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Abstract: The effect of modification of MFI zeolite 1–5 wt.% ZnO activated by plasma on acid and
catalytic properties in the conversion of the propane–butane fraction into arenes was investigated.
The high-silica zeolites with silicate module 45 were synthesized from alkaline alumina–silica gels in
the presence of an ‘X-oil’ organic structure-forming additive. The modification of the zeolite with
zinc was carried out by impregnating the zeolite granules in the H-form with an aqueous solution of
Zn(NO3)2. The obtained zeolites were characterized by X-ray phase analysis and IR spectroscopy. It is
shown that the synthesized zeolites belong to the high-silica MFI zeolites. The study of microporous
zeolite-containing catalysts during the conversion of C3-C4 alkanes to aromatic hydrocarbons made it
possible to establish that the highest yield of aromatic hydrocarbons is observed on zeolite catalysts
modified with 1 and 3% ZnO and amount to 63.7 and 64.4% at 600 ◦C, respectively, which is 7.7–8.4%
more than on the original zeolite. The preliminary activation of microporous zeolites modified
with 1–5% ZnO and plasma leads to an increase in the yield of aromatic hydrocarbons from the
propane–butane fraction; the maximum yield of arenes is observed in zeolite catalysts modified with
1 and 3% ZnO and activated by plasma, amounting to 64.9 and 65.5% at 600 ◦C, respectively, which is
8.9–9.5% more than on the initial zeolite. The activity of the zeolite catalysts modified by ZnO and
activated by plasma show good agreement with their acid properties. Activation of the zeolites
modified by 1 and 3% ZnO and plasma leads to an increase in the concentration of the weak acid sites
of the catalyst to 707 and 764 mmol/g in comparison with plasma-inactivated 1 and 3% ZnO/ZKE-XM
catalysts at 626 and 572 mmol/g, respectively.

Keywords: MFI zeolite; modification; zinc oxide; plasma activation; acidity; propane–butane fraction;
conversion; arenes

1. Introduction

The propane–butane fraction (PBF) is one of the main components of natural, associated petroleum
gases and is a valuable organic raw material for the production of C2-C4 alkenes, arenes, and other
valuable products. The most promising for PBF conversion to alkenes, arenes can be the MFI
zeolite catalysts, which demonstrate high activity and selectivity in dehydrogenation, cracking,
oligomerization, isomerization, and dehydrocyclization reactions of various organic compounds [1,2].

Previously, in most studies, it has been shown that the formation of the microporous MFI zeolites
and their acid and catalytic properties are greatly influenced by the use of structure-forming additives,
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silicate module, synthesis conditions, and other factors. It is generally accepted that the activity and
selectivity of the microporous MFI zeolites determine their acid properties and the presence and
concentration of Lewis and Bronsted acid sites, which can be adjusted in various ways [3,4].

It was shown in references [5,6] that in the process of conversion of lower C1-C6 alkanes into
liquid hydrocarbons, the high-silica ZSM-5 or MFI zeolites modified by gallium, zinc, molybdenum,
and rhenium are the most active and selective. For example, the maximum yield of liquid hydrocarbons
in the process of propane conversion reached 56 wt.% at 550 ◦C on the 3% Zn/ZSM-5 catalyst. It was
also found that the synthesis methods of the high-silica ZSM-5 zeolites and the methods of introducing
modifying additives into the zeolite and their nature have a great influence on the yield and selectivity
of the formation of C2-C4 alkenes—arenes from lower alkanes [7–9].

In references [9,10], the influence of Zn/HZSM-5 synthesis methods on the formation of acid
sites and their catalytic properties was investigated. It was found that in Zn-ZSM-5 synthesized by
mechanical mixing of ZnO powders with zeolite, zinc is present in Zn-ZSM-5 mainly in the form of
ZnO and ZnOH+ particles. In the Zn-ZSM-5 catalysts synthesized by direct hydrothermal ion exchange
synthesis, zinc is present primarily in the form of ZnOH+. The Zn-ZSM-5 catalysts synthesized by
the impregnation method mainly contain ZnOH+ and ZnO nanoparticles dispersed in the pores and
channels of the zeolite. Thus, depending on the synthesis methods of Zn-ZSM-5 catalysts, zinc is found
in the zeolites in various surface oxygen-containing thermostable structures. It has also been shown
that cracking, dehydrogenation, and aromatization of light hydrocarbons into aromatics and lower
alkanes predominantly occur at ZnOH+ acid sites.

In references [11,12], the authors studied the conversion of bioethanol and PBF on the microporous
high-silica MFI zeolites, synthesized using multicomponent structure-forming additives of the
“alcohol fraction” and the “X-oil” fraction (by-products of caprolactam industrial production) and their
high catalytic activity was established in the conversion of ethanol and lower C3-C4 alkanes to liquid
hydrocarbons and aromatic hydrocarbons, respectively.

The aim of this work was to study the physicochemical and catalytic properties of the microporous
high-silica MFI zeolite synthesized using a new multicomponent structure-forming additive of the
“X-oil” fraction (a by-product of caprolactam industrial production), modified by 1–5 wt.% ZnO and
activated by low-temperature plasma, in the process of converting PBF-associated petroleum gases
into arenes.

2. Results and Discussion

2.1. Synthesis and Characterization of Catalysts

The high-silica zeolite with silicate module 45 was synthesized from alkaline alumina–silica gels
using a multicomponent organic structure-forming additive of the “X-oil” fraction (a by-product of
caprolactam production) by hydrothermal synthesis in stainless steel autoclaves at 170–175 ◦C for
4–5 days (ZKE-XM), according to the procedure described in reference [13].

The specific surface of decationized zeolites in the H-form H-ZKE-XM modified with 1–5% ZnO
was determined using the BET multipoint method on a Soft Sorbi, ver. 4.2. The specific surface area of
zeolite H-ZKE-XM is 376 m2/g, and zeolite modification with zinc from 1 to 5 wt.% leads to an increase
in the content of zinc oxide with a decrease in the specific surface of the modified zeolites. Thus,
for example, the specific surface area of the catalyst 1% ZnO/99% H-ZKE-XM is 354 m2/g; 3% ZnO/97%
H-ZKE-XM—346 m2/g; 5% ZnO/95% H-ZKE-XM—328 m2/g. The change in the specific surface area of
the modified zeolites can be explained by the fact that the ZnO particles formed during calcination at
600 ◦C are located mainly in the pores, channels and pore mouths of the catalyst during preparation
(impregnation of zeolite granules with a solution of zinc nitrate, then drying and calcination at 600 ◦C
for 6–8 h). The internal surface of the zeolite is partially blocked and the specific surface of the modified
zeolites decreases with an increase in the ZnO content from 1 to 5% in the pores and channels of
the zeolite.
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The physicochemical properties of zeolites modified with 1–5% ZnO were studied using X-ray
phase analysis, IR spectroscopy and thermogravimetric analysis. X-ray patterns of zeolite H-ZKE-XM
show lines with interplanar spacings (d. Å)—11.31; 10.12; 6.03; 4.37; 4.23; 4.07; 3.85; 3.70; 3.65; 3.36;
2.98; 1.99—which are typical for the MFI zeolite (Figure 1) [14,15]. X-ray diffraction patterns of 1–5%
ZnO/99–95% H-ZKE-XM show lines with interplanar distances (d. Å)—11.05, 10.00, 6.76, 6.03, 5.72,
5.59, 4.63, 4.40, 4.29, 4.07, 4.02, 3.87, 3.83, 3.73, 3.66, 3.32, 3.06, 2.99, 2.49, 2.02—typical of the MFI zeolite
(Figure 2).
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Figure 2. The X-ray diffraction pattern of the 3% ZnO/97% H-ZKE-XM zeolite catalyst.

Intense bands in the IR spectrum of N-ZKE-XM are observed at 451, 541, and 794 cm−1 with
a wide band at 900–1300 cm−1 (Figure 3). The IR spectra of 1 and 3% ZnO/1–3% H-ZKE-XM are very
similar to the IR spectrum of pure H-ZKE-XM.

The absorption band at 541 cm−1 corresponds to five membered rings in the zeolite framework
and is typical for the ZSM-5 zeolites, or according to the new zeolite classification, for the MFI zeolites.
The strong absorption band at 900–1300 cm−1 corresponds to antisymmetric stretching vibrations of
TO4 tetrahedra, and the absorption band at 794 cm−1 refers to stretching vibrations of SiO4 tetrahedra.
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Figure 3. IR spectrum of the H-ZKE-XM zeolite catalyst.

Due to the low ZnO content (not more than 5%) and taking into account the large surface of
zeolites, the ZnO bulk phase does not appear in modified zeolite catalysts in the IR spectra and in
X-ray diffraction patterns. It is possible that zinc oxide particles are in a highly dispersed state in the
pores and channels of the zeolite and form additional active centers of the catalyst with active centers
of the zeolite. Based on the results of IR spectroscopy and X-ray phase analysis, we can conclude that
the synthesized zeolites are microporous zeolites of the MFI type (ZSM-5) [14].

2.2. Catalytic Activity

The studies of the PBF conversion process on the initial H-ZKE-XM zeolite showed that with
increasing temperature from 525 to 600 ◦C and the volume flow rate of PBF of 240 h−1, the yield of
liquid products increases from 50.8 to 56.0% due to a rise in the conversion of PBF from 74.6 to 81.6%
(Figures 4 and 5, Table 1). The yield of the gaseous products of the PBF conversion with an increase in
the reaction temperature decreases from 49.2 to 44.0%; the main products among gaseous hydrocarbons
are methane and ethane.
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Figure 4. Dependence of the PBF conversion on temperature on the zeolite catalysts:
1—H-ZKE-XM; 2—1% ZnO/99% H-ZKE-XM; 3—3% ZnO/97% H-ZKE-XM; 4—5% ZnO/95% H-ZKE-XM;
5—1% ZnO/99% H-ZKE-XM (plasma); 6—3% ZnO/97% H-ZKE-XM (plasma); 7—5% ZnO/95%
H-ZKE-XM (plasma).



Molecules 2020, 25, 2704 5 of 16

Table 1. Conversion of the propane–butane fraction to arenes on zeolite catalysts modified with 1–5% ZnO and subjected to plasma pretreatment.

Temperature ◦C Conversion % Gas Phase %
Gas Phase Output %

Liquid Phase %
Liquid Phase Output %

Alkanes C1-C4 Alkenes C2-C3 C6H6 C7H8 C8H10 C9 C10+

H-ZKE-XM

525 74.6 49.2 93.4 6.6 50.8 11.9 35.6 33.0 4.4 15.1
550 79.3 47.8 90.3 9.7 52.2 11.4 35.4 30.0 5.4 13.1
575 80.6 45.6 89.3 10.7 54.4 13.7 37.5 26.9 6.2 15.7
600 81.6 44 87.5 12.7 56.0 14.7 38.1 26.2 4.7 16.3

1% ZnO/H-ZKE-XM

525 68.6 50.7 94.7 5.3 49.3 15.8 40.0 28.6 2.0 13.6
550 76.7 40.1 94.1 5.9 59.9 19.9 43.4 25.0 3.1 12.6
575 79.4 37.3 93.2 6.8 62.7 19.0 41.6 20.0 3.1 16.3
600 81.3 36.3 91.7 8.3 63.7 20.6 42.2 19.2 3.0 15.0

3% ZnO/H-ZKE-XM

525 76.5 47.1 97.0 3.0 52.9 16.7 44.5 24.8 1.1 12.9
550 86.7 39.8 96.5 3.5 60.2 19.9 42.4 21.4 0.7 15.6
575 88.0 37.0 95.4 4.6 63.0 21.1 40.5 16.8 0.4 21.2
600 91.2 35.6 90.8 9.2 64.4 21.5 37.2 15.6 0.4 25.3

5% ZnO/H-ZKE-XM

525 81.1 45.9 97.2 2.8 54.1 15.3 42.7 25.0 0.8 16.2
550 87.0 41.9 96.4 3.6 58.1 19.9 42.5 20.0 0.5 17.1
575 87.8 40.4 94.4 5.6 59.6 22.0 39.0 16.3 0.5 21.2
600 89.1 37.9 88.5 11.5 62.1 24.0 38.3 15.2 0.4 22.1

1% ZnO(plasma)/H-ZKE-XM

525 86.5 45.5 95.6 4.4 54.5 18.6 43.2 20.0 1.3 16.9
550 91.9 38.5 94.6 5.4 61.5 21.6 41.5 17.3 0.9 18.7
575 92.7 36.4 93.0 7.0 63.5 23.3 40.2 13.7 0.8 22.0
600 93.4 35.1 88.8 11.2 64.9 26.0 38.0 12.3 0.5 23.2
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Table 1. Cont.

Temperature ◦C Conversion % Gas Phase %
Gas Phase Output %

Liquid Phase %
Liquid Phase Output %

Alkanes C1-C4 Alkenes C2-C3 C6H6 C7H8 C8H10 C9 C10+

3% ZnO (plasma)/H-ZKE-XM

525 83.2 44.6 96.0 4.0 55.4 19.4 43.4 17.5 1.6 18.1
550 86.8 38.1 94.7 5.3 61.9 21.7 43.2 15.3 1.1 18.7
575 90.8 36.1 92.8 7.2 63.9 22.3 41.6 14.6 0.6 20.9
600 94.0 34.5 89.9 10.1 65.5 23.6 40.4 13.4 0.5 22.1

5% ZnO (plasma)/H-ZKE-XM

525 86.1 47.1 96.9 3.1 52.9 18.2 44.4 20.4 0.5 16.5
550 90.0 41.6 96.2 3.8 58.4 22.5 41.5 16.4 0.4 19.2
575 93.0 38.3 94.2 5.8 61.7 24.4 39.0 14.2 0.4 22.0
600 93.6 36.4 88.8 11.2 63.6 24.2 40.0 13.1 0.4 22.3
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The dependence of the PBF conversion on temperature on the zeolite catalysts is shown below:
With a growth of the reaction temperature of the gaseous products of PBF conversion, the yield

of lower olefins (ethylene and propylene) rises, and the total content of C2-C3 olefins increases from
6.6 to 12.7% due to the intensification of dehydrogenation and cracking reactions’ lower alkanes
C3-C4 [12,16,17].

The liquid PBF conversion products on the modified microporous zeolite catalysts consist of
arenes: benzene, toluene, xylenes (BTX fraction) and methyl and ethyl naphthalenes. The yield of
benzene with an increase in the conversion temperature of PBF from 525 to 600 ◦C increases from
11.9 to 14.7%. the total content of the BTX fraction changes slightly from 80.56 to 79.0% with increasing
temperature from 525 to 600 ◦C (Figure 5, curve 1).

The main product among aromatic hydrocarbons is toluene, of which content with a rise in
the conversion temperature of PBF is 40.0–42.2%. The total content of the xylenes and naphthalene
derivatives decreases with the rise of the PBF conversion temperature due to the dealkylation reactions
of xylenes and methylnaphthalenes.

The introduction of 1–5% zinc oxide (1–5% ZnO/99–95% H-CKE-XM) into the initial zeolite
H-ZKE-XM leads to the yield decrease in gaseous hydrocarbons and the yield increase in liquid
hydrocarbons (arenes) with a rise in the reaction temperature of the PBF conversion from 525 to 600 ◦C
(Figure 5, curves 2–4).

The main products of the conversion of PBF on microporous zeolite-containing catalysts among
gaseous hydrocarbons are methane and ethane, and their total yield is 55–58%. The yield of gaseous
products with an increase in the temperature of the PBF conversion reaction from 525 to 600 ◦C
decreases for all samples of H-ZKE-XM modified with 1–5% ZnO. With an increase in the temperature
of the PBF conversion process from 525 to 600 ◦C, the maximum decrease in the yield of gaseous
products is observed from 47.1 to 35.6% for the zeolite-containing catalyst 3% ZnO/97% H-ZKE-XM.

The modification of the initial zeolite H-ZKE-XM with 1–5% zinc oxide (1–5% ZnO/99–95%
H-ZKE-XM) leads to an increase in the yield of arenes with a rise in reaction temperature of the PBF
conversion from 525 to 600 ◦C and the degree of the PBF conversion from 76.5 to 91.2% for 3% ZnO/97%
H-ZKE-XM compared to the original H-ZKE-XM (Figures 4 and 5, curves 2–4).

The highest yield of the liquid PBF conversion products is achieved at 600 ◦C on 1% ZnO/99%
H-ZKE-XM and 3% ZnO/97% H-ZKE-XM catalysts and are 63.7% and 64.4%, respectively, at 600 ◦C
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and the volume flow rate of 240 h−1 (Figure 5, curves 2–4). It should be noted that the introduction of
zinc oxide into the H-ZKE-XM zeolite from 1 to 5% leads to a rise in reaction temperature of the PBF
conversion from 525 to 600 ◦C to an increase in the content of benzene in the liquid products to 24.0%
at 600 ◦C for the 5% ZnO/95% H-ZKE-XM catalyst compared with 14.7% of benzene formed on the
initial H-ZKE-XM at 600 ◦C. In addition to benzene, the BTX fraction is the main component among
liquid products (Figure 6, curves 2–4). The maximum content of toluene among the BTX fraction is
observed on the 3% ZnO/97% H-ZKE-XM catalyst at 525 ◦C and is 44.5%, with a further rise in the
process temperature to 600 ◦C. The content of toluene and xylenes on all catalysts decreases due to the
predominant dealkylation reactions of alkyl aromatic hydrocarbons.
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Figure 6. The dependence of the yield of arenes from the BTX fraction on temperature on the zeolite
catalysts: 1—H-ZKE-XM; 2—1% ZnO/99% H-ZKE-XM; 3—3% ZnO/97% H-ZKE-XM; 4—5% ZnO/95%
H-ZKE-XM; 5—1% ZnO/99% H-ZKE-XM (plasma); 6—3% ZnO/97% H-ZKE-XM (plasma); 7—5%
ZnO/95% H-ZKE-XM (plasma).

Preliminary low-temperature plasma activation of zeolite-containing 1–5% ZnO/99–95%
H-ZKE-XM catalysts leads to a significant increase in the degree of PBF conversion from 86.5 to
94.0% and the yield of liquid products with a rise in reaction temperature of the PBF conversion from
525 to 600 ◦C (arenes) compared to the initial H-ZKE-XM (Figures 4 and 5, curves 5–7).

The maximum yield of the liquid PBF conversion products is 64.9–65.5% at 600 ◦C on 1 and 3%
ZnO/99–97% H-ZKE-XM catalysts, which is significantly higher than on pure H-ZKE-XM (56.0%) at
600 ◦C and the volume flow rate of 240 h−1 (Table 1, Figure 5, curves 5–7). It is important to note that
the modification of the H-ZKE-XM zeolite of 1–5% ZnO and the preliminary catalyst activation with
a low-temperature plasma leads to a rise in reaction temperature of the PBF conversion from 525 to
600 ◦C, and to a significant increase in the benzene content in the liquid products of the PBF conversion
to 26.0% on 1% ZnO/99% H-ZKE-XM at 600 ◦C, compared to 14.7% of benzene formed on the initial
H-ZKE-XM at 600 ◦C. The main products among the liquid products of the PBF conversion on zeolite
catalysts modified by 1–5% ZnO and subjected to preliminary low-temperature plasma activation
are benzene, toluene, and xylenes, the contents of which are 18.6–26.0%, 38.0–44.4%, and 12.3–20.4%,
respectively (Figures 5 and 6, curves 5–7). The total content of the BTX fraction with an increase in the
conversion temperature of PBF is likely to decrease due to intensive dealkylation reactions [18–22].

2.3. Thermogravimetric Study of Coked Zeolite-Containing Catalysts

Thermogravimetric studies of zeolite catalysts modified with ZnO showed that three peaks are
observed on the DSC curve of sample H-ZKE-XM (Figure 7).
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Figure 7. Thermogram of a Carbonized Zeolite Catalyst H-ZKE-XM.

On the DSC curve of the H-ZKE-XM sample in the range 50–150 ◦C a small endo effect at 108 ◦C is
observed due to the removal of weakly adsorbed water and hydrocarbon vapors and a loss in catalyst
mass of 0.57%.

The second small exoeffect at 300 ◦C apparently is associated with the burning out of coke deposits
(“loose”, less condensed coke) from the surface of the coked zeolite catalyst and is accompanied by
a loss in the weight of the catalyst by 2.63%.

In the region of 450–650 ◦C, predominantly more “dense” coke burns out at 565.7 ◦C, which is
located mainly in the mouths or wide pores of the zeolite catalyst with a catalyst mass loss of 6.45%
and is accompanied by a strong exothermic effect on the DSC curve (Figure 7).

On the DSC curve of a Carbonized Zeolite Catalyst 1% ZnO/99% H-ZKE-XM in the range 50–120 ◦C,
an endoeffect at 98 ◦C is observed due to the removal of weakly adsorbed water and hydrocarbon
vapors and is accompanied by a loss in catalyst mass of 2.89% (Figure 8).Molecules 2020, 25, x FOR PEER REVIEW 9 of 15 
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The second small exoeffect at 290 ◦C apparently is associated with the burning out of coke deposits
(“loose”, less condensed coke) from the surface of the coked zeolite catalyst and is accompanied by
a loss in the mass of the catalyst by 0.56%.

In the region of 500–620 ◦C, the predominantly more “dense” coke burns out at 569.5 ◦C, which is
located mainly in the mouths or wide pores of the zeolite catalyst and is accompanied by a loss in
catalyst mass of 1.53% and accompanied by an exothermic effect on the DSC curve (Figure 8).

On the DSC curve of a Carbonized Zeolite Catalyst 3% ZnO/97% H-ZKE-XM in the range 50–120 ◦C,
an endoeffect at 91 ◦C is observed due to the removal of weakly adsorbed water and hydrocarbon
vapors and is accompanied by a loss in catalyst mass of 4.19% (Figure 9).
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Figure 9. Thermogram of a Carbonized Zeolite Catalyst 3% ZnO/97% H-ZKE-XM.

The second exoeffect in the form of a shoulder at 300 ◦C is apparently associated with the burning
out of coke deposits (“loose”, less condensed coke) from the surface of the coked zeolite catalyst. In the
region of 500–700 ◦C, the predominantly more “dense” coke burns out at 568.5 ◦C and in the form
of a shoulder at 620–630 ◦C located mainly in the mouths and pores of the zeolite catalyst and is
accompanied by a loss in the mass of the catalyst of 3.74% on the DSC curve (Figure 9).

On the DSC curve of a Carbonized Zeolite Catalyst 3% ZnO/97% H-ZKE-XM previously subjected
to plasma treatment in the range 50–110 ◦C, an endoeffect is observed at 98.5 ◦C due to the removal of
weakly adsorbed water and hydrocarbon vapors and is accompanied by weight loss of 3.42% of the
catalyst (Figure 10).Molecules 2020, 25, x FOR PEER REVIEW 10 of 15 
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The second exoeffect comes in the form of a shoulder at 300 ◦C, apparently due to the burning out
of coke deposits (“loose”, less condensed coke) from the surface of the coked zeolite catalyst and the
loss of coke mass of 0.37%. In the range of 500–700 ◦C, a strong exothermic peak splits into 2 exothermic
effects at 551.3 and 648.2 ◦C and is accompanied by a loss in catalyst mass of 1.11 and 1.0% mostly
more “dense” coke burns out, which is located mainly in the mouths and pores of the zeolite catalyst
(Figure 10).

Thus, a thermogravimetric study of coking zeolite catalysts modified with 1–5% ZnO and subjected
to preliminary plasma treatment during the conversion of the propane–butane fraction to arenes
showed that mainly 2 types are formed in the reaction of the conversion of the propane–butane fraction
to arenes on modified zeolite catalysts coke deposits: less condensed so-called “loose coke” and fading
at a temperature of 290–310 ◦C and more condensed “dense coke” fading at a higher temperature of
500–700 ◦C.

2.4. Study of the Acidic Properties of Microporous Zeolite Catalysts

The study of the acid properties of the zeolite catalysts modified by ZnO showed that the initial
H-ZKE-XM has two forms of ammonia desorption: The low-temperature peak reaches the thermal
desorption curve (TD) in the region of 100–300 ◦C with a maximum temperature (Tm) and with the
peak at 185 ◦C, and relates to ammonia desorption mainly from the weak Lewis acid sites of the
zeolite, which are coordinately unsaturated aluminum ions in the zeolite crystal lattice in H-ZKE-XM.
The high-temperature peak, in the region of 350–500 ◦C with the Tm peak at 405 ◦C, related to the
desorption of ammonia with the strongly Bronsted acid sites of the zeolite hydrogen ions of which are
bridged hydroxyl groups (Figure 11, curve 1, Table 2).
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The concentration of weak acid sites for 1% ZnO/99% H-ZKE-XM determined by the amount
of desorbed ammonia is 600, and for strong-acid sites, it is 421 µmol/g [12,23]. The modification of
H-ZKE-XM 1–5% ZnO leads to a change in their acid characteristics. The low-temperature ammonia
desorption peaks from H-ZKE-XM zeolites modified by 1–5% ZnO are shifted to higher temperatures
and Tm peaks are 185 and 190 ◦C for 1% ZnO/99% H-ZKE-XM and 5% ZnO/95% H-ZKE-XM, respectively,
compared with the initial H-ZKE-SF zeolite (Figure 11, Table 2).
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Table 2. Acidic properties of zeolite-containing catalysts *.

Catalyst Tmax. ◦C Concentration of Acid Sites.
µmol/g

TI TII CI CII Ctotal

H-ZKE-XM 185 405 600 421 1021
1% ZnO/99% H-ZKE-XM 185 405 626 151 777
3% ZnO/97% H-ZKE-XM 190 410 572 167 739
5% ZnO/95% H-ZKE-XM 190 410 450 258 708

1% ZnO/99% H-ZKE-XM; plasma 210 455 707 201 908
3% ZnO/97% H-ZKE-XM; plasma 215 465 764 220 984
5% ZnO/95% H-ZKE-XM; plasma 220 465 783 232 1015

* T1 T11—peak temperatures for forms 1 and 11; C1, C11 and Ctotal—concentration of acidic centers in
forms (1), (11) and total, respectively.

Additionally, the high-temperature ammonia desorption peaks from H-ZKE-XM zeolites modified
by 1–5% ZnO are shifted to higher temperatures from Tm peaks of 405 ◦C for H-ZKE-XM and up to
410 ◦C for H-ZKE-XM samples modified by 1–5% ZnO.

The concentration of weak acid sites for 1% ZnO/99% H-ZKE-XM increases to 626µmol/g compared
to 600 µmol/g for H-ZKE-XM, with a further increase in the content from 1 to 5% ZnO in H-ZKE-XM;
the concentration of weak acid sites decreases from 626 to 450 µmol/g (Table 2). The concentration of
the strong acid sites for H-ZKE-XM is 421 µmol/g, and with an increase in the content from 1 to 5%
ZnO in H-ZKE-XM, the concentration of strong acid sites increases from 151 to 258 µmol/g (Table 2).

The acid characteristics for H-ZKE-XM modified by 1–5% ZnO and subjected to preliminary
low-temperature plasma activation are significantly different from the acid characteristics of H-ZKE-XM
modified by 1–5% ZnO. The low-temperature ammonia desorption peaks from the H-ZKE-XM zeolites
modified by 1–5% ZnO and activated by plasma are strongly shifted to higher temperatures and are
Tm peaks of 210 and 215 ◦C for 1% ZnO/99% H-ZKE-XM and 3% ZnO/99% H-ZKE-XM, respectively,
compared with the initial H-ZKE-XM zeolite (Table 2). Additionally, the ammonia desorption
high-temperature peaks from H-ZKE-XM zeolites modified by 1–5% ZnO and activated by plasma are
significantly shifted to higher temperatures from the Tm peaks of 405 ◦C for H-ZKE-XM and to 455 and
465 ◦C for the H-ZKE-XM samples modified by 1 and 3% ZnO and activated by low-temperature plasma.

It is important to note that with an increase in the content from 1 to 5% ZnO in H-ZKE-XM and
being subjected to preliminary low-temperature plasma activation, the concentrations of weak acid and
strong acid sites increase from 707 to 783 and from 201 to 232 µmol/g, respectively (Table 2). The total
concentration of H-ZKE-XM acid sites modified by 1–5% ZnO and subjected to plasma activation,
with an increase in the concentration from 1 to 5% ZnO, significantly increases from 908 to 1015 µmol/g.

This behavior of increasing the concentration of both types of acid sites in the zeolites, modified
by 1–5% ZnO and activated by plasma treatment, as well as a significant increase in the yield of liquid
hydrocarbons from PBF from 56.0% for H-ZKE-XM to 65.5% for the 3% ZnO/97% H-ZKE-XM zeolite
catalyst can be explained by the fact that during the preliminary low-temperature plasma activation,
there is a strong ionization of oxygen molecules and water vapor that are present in the air of the
plasma chamber, and the resulting O2−, OH− and H+ ions interact with various acid sites of the catalyst,
whereby they form additional weak acid and strong acid sites on the surface of activated and modified
by the plasma zeolite catalysts, and this leads to a significant increase of activity and an increase in the
yield of liquid hydrocarbons (arenes) during the conversion of propane–butane fraction.

3. Materials and Methods

3.1. Catalysts Preparation

Microporous high-silica zeolites with silicate module 45 were synthesized from alkaline
alumina–silica gels using a multicomponent organic structure-forming additive of the “X-oil” fraction
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(a by-product of caprolactam production) by hydrothermal synthesis in stainless steel autoclaves at
170–175 ◦C for 4–5 days, according to the procedure described in reference [13]. The conversion of the
zeolite to the H-form (H-ZKE-XM) was carried out by decationization. The Na-CKE-XM zeolites were
converted into the active form of H-ZKE-XM by treatment with a 1 M aqueous solution of NH4NO3 at
90 ◦C and stirring for 2 h, then the zeolite precipitate was filtered off from the mother liquor, then dried
for 2 h at 110 ◦C and calcined for 6 h at 600 ◦C.

After that, the zeolite powder was molded, a fraction of 2–3 mm was selected and it was modified
by 1–5 wt.% ZnO using the impregnation method. The calculated amount of zinc nitrate was dissolved
in water, and then, a certain amount of H-ZKE-XM zeolite granules was impregnated with an aqueous
solution of zinc nitrate according to the moisture capacity of the zeolite. Then, the catalysts were dried
and calcined for 6 h at 600 ◦C.

3.2. Activation of the H-ZKE-XM Zeolite Catalysts Modified by 1–5% ZnO, by Low Temperature Plasma

The activation of the H-ZKE-XM zeolite catalysts modified by 1–5% ZnO was carried out by
a low-temperature diffuse discharge plasma formed in atmospheric pressure air at 4 nanosecond
voltage pulse with an amplitude of 25 kV applied from an NPG-3500N generator to a point cathode
with a small radius of curvature, equal to 0.2 mm [23]. The maximum electron concentration in the
plasma of the diffuse discharge was 1014 cm−1, with an applied average power of 2 W.

This type of discharge was formed when high voltage pulses of nanosecond duration were
applied to an electrode with a small radius of curvature. As a result, an increase in the electric field
occurred and the electrons in the discharge gap began to go into runaway mode (the so-called runaway
electrons). As they moved from the cathode to the anode due to collisions with other molecules,
the runaway electrons formed avalanches of runaway electrons intersecting each other, thus realizing
the pre-ionization of the discharge gap.

The samples of the zeolite-containing catalysts in a quartz cuvette were placed on the grounded
anode of the gas discharge chamber at a distance of 8 mm from the cathode tip, after which they were
subjected to plasma treatment for 10 min at a frequency of 100 Hz, which corresponded to 60,000 pulses.

During the low-temperature plasma treatment of the catalysts, oxygen molecules and water vapor
were strongly ionized, which were present in the air of the plasma chamber with the formation of O2−,
OH− and H+ ions [23]. The resulting O2−, OH− and H+ ions further interacted with various acid sites
of the catalyst, resulting in the formation of additional weak and strong acid sites on the surface of
modified and plasma-activated zeolite catalysts.

3.3. Characterization Techniques

The physical and chemical properties of the obtained zeolites were studied using X-ray phase
analysis and IR spectroscopy. X-ray phase analysis of the synthesized zeolites was carried out on
a DRON-3 X-ray apparatus; Mo-anode and Ni-filter were used (Figures 1 and 2). The IR spectra of
the zeolite in the H-form were recorded using a Nicolet 5700 Fourier IR spectrometer in the region of
400–2000 cm−1 (Figure 2). The specific surface area of zeolite catalysts modified with 1–5% ZnO was
determined using the BET multipoint method on a SoftSorbi, Ver. 4.2.

3.4. Acid Properties of Catalysts

The acid properties of the zeolite catalysts modified by 1–5% ZnO and activated by plasma were
studied at the thermal desorption installation by adsorption of ammonia in a helium carrier gas stream
in the range of 50–650 ◦C, with a linear heating rate of 10 ◦C/min according to the procedure described
in reference [12]. The concentration of acid sites (µmol/g catalyst) in the zeolite-containing catalysts was
determined from the amount of ammonia in desorption peaks (forms), and the accuracy of determining
the amount of the adsorbed ammonia by the gas chromatography method was 2.5%.
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3.5. Catalytic Activity Test

The catalytic properties of microporous zeolite-containing catalysts were studied in a catalytic
installation in a stainless steel flow reactor, with an internal diameter of 16 mm and a length of
200 mm [12]. Catalyst granules (2 × 3 mm, volume 6 cm3) were loaded into the reactor. The conversion
of PBF composition: methane—0.3; ethane—3.0; propane—80.9; butanes—15.8 wt.% was carried
out on zeolite-containing catalysts in the temperature range of 525–600 ◦C, at the volume flow rate
of 240 h−1, atmospheric pressure, and test duration of 2 h at each specific reaction temperature.
The initial PBF and the products of the PBF conversion were analyzed by gas chromatography using
the “Chromatek-Crystal 5000M” gas chromatograph.

The analysis of gaseous hydrocarbons was carried out on a quartz glass packing column (length 3 m,
internal diameter 3 mm) filled with 5% NaOH on Al2O3 (fraction 0.25–0.50 mm) using a thermal
conductivity detector, with the carrier gas being helium.

The analysis of the liquid products of the PBF conversion was carried out on a quartz glass capillary
column (30 m× 0.25 mm× 0.5µm) with a stationary ZB-1 phase deposited on a flame-ionization detector.
Quantitative analysis of gaseous and liquid hydrocarbons was carried out on a hardware–software
complex based on a “Chromatek-Crystal 5000” gas chromatograph using the results-based analysis
program “Chromatek-Analytic” [12]. The error in determining the gaseous and liquid hydrocarbons
by the gas chromatographic method was ±2.5%.

4. Conclusions

A study of the activity of the modified H-ZKE-XM zeolite catalysts of the MFI type during
the aromatization of lower C3-C4 alkanes of the propane–butane fraction of associated petroleum
gases showed that the introduction of zinc oxide modifying additives into the zeolite in the amount
of 1–5 wt.% significantly increased the yield of liquid products—aromatic hydrocarbons from PBF.
The introduction of 1–5% ZnO into the H-ZKE-XM zeolite and subsequent plasma activation of
zeolite catalysts can significantly increase the strength and concentration of acid sites of catalysts
and thereby increase the yield of aromatic hydrocarbons to 64.9% in the liquid products of the PBF
conversion reaction at 600 ◦C, which is 12.5% more than on the initial H-ZKE-XM and 2–8% more than
on 1–3% ZnO/99–97% H-ZKE-XM. It was shown that the activity of the zeolite catalysts modified by
oxide zinc and activated by low-temperature plasma is in good agreement with their acid properties.
This behavior of the modified zeolite catalysts can apparently be explained by the fact that during the
activation of the modified zeolite catalysts by low-temperature plasma, strong ionization of oxygen
molecules and water vapors, which are present in the air of the plasma chamber. The resulting O2−,
OH− and H+ interact with various acid sites of the catalyst, resulting in the formation of additional weak
and strong acid sites on the surface of the modified and active plasma zeolite catalysts, which leads
to an increase in their activity in the reactions of dehydrogenation, cracking and dehydrocyclization
of lower C3-C4 alkanes. In this regard, on zeolite catalysts modified by zinc oxide and activated by
low temperature plasma, a higher yield of methane, ethane and aromatic hydrocarbons is observed
during the conversion of lower C3-C4 propane alkanes of the propane–butane fraction, than on zeolites
modified by zinc oxide.
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