constants of motion.
In Sec. IV we formulate, in these terms, the well-known

oscillator-Coulomb duality transformation.
In Sec. V we extend the results of Sec. II to the systems

on the N-dimensional sphere and two-sheet hyperboloid
(pseudosphere).
Finally, in Sec. VI we formulate in these terms the

special angular part of these systems.

II. CONFORMAL MECHANICS

Let us consider theN-dimensional conformal mechanics,
defined by the canonical symplectic structure dp∧dx and
the Hamiltonian

H0 ¼
p2

2
þ VðxÞ with ðx ·∇ÞVðxÞ ¼ −2VðxÞ: ð9Þ

The conformal algebra (1) is generated by the H0 and the
generators of dilatation and conformal boost,

D ¼ p · x; K ¼ x2

2
: ð10Þ

Extracting the radius r ¼ jxj and its canonically conjugated
momentum pr ¼ p·x

r , we can write these generators in the
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form (4) with I ¼ Iðϕa; πaÞ as the Casimir element of the
soð1; 2Þ algebra, depending on the angular coordinates φa
and their canonically conjugated momenta πa. Considered
itself as a separate Hamiltonian, I describes a particle on
the (N − 1) sphere, moving in the field of the potential
UðϕaÞ ¼ r2VðxÞ (various aspects of these systems were
studied in [19]).
To provide the conformal mechanics by integrability

property, we choose an integrable angular system, formu-
lated in terms of the action-angle variables,

I ¼ IðIaÞ; Ω ¼
XN−1

a¼1

dIa∧dΦa; Φa ∈ ½0; 2πÞ:

ð11Þ

Introducing the complex variable z, identifying the radial
phase subspace with the Klein model of Lobachevsky plane
(compare with [17,18]), and providing complex variables
ua unifying the action-angle variables,

z ¼ prffiffiffi
2

p þ {
ffiffiffiffi
I

p

r
;

ua ¼
ffiffiffiffiffi
Ia

p
e{Φa with Imz > 0: ð12Þ

These variables have the following nonvanishing Poisson
brackets:

fz; z̄g ¼ −
{ðz − z̄Þ2
2

ffiffiffiffiffiffi
2I

p ;

fua; ūbg ¼ −{δab; fz; uag ¼ −uaΩa
{ðz̄ − zÞ
2

ffiffiffiffiffiffi
2I

p ;

fz; ūag ¼ ūaΩa
{ðz̄ − zÞ
2

ffiffiffiffiffiffi
2I

p ; ð13Þ

where

Ωa ¼ ΩaðIÞ ¼
∂ ffiffiffiffiffiffi

2I
p

∂Ia : ð14Þ

In these terms the generators of conformal algebra take the
form

H0 ¼ zz̄;

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IðuaūaÞ

p zþ z̄
{ðz̄ − zÞ ;

K ¼ 2IðuaūaÞ
ð{ðz̄ − zÞÞ2 : ð15Þ

Note that the action variables Ia complemented with the
Hamiltonian form a set of Liouville integrals of the
conformal mechanics (9). They have a rather simple form
while being expressed via the complex variables,

H0 ¼ zz̄; Ia ¼ uaūa∶ fH0; Iag ¼ fIa; Ibg ¼ 0:

ð16Þ
Let us now look for the additional integrals of motion, if

any. It is easy to verify using (13) and (16) that

fze{Λ;H0g ¼ 0 iff fΛ;
ffiffiffiffiffiffi
2I

p
g ¼ −1: ð17Þ

To get the single-valued function we impose Λ ∈ ½0; 2πÞ.
The local solutions of the above equation read

Λa ¼
Φa

Ωa
; ð18Þ

where Φa ∈ ½0; 2πÞ is the angle variable and Ia is given by
(14). Therefore, the following local quantities are preserved
and generate the set of N − 1 additional constants of
motion:

Ma ¼ zu
1
Ωa
a ¼ zI

1
2Ωa
a e{

Φa
Ωa ; fMa;H0g ¼ 0: ð19Þ

Using (12) and (13), one can verify that the only nontrivial
Poisson bracket relations among them occur between the
conjugate Ma’s,

fMa;Mbg ¼ 0; fMa; M̄bg ¼ −
{δab
Ω2

a
I

1
Ωa
−1

a H0: ð20Þ

However, for the generic Ωa, the constant (19) is still not
globally well defined, since Λ ∈ ½0; 2π=ΩaÞ. To get the
global solution for a certain coordinate Φa, we are forced to
set Ωa to a rational number,

Ωa ¼ ka ¼
na
ma

; ma; na ∈ N: ð21Þ

Then, taking the nath power for the locally defined
conserved quantity, we get a globally defined constant of
motion for the system,

Ma ¼ Mna
a ¼ znauma

a ¼ I
ma
2
a znae{maΦa : ð22Þ

Although both Ma and Ma are complex, their absolute
values are expressed via Liouville integrals and, hence, do
not produce new constants of motion,

jMaj2 ¼ H0I
1
ka
a ; jMaj2 ¼ Hna

0 Ima
a : ð23Þ

So, we have constructed 2N − 1 functionally independent
constants of motion of the generic superintegrable con-
formal mechanics (9) with rational frequencies (18).
Therefore, the conformal mechanics will be superintegrable
provided that the angular Hamiltonian has the form (7) with
rational numbers ka (21) and arbitrary constant c0.
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Full symmetry algebra is given by the relations

fMa;M̄bg ¼ −{δabm2
aI

ma−1
a Hna

0 ;

fH0;Mag ¼ fMa;Mbg ¼ 0: ð24Þ

Note that

fIa;Mbg ¼ {δabMb; fH0; Iag ¼ fIa; Ibg ¼ 0: ð25Þ

As we mentioned in the Introduction, the presented for-
mulas are applicable not only for the nonrelativistic
conformal mechanics on N-dimensional Euclidean space
defined by the Hamiltonian (9) but also for the generic
finite-dimensional system with conformal symmetry,
including the relativistic one. A typical example of such
a system is a particle moving in the near-horizon limit of an
extreme black hole. Several examples of such systems were
investigated by Galajinsky and his collaborators (see
Ref. [20] and references therein).

III. DEFORMED OSCILLATOR
AND COULOMB SYSTEMS

Let us extend the above consideration to the deformed
N-dimensional oscillator and Coulomb systems defined by
the Hamiltonians

Hosc=Coul ¼
p2
r

2
þ I
r2

þ Vosc=CoulðrÞ ¼ zz̄þ Vosc=CoulðrÞ;
ð26Þ

where

Vosc ¼
ω2r2

2
¼ ω2K ¼ −

2ω2I
ðz̄ − zÞ2 ;

VCoul ¼ −
γ

r
¼ −

γffiffiffiffiffiffiffi
2K

p ¼ −γ
{ðz̄ − zÞ
2

ffiffiffiffi
I

p : ð27Þ

Clearly, the action variables of the angular mechanics Ia
together with the corresponding Hamiltonian define
Liouville constants of motion,

fHosc=Coul; Iag ¼ fIa; Ibg ¼ 0: ð28Þ

To endow these systems with the superintegrability prop-
erty we choose the angular part given by (7) with rational
ka; see [7]. Below we construct the additional constants of
motion and calculate their algebra for both systems in terms
of complex variables (12) introduced in the previous
section.

A. Oscillator case

The 2N − 2 constants of motion of the deformed
oscillator Hosc in the coordinates (12) appear as

Mosc
a ¼

�
z2 −

2ω2I
ðz̄ − zÞ2

�
na
u2ma
a ;

jMosc
a j2 ¼ ðH2

osc − 2ω2IÞnaI2ma
a : ð29Þ

Equation (29) together with (7) means that only the
arguments of these complex quantities give rise to new
integrals independent of the Liouville ones.
In fact, they are based on the simpler quantities Aa and

Ba, which oscillate in time with the same frequency w,

Aa ¼
�
zþ ω

ffiffiffiffiffiffi
2I

p

z̄ − z

�
u

1
ka
a ;

Ba ¼
�
z −

ω
ffiffiffiffiffiffi
2I

p

z̄ − z

�
u

1
ka
a ∶ fHosc; Aag ¼ {ωAa;

fHosc; Bag ¼ −{ωBa: ð30Þ

So, the product AaBb is preserved,

fHosc; AaBbg ¼ 0; ð31Þ

but is not single valued. Thus, we have to take its nath
power to get a well-defined constant of motion, which is
precisely (29),

Mosc
a ¼ ðAaBaÞna : ð32Þ

Note that the reflection ω → −ω in the parameter space
maps between Aa and Ba. Together with the complex
conjugate, they are subjected to the following rules:

jBaj2 ¼
Hosc − ω

ffiffiffiffiffiffi
2I

p

Hosc þ ω
ffiffiffiffiffiffi
2I

p jAaj2;

jAaj2 ¼ I
1
ka
a ðHosc þ ω

ffiffiffiffiffiffi
2I

p
Þ: ð33Þ

The complex observables Aa and Ba are in involution,

fAa; Abg ¼ fBa; Bbg ¼ fAa; Bbg ¼ 0; ð34Þ

so that the constants of motion (29) commute as well,

fMosc
a ;Mosc

b g ¼ 0: ð35Þ

However, in contrast to the simplicity of the relations (25),
the Poisson brackets between Mosc

a and M̄osc
b are more

elaborate. They can be derived from the Poisson brackets
between Aa and Ba and their conjugates having the
following form:

fAa; B̄bg ¼ −
{δab
k2aIa

AaB̄a;

fĀa; Bbg ¼ {δab
k2aIa

ĀaBa; ð36Þ
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fAa; Ābg ¼ −
2{ωAaĀb

Hosc þ ω
ffiffiffiffiffiffi
2I

p −
{δab
k2a

I
1
ka
−1

a ðHosc þ ω
ffiffiffiffiffiffi
2I

p
Þ;

ð37Þ

fBa; B̄bg ¼ 2{ωAaĀb

Hosc − ω
ffiffiffiffiffiffi
2I

p −
{δab
k2a

I
1
ka
−1

a ðHosc − ω
ffiffiffiffiffiffi
2I

p
Þ:

ð38Þ

Hence, we have extended the holomorphic factorization
formalism to the N oscillator.

B. Coulomb case

The 2N − 2 locally defined integrals of the generalized
Coulomb Hamiltonian can be written in the coordinates
(12) as follow:

MCoul
a ¼

�
z −

{γ

2
ffiffiffiffi
I

p
�
u

1
ka
a ; fHCoul;MCoul

a g ¼ 0: ð39Þ

As in the previous cases, only their arguments produce
conserved quantities independent from the Liouville inte-
grals (28) since

jMCoul
a j2 ¼

�
HCoul þ

γ2

4I

�
I

1
ka
a : ð40Þ

They form the following algebra, which can be verified
using the Poisson brackets (13):

fMCoul
a ; M̄Coul

b g ¼ {γ2MCoul
a M̄Coul

bffiffiffiffiffiffi
2I

p ðγ2 þ 4IHCoulÞ

−
{δabI

1
ka
−1

a

k2a

�
HCoul þ

γ2ffiffiffiffiffiffi
8I

p
�
;

fMCoul
a ;MCoul

b g ¼ 0: ð41Þ

Let us also present the Poisson brackets of these quantities
with Liouville constants of motion

fIa;MCoul
b g ¼ {δab

kb
MCoul

b : ð42Þ

Similar to the previous cases, we are forced to take certain
powers of the local quantities (39) in order to get the valid,
globally defined additional constants of motion of the
deformed Coulomb problem,

MCoul
a ¼ ðMCoul

a Þna ¼
�
z −

{γ

2
ffiffiffiffi
I

p
�

na
uma
a : ð43Þ

Their algebra can be deduced from the Poisson bracket
relations (41) and (42).

So, in this section we extended the method of holomor-
phic factorization initially developed for the two-
dimensional oscillator and Coulomb system, to the
superintegrable generalizations of Coulomb and oscillator
systems in any dimension. For this purposewe parametrized
the angular parts of these systems by action-angle variables.
To our surprise, we were able to get, in these general terms,
the symmetry algebra of these systems. Notice that the
above formulas hold not only on the Euclidean spaces but
also for themore general one, ifwe chooseI to be the system
with a phase space different from T�SN−1.

IV. OSCILLATOR-COULOMB
CORRESPONDENCE

As is known, the energy surface of the radial oscillator
can be transformed to the energy surface of the radial
Coulomb problem by transformation ~r ¼ λr2, ~p~r ¼ pr=2λr
where r; pr are the radial coordinate and momentum of the
oscillator, ~r; ~p~r are those of Coulomb problem, and λ is an
arbitrary positive constant number (see, e.g., [21] for the
review). The extension of oscillator-Coulomb correspon-
dence from the radial part to the whole system, as well as to
its quantum counterpart, yields additional restrictions on
the geometry of configuration spaces. Namely, only N ¼ 2,
4, 8, 16-dimensional oscillators could be transformed to the
Coulomb system; that is, the N ¼ 2, 5, 9-dimensional
Coulomb problem. These dimensions are distinguished due
to Hopf maps S1=S0 ¼ S1, S3=S1 ¼ S2, S7=S3 ¼ S4, which
allow one to transform spherical (angular) parts of the
oscillator to those of the Coulomb problem. Indeed, for the
complete correspondence between the oscillator and
Coulomb systems we should be able to transform the
angular part of the oscillator (that is, the particle on SD−1) to
the angular part of the Coulomb problem, i.e., to Sd−1.
Thus, the only admissible dimensions are D ¼ 2, 4, 8, 16
and d ¼ 2, 3, 5, 9. In the first three cases we have to reduce
the initial system by Z2, Uð1Þ, and SUð2Þ. For the latter
case, in spite of many attempts, we do not know rigorous
derivation of this correspondence, due to the fact that the S7

sphere has no Lie group structure. Respectively, in the
generic case we get the extension of the two-, three-, or
five-dimensional Coulomb system specified by the pres-
ence of the Z2=Dirac=SUð2Þ Yang monopole [22]. In the
deformed Coulomb and oscillator problems considered in
this article we do not require that the angular parts of the
systems should be spheres. Hence, trying to relate these
systems we are not restricted by the systems of the
mentioned dimensions. Instead, we can try to relate the
deformed oscillator and Coulomb systems of the same
dimension and find the restrictions to the structure of their
angular parts.
Below we describe this correspondence in terms of

complex variables as introduced in the previous section.
Through this subsection we will use “untilded” notation for
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the description of the oscillator, and “tilded” notation for
the description of the Coulomb system.
The expression of the “Lobachevsky variable” (12) via

radial coordinate and momentum forces one to relate the
angular parts of the oscillator and Coulomb problems by
the expression ~I ¼ I=4. The latter induces the following
relations between “anglelike” variables Λ; ~Λ: ~Λ ¼ 2Λ.
Altogether read

~z ¼ {ðz̄ − zÞ
λ

ffiffiffiffi
I

p z; ~I ¼ I
4
;

~Λ ¼ 2Λ ⇔ z ¼ 2
ffiffiffi
λ

p ffiffiffiffi
~I

4
p ~zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

{ð ~̄z − ~zÞ
q ;

I ¼ 4 ~I ; Λ ¼
~Λ
2
: ð44Þ

This transformation is canonical in a sense, which preserves
Poisson brackets between z; z̄;Λ; I , and their tilded coun-
terparts. To make the transformation canonical, we preserve
the angular variables unchanged ~ua ¼ ua, which implies
the introduction of superintegrable systems with the
following identification:

~ka ¼
ka
2
⇒ ~na ¼ na; ~ma ¼ 2ma: ð45Þ

Then we can see that this transformation relates the energy
surfaces of oscillator and Coulomb systems,

zz̄þΩ2
2I

ð{ðz̄ − zÞÞ2 − Eosc

¼ 0⇔
2λ

ffiffiffiffi
~I

p
{ð ~̄z − ~zÞ

�
~z ~̄z−γ

{ð ~̄z − ~zÞ
2

ffiffiffiffi
I

p − ~ECoul

�
¼ 0; ð46Þ

where

~γ ¼ Eosc

λ
; ~ECoul ¼ −

2Ω2

λ2
: ð47Þ

The generators of hidden symmetries also transform one
into the other on the energy surface

MðaÞosc ¼ ð{λ
ffiffiffiffiffiffi
2 ~I

4
p

ÞnaMðaÞCoul ð48Þ
Finally, let us write down the relation between generators
of conformal symmetries defined on tilded and untilded
spaces,

H0 ¼ λ ~H0

ffiffiffiffiffiffiffi
2 ~K

p
; D ¼ 2 ~D; K ¼ 2

ffiffiffiffiffiffiffi
2 ~K

p
λ

: ð49Þ

In this section we transformed the deformed oscillator
into the deformed Coulomb problem, preserving intact
angular coordinates. Performing proper transformations of
angular parts of the oscillator, including its reduction, we

can get a variety of superintegrable deformations of the
Coulomb problem. However, they will belong to the
same class of systems under consideration, since the latter
are formulated in most general, action-angle variables
and terms.

V. SPHERICAL AND PSEUDOSPHERICAL
GENERALIZATIONS

Oscillator and Coulomb systems admit superintegrable
generalizations to N-dimensional spheres and two-sheet
hyperboloids (pseudospheres), which are given by the
Hamiltonians [5]

SN∶ HV ¼ p2
χ

2r20
þ I
r20sin

2χ
þ Vðtan χÞ;

HN∶ HV ¼ p2
χ

2r20
þ I
r20sinh

2χ
þ Vðtanh χÞ ð50Þ

with the potentials

SN∶ Voscðtan χÞ ¼
r20ω

2tan2χ
2

;

VCoulðtan χÞ ¼ −
γ

r0
cot χ; ð51Þ

HN∶ Voscðtanh χÞ ¼
r20ω

2tanh2χ
2

;

VCoulðtanh χÞ ¼ −
γ

r0
coth χ: ð52Þ

Here I is a quadratic Casimir element of the orthogonal
algebra soðNÞ. To get integrable deformations of these
systems, we replace it, as in the Euclidean case, by some
integrable (angular) Hamiltonian depending on the action
variables [6]. The particular angular Hamiltonian (7)
defines superintegrable systems as in the flat case.
About a decade ago the so-called κ-dependent formalism
was developed [23] where the oscillator and Coulomb
systems on the plane and on the two-dimensional sphere
and hyperboloid were described in the unified way.
We introduce, following those papers,

Tκ ¼
Sκ
Cκ

with

CκðxÞ ¼

8>><
>>:

cos
ffiffiffi
κ

p
x κ > 0;

1 κ ¼ 0;

cosh
ffiffiffiffiffiffi
−κ

p
x κ < 0;

SκðxÞ ¼

8>><
>>:

sin
ffiffi
κ

p
xffiffi

κ
p κ > 0;

x κ ¼ 0;
sinh

ffiffiffiffi
−κ

p
xffiffiffiffi

−κ
p κ < 0;

ð53Þ
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where the parameter κ in the two-dimensional case coin-
cides with the curvature of the (pseudo)sphere,

SN∶ κ ¼ 1

r20
; HN∶ κ ¼ −

1

r20
: ð54Þ

The case κ ¼ �1 corresponds to a unit sphere/pseudo-
sphere. For κ ≠ 0 we identify

x ¼ r0χ ¼ χffiffiffi
κ

p ; px ¼
pχ

r0
¼ ffiffiffi

κ
p

pχ : ð55Þ

The holomorphic factorization approach to two-
dimensional systems was combined with κ-dependent
formalism by Ranada. Let us show that it can be straightly
extended to any dimension. For this purpose we introduce a
(pseudo)spherical analog of z, z̄ coordinates and obtain
their Poisson bracket,

z ¼
ffiffiffiffiffi
jκj

p pχffiffiffi
2

p þ {
ffiffiffiffi
I

p

Tκ
;

fz̄; zg ¼ {ðz − z̄Þ2
2

ffiffiffiffiffiffi
2I

p − {κ
ffiffiffiffiffiffi
2I

p
: ð56Þ

The Poisson brackets among z, ua, and ūa remain
unchanged [see relations (13)].
In these terms the κ-deformed Hamiltonian reads

Hosc=Coul ¼ H0 þ Vosc=Coul;

H0 ¼
p2
r

2
þ I
S2κ

þ κI ¼ zz̄þ κI ; ð57Þ

where using (53), [23], (55), (56), the oscillator and
Coulomb potentials on sphere (51) can be expressed as
follows:

Vosc ¼
ω2T2

κ

2
¼ −

2ω2I
ðz̄ − zÞ2 ;

VCoul ¼ −
γ

Tκ
¼ −{γ

z̄ − z

2
ffiffiffiffi
I

p : ð58Þ

The (local and global) constants of motion and related
quantities have the same expressions in terms of z, z̄ as in
the flat case, with the Hamiltonians shifted in agreement
with (57)

H → H − κI : ð59Þ

For the free system on sphere, H0, most of the Poisson
brackets among the integrals survive from the flat case [see
relations (20), (24), and (25)]. The only brackets that
acquire extra κ-dependent terms are

fMa;Mbg ¼
�

{κ
ffiffiffiffiffiffi
2I

p

H0 − κI
−

{δab
k2aIa

�
MaMb

¼ −
{δab
k2a

I
1
ka
−1

a ðH0 − κIÞ þ {κ
ffiffiffiffiffiffi
2I

p

H0 − κI
MaM̄b;

ð60Þ

fMa;M̄bg ¼ {

�
κnanb

ffiffiffiffiffiffi
2I

p

H0 − κI
−
m2

aδab
Ia

�
MaM̄b: ð61Þ

Let us also write down the deformation of conformal
algebra (1)

fH0;Dg ¼ 2ðH0 − κIÞð1þ 2κKÞ;
fH0;Kg ¼ Dð1þ 2κKÞ;
fD;Kg ¼ 2Kð1þ 2κKÞ: ð62Þ

For the Coulomb problem on the sphere, the Poisson
brackets between the local integrals (42) remain unaffected,
while the relations (41) undergo a similar modification,

fMCoul
a ; M̄Coul

b g ¼
�

{
ffiffiffiffiffiffi
2I

p ð γ2

4I2 þ κÞ
HCoul − κI þ γ2

4I2

−
{δab
k2aIa

�
MCoul

a M̄Coul
b

¼ {
ffiffiffiffiffiffi
2I

p �
γ2

4I2
þ κ

�
MCoul

a M̄Coul
b

HCoul − κI þ γ2

4I2

−
{δab
k2a

I
1
ka
−1

a

�
HCoul − κI þ γ2

4I2

�
: ð63Þ

Consider now the spherical system (50) with the oscil-
lator potential. Line for the flat case, the integrals of motion
are based on the simpler local quantities A and B,

Aa ¼
�
zþ {ωTκffiffiffi

2
p

�
u

1
ka
a ;

Ba ¼
�
z −

{ωTκffiffiffi
2

p
�
u

1
ka
a ;

Mosc
a ¼ ðAaBaÞna ; ð64Þ

which evolve in time under the following rule:

fHosc; Aag ¼ {ωð1þ κT2
κÞAa;

fHosc; Bag ¼ −{ωð1þ κT2
κÞBa: ð65Þ

They are κ deformations of the harmonic oscillating
quantities (30) and (32) in the flat case. Unlike them, they
do not oscillate harmonically, but the product AaBb is still
preserved.
The Poisson brackets between local quantities can be

calculated explicitly giving rise to κ deformations of the
relations (36), (37), and (38),
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fAa; Bbg ¼ −
{κωT2

κ

z2 þ ω2T2
κ

2

AaBb;

fAa; B̄bg ¼ −
{δab
k2aIa

AaB̄a þ
{κ

ffiffiffiffiffiffi
2I

p
AaĀb

Hosc − κI þ ω
ffiffiffiffiffiffi
2I

p ; ð66Þ

fAa; Ābg ¼ {
κð ffiffiffiffiffiffi

2I
p

− 2ωTκÞ − 2ω

Hosc − κI þ ω
ffiffiffiffiffiffi
2I

p AaĀb

−
{δab
k2a

I
1
ka
−1

a ðHosc − κI þ ω
ffiffiffiffiffiffi
2I

p
Þ; ð67Þ

fBa; B̄bg ¼ {
κð ffiffiffiffiffiffi

2I
p þ 2ωTκÞ þ 2ω

Hosc − κI − ω
ffiffiffiffiffiffi
2I

p AaĀb

−
{δab
k2a

I
1
ka
−1

a ðHosc − κI − ω
ffiffiffiffiffiffi
2I

p
Þ: ð68Þ

The Poisson brackets between the true integrals of motion
Mosc

a , MCoul
a and their conjugates are based on the local

brackets (63), (66), (67), (68) and can easily be obtained.

VI. EXAMPLE OF SPHERICAL PART OF HIGHER-
ORDER SUPERINTEGRABLE SYSTEM WITH

SEPARATION OF VARIABLES

In previous sections we extended the holomorphic
factorization approach to higher-dimensional superintegr-
able systems with oscillator and Coulomb potentials,
including those on spheres and hyperboloids. For this
purpose we separated the radial and angular variables in
these systems. Then we combined the radial coordinate and
momentum in a single complex coordinate parametrizing
the Klein model of Lobachevsky space, and we combined
angular coordinates and their conjugated momenta in
complex coordinates by the use of action-angle variables.
However, action-angle variables are not in common use in
present math-physical society, and their explicit expres-
sions are not common even for such textbook models as the
oscillator and Coulomb problems.
For clarifying the relation of the above formulations of

constants of motion with their conventional representa-
tions, first present the action-angle variables of the angular
part(s) of nondeformed, oscillator, and Coulomb systems
(on Euclidean space, sphere, and hyperboloids). Its
Hamiltonian is given by the quadratic Casimir element
of soðNÞ algebra on the (N − 1) sphere, I ¼ L2

N=2. It can
be decomposed by the eigenvalues of the embedded SOðaÞ
angular momenta defining the action variables Ia. For the
details of derivation of their explicit expressions, for those
of conjugated angle variables we refer to the appendix in
Ref. [6]. The action variables are given by the expressions

Ia ¼
ffiffiffiffiffiffiffiffiffi
jaþ1

p
−

ffiffiffiffiffi
ja

p
;

where jaþ1 ¼ p2
a þ

ja
sin2θa

;

j0 ¼ 0; a ¼ 1;…; N − 1: ð69Þ

This gives rise to the angular Hamiltonian that belongs to
the family (7)

I ¼ 1

2

�XN−1

a¼1

Ia

�2

: ð70Þ

Its substitution into the Hamiltonians (26) and (50) leads to
well-known oscillator and Coulomb systems on the
Euclidean spaces, spheres, and hyperboloids.
The expressions for angle variables are more

complicated,

Φa ¼
XN−1

l¼a

al þ
XN−1

l¼aþ1

b1;

where al ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlþ1

jlþ1 − jl

s
cos θl;

bl ¼ arctan
ffiffiffiffi
jl

p
cos θl

pl sin θl
: ð71Þ

Direct transformations give the following expressions for
ua coordinates:

ua ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþ1

p
−

ffiffiffiffiffi
ja

pq
e{aa

YN−1

l¼aþ1

e{ðalþblÞ; ð72Þ

with

e{al ¼ pl sin θl þ {
ffiffiffiffiffiffiffiffi
jlþ1

p
cos θlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jlþ1 − jl
p ;

e{bl ¼ pl sin θl þ {
ffiffiffiffi
jl

p
cos θlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jlþ1 − jl
p

sin θl
: ð73Þ

With these expressions at hand we can express the
“holomorphic representation” of constants of motion via
initial coordinates. In the two-dimensional case it has a
transparent relation with conventional representations of
hidden constants of motion, like the Fradkin tensor (for the
oscillator) and the Runger-Lenz vector (for the Coulomb
problem) [17]. In the higher dimensional cases the relation
of these two representations is more complicated.
This construction could easily be modified to the system

whose Hamiltonian is given in the angle variables by the
generic expression (7). We define it by the recurrence
relation
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I ≡ 1

2
jN; ja ¼ p2

a−1 þ
ja−1

sin2ka−1θa−1
;

a ¼ 1;…; N − 1; j0 ¼ c0: ð74Þ

It describes particle moving on the space (spherical seg-
ment) equipped with the diagonal metric

ds2 ¼ gllðdθlÞ2; gN−1.N−1 ¼ 1; gll ¼
YN−1

m¼l

sin2kmθm

ð75Þ

and interacting with the potential field

U ¼ c0Q
N−1
l¼1 sin2klθl

: ð76Þ

Redefining the angles, θa → θa=ka, we can represent the
above metric in the form

ds2 ¼ 1

k2a

YN−1

a¼1

sin2θaðdθaÞ2: ð77Þ

It is obvious that the functions jkðθ; pÞ define commut-
ing constants of motions of the system. Similar to the
derivation given in the appendix of Ref. [6], we can use an
action-angle variable formulation and find that the
Hamiltonian is given by the expression (7). The action
variables are related to the initial ones by the expressions

Ia ¼
1

2π

Z
θmin

θmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþ1 −

ja
sin2kaθa

s
dθa

¼
ffiffiffiffiffiffiffiffiffi
jaþ1

p
−

ffiffiffiffiffi
ja

p
ka

⇒ ja

¼
�XN−1

a¼1

kaIa þ c0

�
2

: ð78Þ

The angle variables read

Φa ¼
XN−1

l¼a

ka
kl

al þ
XN−1

l¼aþ1

ka
kl

bl;

al ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlþ1

jlþ1 − jl

s
cos klθl;

bl ¼ arctan
ffiffiffiffi
jl

p
cos θl

pl sin klθl
: ð79Þ

Thus,

ua ¼
1

ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaþ1

p
−

ffiffiffiffiffi
ja

pq

×
YN−1

l¼a

�
pl sin klθl þ {

ffiffiffiffiffiffiffiffi
jlþ1

p
cos klθlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jlþ1 − jl
p

�ka
kl

×
YN−1

l¼aþ1

�
pl sin klθl þ {

ffiffiffiffi
jl

p
cos klθlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jlþ1 − jl
p

sin θl

�ka
kl
: ð80Þ

Hence, we constructed the superintegrable system with
higher order constants of motion, which admits separation
of variables. Since the classical spectrum of its angular part
is isospectral with the “angular Calogero model,” we can
state that they become, under the appropriate choice of
constants ki and c0, canonically equivalent with the angular
part of the rational Calogero model [8]. In fact, this means
the equivalence of these two systems. However, we cannot
present explicit mapping of one system to other.

VII. CONCLUDING REMARKS

In this work we investigated superintegrable deforma-
tions of oscillator and Coulomb problems separating their
radial and angular parts, where the latter was described in
terms of action-angle variables. We encoded phase space
coordinates in the complex ones: the complex coordinate z
involved radial variables parametrizing the Klein model of
the Lobachevsky plane and complex coordinates ua encod-
ing action-angle variables of the angular part. Then we
combined the whole set of constants of motion (indepen-
dent from the Hamiltonian) in N − 1 holomorphic func-
tions Ma, generalizing the so-called holomorphic
factorization earlier developed for two-dimensional gener-
alized oscillator and Coulomb systems. Then we presented
their algebra, which among nontrivial relations possesses
chirality property fMa;Mag ¼ 0. Hence, the presented
representation can obviously be considered as a classical
trace of “quantum factorization” of the respective
Hamiltonian. It seems that it could be used for the
construction of supersymmetric extensions of these sys-
tems. The lack of given representation is shown by the use
of the action-angle formulation of the angular parts of the
original systems.
In this context we should mention the earlier work [24],

where symmetries of the angular parts of conformal
mechanics (and those with additional oscillator potential)
were related to the symmetries of the whole system by the
use of coordinate z and conformal algebra generators (15).
That study was done in most general terms, without
referring to action-angle variables and to a specific form
of the angular part. Quantum mechanical aspects were also
considered there. Hence, it seems to be natural to combine
these two approaches: first, exclude the action-angle argu-
ment from present formulations, and second, use presented
constructions for the quantum considerations of systems, in
particular, for the construction of spectrum and wave
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functions within Foperator approach. We are planning to
present this elsewhere.
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