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Abstract: We review a possible origin of cosmological inflation from higher pDq spacetime dimensions
in the context of modified gravity theory. It is demonstrated that it requires a spontaneous warped
compactification of higher pDq spacetime dimensions together with the stabilization of extra pD´ 4q
dimensions by Freund–Rubin mechanism. The relevant tools include an extra gauge pD{2´ 1q-form
field with a non-vanishing flux in compact dimensions and a positive cosmological constant in D
dimensions. Those features are illustrated on the specific example in eight spacetime dimensions
compactified on a four-sphere with a warped factor and a flux, which leads to a viable Starobinsky-like
inflationary model in four (non-compact) spacetime dimensions.

Keywords: inflation; extra dimensions; modified gravity

1. Introduction

Einstein’s theory of general relativity is the best example of power of the general covariance. It is,
therefore, quite natural to exploit the same symmetry or just gravitational interactions, in order to
theoretically describe cosmological phenomena such as inflation. Since Einstein’s theory of gravity is
non-renormalizable as a quantum field theory, its ultra-violet completion may require extra spacetime
dimensions, as is the case in string theory.

In the seminal paper [1] Freund and Rubin pointed out the need of dynamical description of
extra dimensions and their spontaneous compactification, and offered the tools for stabilization of
moduli in compact extra dimensions by using the p-form fluxes. It was the important extension of
the old Kaluza–Klein (KK) idea motivated by the unification of fundamental forces because extra
dimensions appear in field theory and gravity, supersymmetry and supergravity, as well as string
theory and braneworld.

Extra dimensions offer a lot of possibilities that should be constrained both theoretically and
experimentally. Amongst the natural constraints to be imposed are (i) spontaneous compactification,
i.e., the requirement of a compactified theory to obey the equations of motion of the higher-dimensional
theory, (ii) stabilization of extra dimensions, in order to ensure the visible four-dimensional universe
with a long lifetime, (iii) a viable hierarchy of fundamental scales, and (iv) consistency with
observations. This list can be extended by demanding a realization of viable inflation in the early
universe from higher dimensions.

In regards the theoretical tools needed for the realization of the concept of extra dimensions,
the key developments in the past were (a) flux compactificatons suggested by Freund and Rubin [1],
which resolved several “no-go” problems in supergravity and string theory, and (b) warped metrics
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and compactificatons proposed by Randall and Sundrum as a possible solution to the hierarchy
problem [2,3].

The Planck observations [4] of the Cosmic Microwave Background (CMB) radiation favor
a single-field inflation driven by a real scalar field called inflaton, while extra dimensions always
give rise to more scalar fields (called moduli) that must be stabilized because they are mixed with
inflaton in four dimensions. In addition, the mass hierarchy Minf. ! MKK ! MPl should be
satisfied. The Freund–Rubin compactification Ansatz [1] solves those uneasy problems for certain
values of the parameters [5–7] after assuming that compactification took place before inflation.
In this paper we review the inflationary models based on modified gravity in various dimensions,
and emphasize the role of warped metric and flux compactification for theoretical consistency and
phenomenological applications.

The paper is organized as follows. The Starobinsky pR ` R2q model of inflation is reviewed
in Section 2. The pR`Rnq gravity in D dimensions is considered in Section 3. The existence of a plateau
in the potential (needed for slow-roll inflation and favored by observations [4]) leads to the condition
n “ D{2 with D as a multiple of 4. Section 4 is devoted to a warped compactification of the modified
gravity in 8 dimensions on a 4-sphere and a derivation of the mixed potential depending on inflaton
and the volume modulus of the sphere. Section 5 describes the Freund–Rubin compactification in
D “ 8 after adding a single pp´ 1q-form gauge field with a non-vanishing flux in compact dimensions
under another necessary condition p “ n [6,7]. In Section 6 we investigate the mixed (two-field)
scalar potential and demonstrate that the modulus can be stabilized in the certain range of the
parameters. In Section 7 we apply our model to a description of inflation in the early universe.
Section 8 is our conclusion.

2. Starobinsky Model of Inflation

The Starobinsky inflationary model of modified pR` R2q gravity in four dimensions is defined by
the action [8]:

SStarobinsky “
1
2

ż

d4x
a

´g
„

R`
1

6M2 R2


. (1)

We use the natural units h̄ “ c “ 1 with the reduced Planck mass MPl “ 1 and spacetime signature
p´,`,`,`q in D “ 4. The Starobinsky model is an excellent model of inflation, in very good agreement
with the Planck data [4]. The Starobinsky model has one real parameter M that can be identified with
the inflaton mass, whose value is fixed by the CMB data as M « 10´5p 50

Ne q, where Ne is the e-foldings
number. The corresponding scalar potential of the (canonically normalized) inflaton field φ in the
scalar-tensor reformulation of f pRq gravity (see the next Section 3) is given by [9]:

Vpφq “ 3
4 M2

ˆ

1´ e´
b

2
3 φ
˙2

. (2)

The scalar potential in Equation (2) has a plateau with a positive height and describes slow roll
inflation. During the slow roll the scalar potential in Equation (2) can be simplified to:

Vpφq « V0
`

1´ 2e´αsφ
˘

, (3)

where we have kept only the leading (exponentially small) correction to the emergent cosmological

constant V0 “
3
4 M2 and have introduced the notation αs “

b

2
3 . The scalar potential in Equation (2) is

the particular case of a class of inflationary scalar potentials having a plateau and taking the form:

Vpφq “ V0 ´V1e´αφ (4)
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with generic positive real parameters V0, V1, and α. The V1 can be changed by a shift of the field φ

and, therefore, is irrelevant. The V0 determines the scale of inflation. The value of α determines the key
observable r related to primordial gravity waves and known as the tensor-to-scalar ratio,

r “
8

α2N2
e

. (5)

The Planck data [4] gives the upper bound r ă 0.08 that yields:

α ą
10
Ne
“ 0.2

ˆ

50
Ne

˙

. (6)

The scalar spectral index ns and its running dns{dlnk derived from the potential in Equation (2)
are [10]:

ns « 1´
2

Ne
and

dns

d ln k
« ´

p1´ nsq
2

2
« ´

2
N2

e
. (7)

3. Modified Gravity and Inflaton Scalar Potential in D Dimensions

Let us denote spacetime vector indices in D dimensions by capital latin letters
A, B, . . . “ 0, 1, . . . , D´ 1, and spacetime vector indices in four spacetime dimensions by lower case
greek letters α, β, . . . “ 0, 1, 2, 3.

We propose the following (modified) gravity action in D spacetime dimensions:

Sgrav. “
1

2κ2

ż

dDx
a

´gDpR` γRn ´ 2Λq, (8)

where κ is the gravitational coupling constant of (mass) dimension 1
2 p´D ` 2q, γ ą 0 is the new

coupling constant of (mass) dimension p´2n ` 2), and Λ is the cosmological constant of (mass)
dimension 2 in D dimensions. A substitution:

R` γRn ÝÑ p1` BqR´
´

1
γn

¯

1
n´1

´

n´1
n

¯

B
n

n´1 , (9)

where we have introduced the auxiliary scalar field B, allows us to rewrite the action in Equation (8) as:

S “
1

2κ2

ż

dDx
a

´gD

«

p1` BqR´
´

1
γn

¯

1
n´1

´

n´1
n

¯

B
n

n´1 ´ 2Λ

ff

. (10)

Varying this action with respect to the auxiliary field B yields B “ γnRn´1, and a substitution of
that into the action of Equation (10) gives back the original action in Equation (8).

Next, in order to get the canonical (Einstein–Hilbert) gravity action, a Weyl transformation of
metric with the space-time-dependent parameter Ωpxq,

gAB “ Ω´2 g̃AB,
a

´g “ Ω´Da´g̃, (11)

can be used. It implies:

R “ Ω2rR̃` 2pD´ 1qr̋ f ´ pD´ 1qpD´ 2qg̃AB f _A f _Bs, (12)

where we have introduced the notation:

f “ ln Ω , fA “
BAΩ

Ω
, (13)
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and the covariant wave operator r̋ “ rDA
rDA in D spacetime dimensions. The transformed action reads:

S “
1

2κ2

ż

dDx
a

´g̃DΩ´Drp1` BqΩ2pR̃` 2pD´ 1qr̋ f

´pD´ 1qpD´ 2qg̃AB fA fBq ´
´

1
γn

¯

1
n´1 n´1

n B
n

n´1 ´ 2Λs, (14)

so that we should choose the local parameter Ω as:

ΩD´2 “ epD´2q f “ 1` B. (15)

It yields:

f “
1

D´ 2
lnp1` Bq (16)

and,

S “
1

2κ2

ż

dDx
a

´g̃D

”

R̃´ pD´ 1qpD´ 2qg̃ABBA f BB f

´ e´D f
´

1
γn

¯

1
n´1 n´1

n B
n

n´1 ´ 2e´D f Λ

ff

. (17)

The scalar field f does not have a canonical kinetic term, so that it should be rescaled as:

φ “

c

pD´ 1qpD´ 2q
κ2 f . (18)

In terms of the canonical scalar φ, we have:

B “ epD´2qκφ{
?
pD´1qpD´2q ´ 1, (19)

and the scalar potential reads:

2κ2Vpφq “
´

1
γn

¯

1
n´1

´

n´1
n

¯ ”

epD´2qκφ{
?
pD´1qpD´2q ´ 1

ı

n
n´1

ˆ

ˆ e´Dκφ{
?
pD´1qpD´2q ` 2Λe´Dκφ{

?
pD´1qpD´2q. (20)

As a result, we end up with the standard scalar-tensor gravity action in the Einstein frame
in D dimensions,

S “
1

2κ2

ż

dDx
a

´g̃DR̃`
ż

dDx
a

´g̃D

„

´
1
2

g̃ABBAφBBφ´Vpφq


. (21)

A dimensional reduction from D spacetime dimensions to 4 spacetime dimensions (with pD´ 4q
compact dimensions) yields:

ż

dDx “ VD´4

ż

d4x , φ “ φ4{
a

VD´4 , κ “ κ4
a

VD´4. V “ V4{VD´4. (22)

It implies κφ “ κ4φ4 and κ2V “ κ2
4V4, where we have introduced the volume VD´4 of the compact

space (we use the notation κ4 “ 1{MPl “ 1). Then the four-dimensional action reads:

Sinf.rg̃4, φ4s “
1
2

ż

d4x
a

´g̃4R̃4 `

ż

d4x
a

´g̃4

”

´ 1
2 g̃µν

4 Bµφ4Bνφ4 ´V4pφ4q
ı

(23)
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and defines our inflationary model in four spacetime dimensions, where the initial dimension D and
the power n are the parameters of the four-dimensional scalar potential V4pφ4q.

The scalar potential in 4 spacetime dimensions with the notation:

λ “

ˆ

n
n´ 1

˙

´

1
γn

¯´ 1
n´1 2Λ, (24)

φ̃ “
φ4

a

pD´ 1qpD´ 2q
, (25)

Ṽpφ̃q “
2V4pφ4q

´

1
γn

¯
1

n´1
´

n´1
n

¯

, (26)

reads as follows:

Ṽpφ̃q “
”

epD´2qφ̃ ´ 1
ı

n
n´1 e´Dφ̃ ` λe´Dφ̃, (27)

where we have used Equations (20) and (22). To get slow roll inflation, we demand this scalar potential
to have a plateau of a positive height at φ̃ Ñ8, which implies:

”

epD´2qφ̃
ı

n
n´1 e´Dφ̃ “ 1, (28)

and, hence, (cf. Ref. [11]):

n “
D
2

. (29)

A substitution of this condition into Equation (27) gives rise to the potential:

Ṽpφ̃q “
”

1´ e´pD´2qφ̃
ı

D
D´2

` λe´Dφ̃. (30)

It is convenient to represent the power D{pD ´ 2q “ p{q in terms of mutually prime positive
integers p and q. Should q be even, it implies the global obstruction φ̃ ě 0 on the real scalar field φ̃

because its scalar potential becomes imaginary for φ̃ ă 0 (it happens, for example, when D “ 6 and
D “ 10). The n is the power of R in Equation (8), while the scalar curvature R is arbitrary and can take
negative values. The value of n thus should be an even integer. Therefore, as a result, the allowed
spacetime dimensions D should be multiples of four.

We demand a minimum of the scalar potential to correspond either a Minkowski or a de Sitter
vacuum with a positive second derivative (or a positive inflaton mass squared). This implies:

λ ě 0, (31)

i.e., the cosmological constant in D spacetime dimensions should be positive. Then we arrive at the
scalar potential in four dimensions as:

V4pφ4q “
` 2

γD
˘

2
D´2

´

D´2
2D

¯

ˆ

1´ e´
b

D´2
D´1 φ4

˙

D
D´2

`Λe
´

c

D2

pD´1qpD´2qφ4 . (32)

The simplest case beyond four dimensions is in D “ 8 dimensions, and it has the action:

S8,grav. “
1

2κ2
8

ż

d8X
a

´g8pR8 ` γ8R4
8 ´ 2Λ8q. (33)



Symmetry 2019, 11, 1528 6 of 14

The combined (Legendre–Weyl) transformation (see this Section below) in D “ 8 yields the action:

S8,grav.rg̃AB, f s “
1

2κ2
8

ż

d8X
a

´g̃8

”

R̃8 ´ 42g̃ABBA f BB f

´
3
4

ˆ

1
4γ8

˙

1
3 ´

1´ e´6 f
¯4{3

´ 2e´8 f Λ8

fi

fl . (34)

We find convenient to redefine the coupling constants as:

κ8 ” M´3
8 , γ8 ” M´6

8 γ̃8, Λ8 ” M2
8Λ̃8 ,

3
4

ˆ

1
4γ̃8

˙

1
3
” a´2, (35)

in terms of the new (mass) parameter M8 ą 0 of dimension p`1q, and the dimensionless parameters
Λ̃8 and a ą 0. Then the action in Equation (34) reads as:

S8,grav.rg̃AB, f s “
M6

8
2

ż

d8X
a

´g̃8

”

R̃8 ´ 42g̃ABBA f BB f ´M2
8Ṽp f q

ı

(36)

with the (dimensionless) scalar potential:

Ṽp f q “ a´2p1´ e´6 f q
4
3 ` 2e´8 f Λ̃8. (37)

For simplicity, we only consider the case of D “ 8 dimensions in the next Sections.

4. Spontaneous Compactification of 8 Dimensions to 4 Dimensions with a Warp Factor

Our considerations in the previous Section ignored dynamics of moduli associated with the
compactified dimensions. The moduli may easily spoil inflation unless their masses exceed the
inflationary scale. This problem is known as moduli stabilization. Therefore, we have to take
the moduli into account in our case also, and stabilize them (see [12] for the earlier attempts to
derive inflation from multi-dimensional cosmology). Here is the place where Freund–Rubin-type
compactification [1] truly helps, but it has to be supplemented by a warp factor.

In this Section we describe a compactification of the pR ` R4q modified gravity in D “ 8
dimensions on a four-sphere S4 with the warp factor χ and derive its effective action in four
spacetime dimensions [6,7]. We separate eight-dimensional coordinates pXAq into the four-dimensional
coordinates pxαq with α “ 0, 1, 2, 3, and the coordinates pyaq of four compact dimensions with
a, b, . . . “ 1, 2, 3, 4. The standard compactification ansatz with a warp factor reads [2]:

ds2
8 “ g̃ABdXAdXB “ gαβdxαdxβ ` e2χgabdyadyb, (38)

where gαβ “ gαβpxq, gab “ gabpyq and χ “ χpxq. We use the normalization:

ż

d4y
a

gy “ M´4
8 . (39)

The Euler number of S4 is equal to 2, so that we also have:
ż

d4y
a

gyRy “ 2M´2
8 , (40)

where Ry is the scalar curvature of the sphere S4. The decomposition in Equation (38) yields:

a

´g̃8 “ e4χ
a

´g4
a

gy (41)
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and
R̃8 “ R` e´2χRy ´ 8e´χ

r̋eχ ´ 12e´2χgαβBαeχBβeχ, (42)

where we have introduced the Ricci scalar R and the covariant wave operator r̋ “ gαβ∇α∇β in four
spacetime dimensions.

The volume V of four compact dimensions is given by:

V “
ż

d4y
b

detpe2χgabq “ e4χ M4
8. (43)

Therefore, the warp factor χ is simply related to the volume modulus of S4.
A substitution of Equations (38), (41), and (42) into the action of Equation (36), and an integration

over the compact dimensions by using Equations (39) and (40), give rise to the action:

S4rgαβ, f , χs “
M2

8e4χ0

2

ż

d4x
a

´g
ˆ

eχ

eχ0

˙4
”

R` 2M2
8e´2χ

`12gαβBαχBβχ´ 42gαβBα f Bβ f ´M2
8Ṽp f q

ı

, (44)

where we have introduced the vacuum expectation value xχy0 “ χ0 “ const.
The action in Equation (44) is clearly in Jordan frame, so that the wrong sign of the kinetic term of

the field χ is not yet a problem. The Weyl transformation of metric with the parameter hpxq to Einstein
frame is given by:

gαβ “ e´2h ĝαβ, h “ 2pχ´ χ0q , (45)

which implies:
gαβ “ e2h ĝαβ,

a

´g “ e´4ha´ĝ, (46)

and
R “ e2h

”

R̂` 6ĝαβ∇α∇βh´ 6ĝαβBαhBβh
ı

. (47)

The action of Equation (44) now takes the form:

S4rĝαβ, f , χs “
M2

8e4χ0

2

ż

d4x
a

´ĝ4

!

R̂´ 12ĝαβBαχBβχ

´42ĝαβBα f Bβ f ´
ˆ

eχ

eχ0

˙´4
M2

8

”

Ṽp f q ´ 2e´2χ
ı

+

, (48)

with the physical signs in front of all the kinetic terms. The four-dimensional (reduced) Planck mass is
also fixed as:

M2
Pl ” κ´2 “ M2

8e4χ0 . (49)

As a result, we arrive at the final effective action in four spacetime dimensions in the form:

S4rĝαβ, f , χs “
M2

Pl
2

ż

d4x
a

´ĝ
”

R̂´ 12ĝαβBαχBβχ

´ 42ĝαβBα f Bβ f ´ e´4χ M2
Pl

´

Ṽp f q ´ 2e´2χ
¯ı

. (50)

This equation clearly shows that the volume modulus (or the warp factor) χ has its own dynamics.
In addition, there is mixing of the volume modulus with the inflaton f in the scalar potential. Therefore,
stabilization of the modulus during (single-field) inflation is needed.
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5. Freund–Rubin Compactification

Stabilization of moduli can be achieved by flux compactification [1], while it is the standard
approach in string theory [13,14]. In our case it requires an introduction of at least one p-form gauge
field obeying the condition p “ n “ D{2. Therefore, the minimal inflationary model in the D “ 8
modified gravity should be defined by the action:

S “
M6

8
2

ż

d8X
a

´g8

”

R8 ` γ8R4
8 ´ 2Λ8 ´ gA1B1 gA2B2 gA3B3 gA4B4 FA1 A2 A3 A4 FB1B2B3B4

ı

(51)

that depends upon two fields, a metric gAB, and a 3-form gauge potential AABC, whose field strength
4-form is F “ dA. The gauge field strength F has (mass) dimension p`1q, whereas the gauge field
A is dimensionless.

It is important to observe that under the Weyl transformation in Equation (11), the Ω-factors are
cancelled in the p-form action, so that the latter is unchanged,

S8rg̃AB, F4s “ ´
M6

8
2

ż

d8X
a

´g̃8 g̃A1B1 ¨ ¨ ¨ g̃A4B4 FA1...A4 FB1...B4 . (52)

The compactification ansatz of Equation (38) for the action in Equation (52) gives rise to:

S8,Frg̃AB, Fs “ ´
M6

8
2

ż

d4x
a

´g
ż

d4y
a

gy e´4χga1b1 ¨ ¨ ¨ ga4b4 Fa1...a4 Fb1...b4 . (53)

We define the dimensionless flux parameter F2 as follows:
ż

d4y
a

gy ga1b1 ¨ ¨ ¨ ga4b4 Fa1...a4 Fb1...b4 “ M´2
8 F2 “ const., (54)

and use the Weyl transformation in Equation (45) in order to reduce the action in Equation (53) to:

S4,FrĝAB, χs “ ´
M2

8e4χ0

2

ż

d4x
a

´g
ˆ

eχ

eχ0

˙4
e´8χ M2

8F2

“ ´
M2

8e4χ0

2

ż

d4x
a

´ĝ e´4h
ˆ

eχ

eχ0

˙4
e´8χ M2F2

“ ´
M4

Pl
2

ż

d4x
a

´ĝ e´12χF2. (55)

Then the effective action in four spacetime dimensions is given by a sum of Equations (50) and (55),
which reads:

S4rĝAB, χ, f s “
M2

Pl
2

ż

d4x
a

´g
”

R̂´ 12ĝαβBαχBβχ

´42ĝαβBα f Bβ f ´M2
Pl

´

e´4χṼp f q ´ 2e´6χ ´ e´12χF2
¯ı

. (56)

The canonical scalar fields χ̂ and f̂ are obtained after a simple renormalization,

χ̂ “ 2
?

3MPlχ and f̂ “
?

42MPl f , (57)

so that their scalar potential in four spacetime dimensions is given by:

M´4
Pl Vpχ, f q “

„

a´2p1´ e´6 f q
4
3 ` 2Λ̃8e´8 f



e´4χ ´ 2e´6χ ` F2e´12χ. (58)
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This two-field scalar potential for the purpose of single-field inflation is studied in the next Section.

6. Study of the Scalar Potential

The derived scalar potential in Equation (58) depends on two fields, the inflaton f and the volume
modulus χ, and has the three parameters pa´2, F2, Λ̃8q originating from the higher (eight) dimensions.
There is a Minkowski vacuum at p f0, χ0q defined by the equations:

BV
B f

ˇ

ˇ

ˇ

ˇ

f“ f0

“
BV
Bχ

ˇ

ˇ

ˇ

ˇ

χ“χ0

“ V| f“ f0, χ“χ0
“ 0. (59)

It is not difficult to verify that a solution to vacuum equations is given by:

e6 f0 “ 1` p2Λ̃8a2q3 and e6χ0 “ 2F2, (60)

under the following condition on the parameters:

2
3 Λ̃8 “

ˆ

1
16F2 ´ 256γ̃8

˙1{3
, (61)

where we have used the third relation in Equation (35) between γ̃8 and a.
The masses of the canonically normalized scalars in Equation (57) are determined by the second

derivatives of the scalar potential Equation (58) at the critical point of Equation (60),

m2
f̂0
“
B2V
B f 2

ˇ

ˇ

ˇ

ˇ

f“ f0

1
42M2

Pl
“

M2
Pl

56F2

ˆ

F2

γ̃8
´ 16

˙

(62)

and

m2
χ̂0
“
B2V
Bχ2

ˇ

ˇ

ˇ

ˇ

χ“χ0

1
12M2

Pl
“

M2
Pl

F2 , (63)

where we have also used Equation (61). Equations (61) and (62) also imply that:

F2

γ̃8
ą 16 (64)

is needed for the existence of a Minkowski vacuum and its stability.
At the onset of inflation ( f “ `8), the scalar potential of the modulus χ,

M´4
Pl Vpχq “ a´2e´4χ ´ 2e´6χ ` F2e´12χ, (65)

depends on only two parameters pa´2, F2q.
The critical points of the scalar potential in Equation (65) are determined by the condition:

a´2 ´ 3e2χc ` 3F2e´8χc “ 0 (66)

that is the depressed quartic equation:

z4 ` qz` r “ 0 (67)

in the notation:
z “ e´2χc , q “

´1
F2 ă 0 , r “

1
3a2F2 ą 0. (68)
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The associated quartic discriminant is given by:

∆4

27 ¨ 256
“ pr{3q3 ´ pq{4q4, (69)

so that a solution to Equation (67) crucially depends upon the sign of the ∆4.
The auxiliary (Ferrari) resolvent cubic equation:

m3 ´ rm´ q2{8 “ 0 (70)

can be used to factorize the left-hand-side of the quartic Equation (67) as follows:

ˆ

z2 `m`
?

2mz´
q

2
?

2m

˙ˆ

z2 `m´
?

2mz`
q

2
?

2m

˙

“ 0. (71)

Each term in the first factor is positive in our case, so that we arrive at a quadratic equation from
the vanishing second factor, whose two roots are:

z1,2 “

c

m
2

„

1˘
c

´
q
m
´
?

2m


. (72)

These two roots precisely correspond to a local (meta-stable) minimum and a local maximum of
the potential of Equation (65), with ´8 ă χmin. ă χmax. ă `8.

The cubic discriminant ∆3 “ 4r3 ´ 27pq2{8q2 of the depressed cubic Equation (70) is related to ∆4

as follows:
∆3

4 ¨ 27
“ pr{3q3 ´ pq{4q4 “

∆4

27 ¨ 256
. (73)

Given ∆3,4 ě 0, the three real solutions to the cubic Equation (70) are given by the Vieté formula:

mk “ 2
a

r{3 cos θk , k “ 0, 1, 2, (74)

whose angles are:

θk “
1
3

arccos
ˆ

3q2

16r

a

3{r
˙

´
2πk

3
. (75)

We have to choose the highest (positive) root in our case. The condition ∆3,4 ě 0 implies:

F2

γ̃8
ě 27. (76)

Given ∆3,4 ď 0 or, equivalently, F2{γ̃8 ď 27, the angle of Equation (75) does not exist.
Instead, we should use Vieté’s substitution in Ferrari’s equation with:

m “ w`
r

3w
, r ą 0. (77)

It yields a quadratic equation for w3 in the form:

pw3q2 ´
q2

8
w3 `

r3

27
“ 0, (78)

whose roots are given by:

w3
1,2 “ pq{4q

2

«

1˘

d

1´
pr{3q3

pq{4q4

ff

. (79)
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Inserting the critical condition in Equation (66) in the form:

F2 “ e6χc

„

1´
1
3

a´2e2χc



(80)

into the potential of Equation (65) yields the height of the inflationary potential Vplateau at the onset of
inflation as:

M´4
Pl Vplateau “ e´6χc

„

2
3

a´2e2χc ´ 1


. (81)

Requiring positivity of Vplateau gives us the restriction Equation (64) again.
The second derivative of the potential in Equation (65) at the critical point of Equation (66) reads:

B2V
Bχ2

ˇ

ˇ

ˇ

ˇ

χ“χc

“ 8e´6χc
´

9´ 4a´2e2χc
¯

. (82)

Its positivity (needed for stability) implies the condition:

F2

γ̃8
ă 54. (83)

Taken together with Equations (64) and (76), it leads to the following restrictions on the values of
the ratio F2{γ̃8:

16 ă
F2

γ̃8
ď 27 , ∆3,4 ď 0,

27 ď
F2

γ̃8
ă 54 , ∆3,4 ě 0.

(84)

Since 1 ă F2{p16γ̃8q ” 1 ` δ ă p 3
2 q

3, it is illuminating to investigate the case of 0 ă δ ! 1
describing strong stabilization of the modulus χ. In this case, Equations (60) and (80) give rise to:

0 ă χc ´ χ0 «
1

12
δ ! 1, (85)

leading to a single-field inflation driven by the inflaton (scalaron) f .
The physical scale hierarchy is given by:

m
f̂0
ă m

χ̂0
! M

KK
! M

Pl
. (86)

The KK scale is given by MKK « e´χ0 MPl, where the presence of the warp factor is dictated by
the compactification ansatz of Equation (38).

The condition M
KK
! M

Pl
also implies:

2F2 " 1 (87)

due to Equation (60). The condition mχ̂0 ! M
KK

leads to:

F2 "
?

2 (88)

that is slightly stronger than Equation (87). Both conditions can be satisfied by taking F2 " 1.
The remaining condition m

f̂0
ă m

χ̂0
implies F2{γ̃8 ă 72 that is already satisfied under the

conditions of Equation (84). It is impossible to achieve m
f̂0
! m

χ̂0
.
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A profile of the scalar potential in four spacetime dimensions is given in Figure 1. The cosmological
constant in D “ 8 dimensions is given by Equation (61), which leads to:

Λ̃8 “
δ´1{3

2a2 . (89)

In particular, it means that δ cannot vanish.

�

�

������ 

Figure 1. The profile of the scalar potential of Equation (58) with the input values F2 “ 106, γ̃8 “ 6 ¨ 104

and Λ̃8 « 0.0174. The bottom (red) line shows the inflationary trajectory.

7. The Inflationary Observables

After the modulus χ is strongly stabilized, the inflaton scalar potential in Equation (58) takes the
form (MPl “ 1)

e4χ0 a2Vp f q “
´

1´ e´6 f
¯

4
3
` λe´8 f ´ λp1` λ3q´

1
3 , (90)

where we have introduced the parameter λ “ 2a2Λ̃8 “ δ´1{3. The potential has the
absolute minimum at:

f0 “
1
6 ln

´

1` λ3
¯

, (91)

where it vanishes (Minkowski vacuum). A profile of the scalar potential in Equation (90) is given in
Figure 2.

During inflation along the plateau the scalar potential in Equation (90) can be approximated by
Equation (4) with:

α “

c

6
7

. (92)

This value of α determines the observable tensor-to-scalar ratio r as:

r “
8

α2N2
e
“

28
3N2

e
(93)

that is very close to the Starobinsky value in Equation (5). This also applies to the scalar spectral index
ns and its running dns{dlnk in Equation (7).
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f

V(f)

Figure 2. The profile of the scalar potential in Equation (90) for the values λ “ 1 (green), λ “ 2 (red),
and λ “ 2.88 (blue).

The microscopic parameters of the modified gravity in higher dimensions can be easily tuned to
get the required inflaton mass M, so that the effective inflationary model is almost indistinguishable
from the Starobinsky model having αs “

a

2{3.
When a conventional matter action is added, Weyl rescaling of the metric gives rise the universal

couplings (via the covariant derivatives) of the inflaton f to all matter fields with the powers of
exp p´ακ4 f q. The value in Equation (92) of α derived from D “ 8 dimensions is slightly different from
the Starobinsky value αs “

a

2{3, while all matter couplings to the inflaton are suppressed by the
Planck mass. Therefore, the impact of higher dimensions on reheating is expected to be negligible.

8. Conclusions

We used the Starobinsky inflationary model (1) in four spacetime dimensions as the prototype for
deriving new inflationary models of modified gravity descending from higher dimensions. It is worth
mentioning that any pR` γRnqmodified gravity model in four spacetime dimensions with an integer
power n different from two is not viable for inflation [15] (having n to be a non-integer close to 2 is
possible [16], though it can be reduced to the R2 inflation with the logarithmic corrections).

The advantages of our approach to inflation from higher dimensions are as follows:
(i) Its geometrical nature because only gravitational interactions are used, (ii) its consistency with the
current astronomical observations of CMB, and (iii) its clear physical nature of the inflaton originating
from metric. We focused on the case of D “ 8 spacetime dimensions as the simplest non-trivial
example. In our cosmological scenario, the universe was born multi-dimensional, and then four
spacetime dimensions became infinite, while the others curled up by unknown mechanism before
inflation. Inflation happened after compactification and moduli stabilization.

A positive cosmological constant and a gauge (form) field in higher dimensions are necessary,
while there are the strong conditions on the number of extra dimensions, the power n of the scalar
curvature in the modified gravity term, and the rank of the gauge form. The moduli stabilization and
the physical scale hierarchy are possible to achieve, though both are non-trivial.

It may be possible to embed our D “ 8 modified gravity model into the modified D “ 8
supergravity and then into the modified D “ 11 supergravity, see [7] for details.

As regards the observational predictions of our approach, it results in the certain value
of Equation (93) of the CMB tensor-to-scalar ratio that is slightly different from that of the
Starobinsky model.
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Our results can be used for studying inflation and moduli stabilization in the more general
frameworks, such as unification of fields and forces, KK theories of gravity, supergravity and
superstrings, and braneworld. It was demonstrated in [17] that the modified pR ` R2q gravity in
the Randall–Sundrum (RSII) braneworld [2,3] does not destabilize the Randall–Sundrum solution to
the hierarchy problem in high-energy particle physics.
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