На правах рукописи

Токаренко Ольга Григорьевна ГЕОХИМИЯ МИНЕРАЛЬНЫХ ВОД КУЗБАССА

Специальность 25.00.07 – Гидрогеология

Автореферат

диссертации на соискание учёной степени кандидата геолого-минералогических наук

Работа выполнена в Томском политехническом университете

Научный руководитель: доктор геолого-минералогических наук,

профессор, Лауреат Государственной премии

СССР, Заслуженный деятель науки РФ

Шварцев Степан Львович

Официальные оппоненты: доктор геолого-минералогических наук, профессор

Покровский Дмитрий Сергеевич

кандидат геолого-минералогических наук, доцент

Новиков Дмитрий Анатольевич

Ведущая организация: ОАО «Томскгеомониторинг»

Защита диссертации состоится « 22 » декабря 2009 года в 14^{00} часов на заседании совета по защите докторских и кандидатских диссертаций ДМ 212.269.03 при Томском политехническом университете

Адрес: 634034, г. Томск, ул. Советская, 73, 1 корпус, 111 аудитория

С диссертацией можно ознакомиться в Научно-технической библиотеке Томского политехнического университета

Автореферат разослан « 14 » ноября 2009 г.

Ученый секретарь совета по защите докторских и кандидатских диссертаций, кандидат геолого-минералогических наук

Glevas О.Е. Лепокурова

ВВЕДЕНИЕ

Актуальность работы. Минеральные воды давно привлекают внимание исследователей, потому что обладают уникальным составом и лечебными свойствами. формирования состава таких вод занимались Изучением многие ученые А.М.Овчинников, Н.И.Толстихин, И.К.Зайцев, В.В.Иванов, Г.А.Невраев, Е.В.Посохов, Е.В.Пиннекер, Г.С.Вартанян, Л.А.Яроцкий, Б.И.Писарский, В.А.Кирюхин, О.В.Чудаев, А.М.Плюснин и др., среди зарубежных исследователей отметим А.Добре, Л.Морэ, К.Кейльгака. Непосредственно В Кузбассе работы велись П.А.Удодовым, Г.М.Плевако, Г.М.Роговым, В.К.Поповым, С.Л.Шварцевым, Д.С.Покровским, М.А.Кузнецовой, О.В.Постниковой, В.М.Людвигом, В.П.Шинкаренко, Ю.В.Макушиным, О.Е.Лепокуровой, Е.В.Домрочевой и др.

Несмотря на длительность изучения минеральных вод Кузбасса многие проблемы остаются нерешенными. Среди них вопросы их генезиса, возраста, состава, включая микрокомпоненты, в том числе редкоземельные элементы, газы, органическое вещество, изотопный и микробиологический состав, механизм формирования их состава. С появлением современных высокочувствительных методов анализа и усовершенствованных методик исследования природных вод в совокупности с новыми теоретическими положениями решение этих вопросов значительно облегчается.

Объектом научного исследования являются минеральные воды центральной части Кузбасса, в первую очередь месторождений Березовоярское, Борисовское и Терсинское; предметом исследования являются процессы и механизмы формирования состава минеральных вод.

Цель работы. Изучение геохимических особенностей и условий формирования химического состава минеральных вод основных месторождений Кузбасса.

Задачи исследования: 1) изучить химический, микробиологический, газовый, изотопный состав минеральных вод центральной части Кузбасса; 2) установить генезис CO₂ и CH₄; 3) определить степень равновесия минеральных вод с основными карбонатными и алюмосиликатными минералами; 4) выявить ведущие процессы и механизмы формирования химического состава минеральных вод.

Исходный материал и методы исследований. Для решения поставленных задач в период с 2003 по 2008 гг. автор принимал участие в работах Томского филиала Института нефтегазовой геологии и геофизики (ТФ ИНГГ) СО РАН, ТПУ и ОАО

«Томскгеомониторинг», проводимых по этой тематике. В работе также использованы данные предыдущих исследований.

Химический анализ проб минеральной воды проводился в проблемной научноисследовательской лаборатории гидрогеохимии (ПНИЛ) Научно-учебнопроизводственного центра «Вода» ИГНД ТПУ. Быстроменяющиеся компоненты (рН, Ећ, СО₂, НСО₃⁻) замерялись непосредственно на скважине. Были использованы следующие методы определения макро- и микрокомпонентного состава: титриметрия, фотоколориметрия, фотометрия, турбидиметрия, пламенная потенциометрия, беспламенная атомно-абсорбционная спектрометрия, инверсионная вольтамперометрия, масс-спектрометрический метод с индуктивно-связанной плазмой - ICP-MS (ООО «Плазма», г. Томск), атомно-эмиссионный метод с индуктивно-ICP-AEm связанной плазмой (НАЦ ТПУ). Состав газов определялся хроматографическим методом на приборе «Кристалл 2000М», а изотопный состав – двулучевым методом на масс-спектрометре «МИ-1201В» и бета-спектрометрическим методом на приборе «Tri Carb 2700» (НТЦ «ВСЕГИНГЕО», г. Москва).

Всего в работе использовано более 600 анализов подземных вод Березовоярского, Борисовского и Терсинского месторождений и более 50 анализов грунтовых вод центральной части Кузбасса. Из них 440 анализов химического состава, 38 – микробиологического, 39 – газового, 41 – изотопного соответственно.

Личный вклад автора. Всего за период исследования автором было отобрано более 60 проб минеральной воды. Данные обрабатывались с помощью компьютерных программных комплексов StatSoft Statistica, Microsoft Excel, CorelDREW, ArcGis. Автором выявлены основные геохимические особенности изучаемых вод, проведена сравнительная оценка концентраций микрокомпонентов вод с кларками гидросферы; установлены пределы содержаний микроорганизмов; установлен генезис углекислого газа и метана; определен характер равновесия системы минеральная вода-горная порода; составлена схема формирования состава минеральных вод Кузбасса.

Научная новизна: 1) впервые для минеральных вод Кузбасса идентифицированы многие микрокомпоненты, включая редкоземельные, установлены и проанализированы их пределы содержаний, оценена микрофлора, уточнено содержание органических веществ; 2) по изотопным данным установлен генезис CO_2 и CH_4 ; 3) определен характер равновесия минеральных вод с первичными и вторичными

породообразующими минералами; 4) впервые разработана постадийная модель формирования минеральных вод Кузбасса отдельно по месторождениям с обоснованием источников химических элементов и газа.

Практическая значимость. Материалы исследований использовались в процессе выполнения научно-исследовательских работ в рамках г/б темы № 2.18.2004 «Исследование процессов вторичного минералообразования и формирования геохимических типов вод (на примере юга Западной Сибири)», выполняемых по межвузовской научно-технической программе «Университеты России фундаментальные исследования» (проект УР.09.01.2004 г.), г/б темы № 2.3.2009 тематического плана ТПУ «Исследование геологической эволюции системы водапорода-органическое вещество как основы решения фундаментальных проблем гидрогеохимии». Часть материалов диссертации OAO использована «Томскгеомониторинг» при подготовке отчетной документации, а также ТФ ИНГГ СО РАН и ТПУ, где внедрены в учебный процесс. Разработанная модель формирования состава вод может быть использована научными и производственными организациями, занимающимися изучением и практическим использованием минеральных вод (бальнеологические институты и др.).

Апробация работы. Основные положения и отдельные разделы и подразделы выполненной работы докладывались и обсуждались на научно-практическом семинаре на кафедре гидрогеологии, инженерной геологии и гидрогеоэкологии ИГНД ТПУ. Результаты работы были доложены на XVIII и XIX-ом Всероссийском совещании по подземным водам Востока России (Иркутск, 2006; Тюмень, 2009), на V-й, VI-й Международной научной конференции студентов и аспирантов (Днепропетровск, 2008, 2009), на XII-й Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2005), на II-й Международной научнопрактической конференции «Исследование, разработка и применение высоких технологий в промышленности...» (Санкт-Петербург, 2006), на Международном научном симпозиуме студентов и молодых ученых имени академика М.А.Усова «Проблемы геологии и освоения недр» (Томск, 2004—2008) и др.

Публикации. Основные результаты проведенной работы изложены в 25 статьях, в том числе 2 статьи опубликованы в центральных изданиях, включенных в перечень ВАК.

Структура и объем работы. Настоящая кандидатская диссертация состоит из

введения, 7 глав, заключения и списка литературных источников, состоящего из 154 наименований. Работа изложена на 143 страницах, включая 24 рисунка, 55 таблиц.

Благодарности. Автор благодарность выражает своему научному руководителю доктору геолого-минералогических наук, профессору С.Л.Шварцеву за высокие требования, ценные советы, оказанную помощь и содействие в выполнении работы. Глубокую признательность автор выражает Ю.Г.Копыловой за консультации, проведении исследований, возможность работе помощь vчастия гидрогеохимической лаборатории ИГНД, а также в получении данных химического состава минеральных вод Кузбасса. За тесное сотрудничество и за действенную помощь в предоставлении данных автор благодарит ОАО «Томскгеомониторинг» в лице В.А.Льготина, Ю.В.Макушина, В.П.Шинкаренко, Т.Л.Степановой, а также отдел геологии Территориального агентства по недропользованию Кемеровской области в лице В.М.Людвига. Автор признателен за помощь и полезные консультации ЕЛИП кафедры ИГНД ΤПУ А.Д.Назарову, сотрудникам О.Ф.Зятевой, О.Е.Лепокуровой, а также сотрудникам ПНИЛ А.А.Хващевской, В.А.Шушариной, Н.И.Шердаковой, Л.Д.Власкиной, Н.Г.Наливайко, Р.Ф.Зарубиной.

Первое защищаемое положение.

Все минеральные воды центральной части Кузбасса являются содовыми и залегают в зоне замедленного водообмена. Минеральные воды Борисовского и Березовоярского месторождений являются щелочными с повышенным содержанием хлор-иона в последних, метановыми с примесью азота и минерализацией не более 4 г/л. Терсинские воды отличаются повышенным содержанием природного СО₂, слабокислой средой, более высокими значениями минерализации и концентраций многих компонентов за счет процессов углекислотного выщелачивания.

Березовоярское и Борисовское месторождения (рис.1) расположены в Крапивинском районе Кемеровской области, Терсинское — юго-восточнее в Новокузнецком районе. Первые сосредоточены в пределах Кузнецкой котловины с отметками рельефа не более 250 м, Терсинское месторождение — в зоне сочленения Кузнецкой котловины с Кузнецким Алатау с отметками рельефа до 700 м.

Уникальное для данного региона Терсинское месторождение углекислых минеральных вод открыто более 50 лет назад (1957 г.), позже были разведаны Бори-

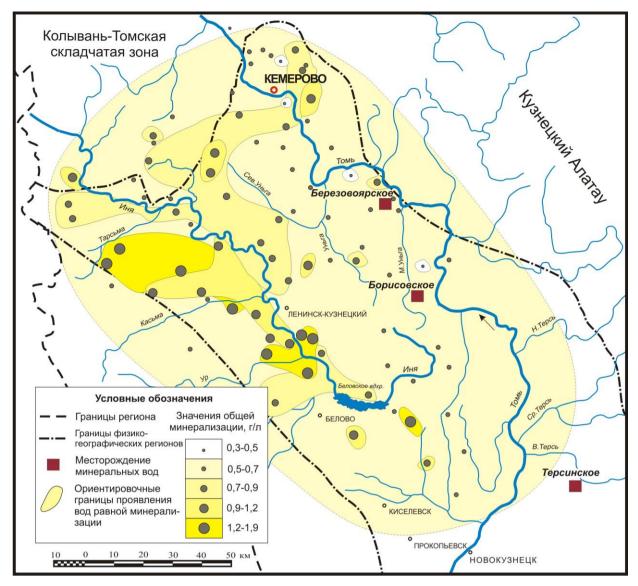


Рисунок 1 — Схематическая карта района исследований с нанесением данных по общей минерализации вод зоны активного водообмена

совское (1965 г.) и Березовоярское (1993 г.). Запасы минеральных вод утверждены в ГКЗ: Березовоярское - 138 м³/сут (2001 г.), Борисовское - 65 м³/сут (2005 г.), Терсинское - 172 м³/сут (1965 г.). В настоящее время вода месторождений активно используется в лечебных целях и для розлива из скважин №110^{бис} (Березовоярское, глубина 201 м), №11 (Борисовское, глубина 302 м) и №1011 (Терсинское, глубина 345 м).

С гидрогеологической позиции Борисовское и Березовоярское месторождения расположены в центральной части Кузнецкого адартезианского бассейна, северовосточная часть района исследований захватывает небольшой участок Кузнецко-Алатаусского гидрогеологического массива, в пределах которого расположено Терсинское месторождение. Гидрогеологические условия территории месторождений, в целом, являются схожими: водовмещающие палеозойские (пермские и пермо-

карбоновые) отложения перекрыты рыхлыми кайнозойскими (четвертичными). Подземные минеральные воды этих месторождений залегают в переслаивающихся отложениях, представленных песчаниками, алевролитами, аргиллитами с пластами каменных углей небольшой мощности. Для Терсинского месторождения также характерно наличие силлов и даек диабазовых порфиритов триасового возраста.

В пределах месторождений, как и в целом в регионе, наблюдается нормальная Верхняя гидрогеохимическая зональность. зона водообмена, активного характеризуется наиболее разнообразным составом подземных вод, обусловленным процессами окисления и выщелачивания пород различной степени литификации [Рогов, 1985]. Воды здесь, в основном, нейтральные или слабощелочные (рН 6,9-8,3), пресные с минерализацией до 1 г/дм³, но в зоне открытой степи за счет преобладания процессов испарительного концентрирования сумма солей может достигать $1,9\,$ г/дм 3 (рис.1). Воды зоны замедленного водообмена, залегающие на глубине более 120 м [Домрочева, 2005], являются преимущественно щелочными (рН 7,8-9,5), более минерализованными (2-9 г/дм³), часто с повышенным содержанием газа. Именно в этой зоне сосредоточены основные запасы минеральных вод Кузбасса.

В табл. 1 приведен средний химический состав минеральных вод основных месторождений Кузбасса.

Таблица 1 — Средний химический состав минеральных вод Кузбасса, мг/дм^3

Месторождение	Число проб	∑ солей	рН	CO ₂ раств.	CO ₃ ²⁻	HCO ₃	SO ₄ ²⁻	Cl ⁻	Na ⁺	K^{+}	Ca ²⁺	Mg ²⁺	Si	Fe _{общ}
Березовоярское	77	2337	8,9	<1,0	120,0	1098	0,3	263,0	850,0	0,3	1,2	0,8	4,0	0,6
Борисовское	75	2976	8,5	<1,0	64,0	2175	7,8	97,0	922,0	3,0	1,5	2,5	3,0	1,6
Терсинское	85	5250	6,8	2160	<1,0	3637	3,0	164,0	970,0	20,0	287,0	86,0	29,0	13,0

Формулы Курлова для минеральных вод Кузбасса за многолетний период выглядят следующим образом, мг-экв%:

Борисовское -

Терсинское –

$$HCO_3\,91-94$$
 $M\,4,7-5,5$ ----- $T^{\circ}C\,11-12;\,pH\,6,4-6,8;$ $Na\,61-66\,Ca\,20-24\,Mg\,11-14$ $H_2SiO_3\,0,09-0,12;\,CO_2\,1,6-3,0.$

Видно, что все минеральные воды являются холодными и согласно классификации О.К.Ланге [Толстихин и др., 1975] относятся к мезопэгам, но их химический состав при этом различен. Минеральные воды Борисовского и Терсинского месторождений являются гидрокарбонатными натриевыми (содовыми), в воде Березовоярского (более 260 мг/дм^3), воды здесь отмечается более высокое содержание Cl гидрокарбонатно-хлоридные натриевые. Ha Борисовском Березовоярском И месторождении воды являются щелочными (рН 8,2-8,9), отличаются крайне низкими содержаниями Ca^{2+} и Mg^{2+} (не более 5 мг/дм³). Наиболее минерализованными являются воды Терсинского месторождения с самым высоким содержанием HCO₃⁻, Ca²⁺ и Mg²⁺, но самым низким рН (6,5-6,8). Отличие этих вод от других также заключается в повышенном содержании в них природного CO_2 (1,5–3,0 г/дм³), в более высоком содержании кремниевой кислоты (до 90 г/дм³) и железа общего (до 16 г/дм³), то есть эти воды являются одновременно углекислыми, кремнистыми и железистыми.

В табл. 2 приведен микрокомпонентный состав минеральных вод, полученный по результатам анализа методом ICP-MS, который показывает различие концентраций микрокомпонентов как в отношении друг друга, так и в отношении кларков вод зоны гипергенеза и морских вод. Часть элементов, например B, Sr, Rb, Mo, Br и U, в минеральных водах находится в гораздо меньших концентрациях, чем в морской воде, а концентрации Al, Ti, Cu, Zn, Nb, Mo, Sb, Pb, U в минеральной воде даже ниже, чем в пресных водах зоны гипергенеза. Но есть и элементы, такие как Li, Ba, Se, Zr, концентрации которых в минеральных водах Кузбасса более высокие, чем в морских, несмотря на более низкую минерализацию первых. Концентрации этих же элементов намного выше, чем в водах зоны гипергенеза. Подобное неравномерное распределение В минеральных водах связано co способностью элементов элементов концентрироваться в щелочных, или, наоборот, в кислых условиях раствора при отсутствии геохимических барьеров.

В минеральных водах также идентифицирован ряд редкоземельных элементов, концентрации которых также зависят от геохимической обстановки минеральных вод: в щелочных водах Березовоярского месторождения их концентрации, как правило, не превышают 0,005 мкг/дм³, тогда как в водах Терсинского их концентрации заметно выше и достигают 0,3 мкг/дм³. Среди этих элементов резко выделяется Ец, концентрация которого составляет 1,3 мкг/дм³.

Таблица 2 — Микрокомпонентный состав минеральных вод Кузбасса, мкг/дм 3

Компонент	Березовоярское	Борисовское	Терсинское	Кларки вод зоны гипергенеза по С.Л.Шварцеву	Кларки морской воды по А.П.Виноградову	Компонент	Березовоярское	Борисовское	Терсинское	Кларки вод зоны гипергенеза по С.Л.Шварцеву	Кларки морской воды по А.П.Виноградову
∑ солей*	2337	2976	5250	469	35500	Sb	0,01	0,18	0,02	0,68	0,003
pН	8,9	8,2	6,5	6,9	8,2	I	370,0	25,00	30,00	8,02	50,00
Ĺi*	0,19	0,85	0,99	0,001	$2 \cdot 10^{-4}$	Cs	0,28	0,060	3,27	0,26	0,30
B*	2,83	0,36	2,39	0,08	4,40	La	0,003	0,010	0,26	0,67	30,0.10-4
Sr*	0,15	0,18	3,30	0,18	7,90	Ce	0,002	0,020	0,34	_	12,0.10-4
Ba*	0,22	0,23	4,28	0,02	0,02	Pr	0,001	0,002	0,05	_	6,4.10-4
Br*	3,05	~0,40	0,12	0,09	67,0	Nd	<0,002	0,010	0,25	_	$25,0.10^{-4}$
Be	<0,01	0,01	0,63	0,19	0,005	Sm	<0,001	0,003	0,01	_	$4,5\cdot10^{-4}$
Al	2,00	32,0	59,0	226,0	1,00	Eu	<0,001	0,030	1,34	_	$1,2\cdot10^{-4}$
Sc	<2,00	0,49	10,9	0,07	1.10-4	Gd	<0,002	_	0,11	_	$7,0.10^{-4}$
Ti	2,00	0,88	11,8	17,4	1,00	Tb	0,001	_	0,01	_	1,4·10 ⁻⁴
V	2,00	0,76	0,20	1,34	2,00	Dy	0,002	0,005	0,14	_	$8,2\cdot10^{-4}$
Cr	18,0	0,63	0,06	3,03	0,25	Но	0,001	0,002	0,03	_	$2,2\cdot10^{-4}$
Mn	6,50	3,80	419,3	54,5	0,10	Er	0,002	0,003	0,10	_	$7,4\cdot10^{-4}$
Co	0,16	0,03	0,96	0,39	0,03	Tm	0,001	0,001	0,02	_	$1,5\cdot10^{-4}$
Ni	4,40	0,30	13,9	3,58	0,50	Yb	0,004	0,010	0,16	_	$30,0\cdot10^{-4}$
Cu	3,00	0,95	2,10	5,58	0,25	Lu	0,001	0,001	0,07	_	$12,0\cdot10^{-4}$
Zn	14,0	4,00	1,60	41,4	1,00	Hf	0,01	0,14	0,23	_	_
Ga	0,14	0,43	0,01	0,37	0,02	Ta	0,05	0,04	0,002	_	-
Ge	1,80	_	7,31	_	0,05	W	1,20	0,25	0,013	_	0,10
As	1,10	7,70	10,9	1,46	2,00	Re	<0,05	_	0,002	-	0,01
Se	3,50	2,10	2,70	0,72	0,10	Os	<0,05	_	4.10^{-4}	-	0,001
Rb	3,40	0,80	0,02	1,86	120,0	Ir	<0,05	_	0,003	-	-
Y	0,25	0,06	1,40	_	0,013	Pt	<0,05	_	0,01	_	-
Zr	4,50	56,0	33,8	1,20	0,030	Au	<0,05	_	0,001	0,01	0,004
Nb	0,02	0,06	0,10	0,45	0,005	Hg	<0,004	0,06	0,06	0,04	0,03
Mo	0,43	0,22	0,50	1,75	10,00	Tl	0,01	0,002	0,001	_	0,01
Pd	<0,10	-	0,10	-	_	Pb	0,58	0,52	0,08	2,97	0,03
Ag	0,002	0,10	0,001	0,26	0,10	Bi	0,002	0,02	0,01	_	0,03
Cd	<0,003	0,10	0,01	0,24	0,07	Th	0,004	0,01	0,01	0,24	0,0001
Sn	0,50	0,13	0,09	0,39	0,01	U	0,08	0,41	0,001	1,31	3,00
* мг/дм	3										

Анализ газового состава минеральных вод (табл.3) показал, что воды Терсинского месторождения естественно являются углекислыми, Березовоярского и Борисовского — метановыми с повышенным содержанием азота. Кроме того, в последних отмечено повышенное содержание этана и пропана, что, вероятно, связано с метаморфизацией органических веществ и древними нефтегазогенерационными процессами [Шинкаренко, 2005].

Таблица 3 – Средний состав растворенного газа минеральных вод Кузбасса, об.%

Месторождение	Число проб	N_2	CO_2	CH ₄	C_2H_6	C ₃ H ₈
Березовоярское	4	12,7	0,8	86,4	0,03	_
Борисовское	15	8,5/1,7*	3,2/0,5*	83,6/95,6*	4,1/1,9*	0,6/0,2*
Терсинское	28	1,4/0,5*	97,2/93,7*	1,3/5,7*	0,002/0,012*	0,0003/0,0004*
* свободный газ		_	_	_		

Микробиологический состав минеральных вод разнообразен и представлен микроорганизмами геохимического цикла углерода, серы и железа. Минеральные воды Березовоярского и Борисовского месторождений характеризуются более высоким содержанием сапрофитов (в среднем 2890 и $9,65\cdot10^4$ кл/мл соответственно) и олиготрофов $(1,45\cdot10^4$ и $1,2\cdot10^5$ кл/мл), чего не наблюдается в водах Терсинского месторождения.

Таблица 4 – Среднее содержание органических веществ в минеральных водах Кузбасса, мг/дм³

Месторождение	Число проб	Сорг	ФК	ГК
Березовоярское	5	1,5	0,3	0
Борисовское	25	3,3	0	0
Терсинское	5	3,5	2,2	0,9
Среднее для вод зоны гипергенеза [Шварцев,1998]	66	8,3	_	ı

Отличительной особенностью метановых вод также является более низкое содержание в них органических веществ и почти полное отсутствие фульво- и гуминовых кислот (табл.4). В

Терсинских водах содержание C_{opr} достигает 3,5 мг/дм³, из них 12,5 мкг/дм³ составляют органические микропримеси, в которых максимальная доля приходится на карбоновые кислоты (3–4 мкг/дм³) и парафины (6–7 мкг/дм³).

Таким образом, все минеральные воды Кузбасса являются содовыми, но при этом имеют отличия в газовом, микрокомпонентном и микробиологическом составах. В отличие от щелочных метановых вод Березовоярского и Борисовского месторождений, воды Терсинского отличаются повышенным содержанием СО₂, слабокислой средой, более высокой минерализацией и т.д.

Второе защищаемое положение.

Все минеральные воды Кузбасса по генезису являются инфильтрационными, но различаются по газовому составу и его происхождению: CO_2 является метаморфическим, CH_4 — биохимическим, N_2 — воздушным. Газовый состав определяется характером геохимической среды и степенью взаимодействия вод с горными породами.

В целях установления генезиса минеральных вод и растворенных в них газов нами изучался изотопный состав водорода, кислорода и углерода, входящего в состав CO_2 , CH_4 и HCO_3^- (табл.5).

Таблица 5 – Средний изотопный состав минеральных вод Кузбасса, ‰

Месторождение	Число Т, ТЕ		δD	δ ¹⁸ O	δ^{13} C			
Месторождение	проб	1, 115	OD	0 0	HCO_3^-	CH_4	CO_2	
Березовоярское	3	8,0	-126	-17,1	+0,3	_	1	
Борисовское	6	5,0	-126	-16,5	-4,1*	-40,6*	-3,9*	
Терсинское	10	3,7	-129	-17,6	+3,3	_	-6,2*	
* по данным О.Е.Лепокуровой, 2005								

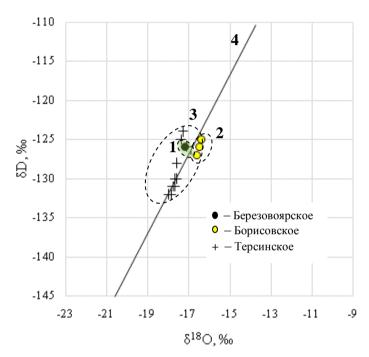


Рисунок 3 — График зависимости изотопного состава кислорода (δ^{18} O) от водорода (δ D) минеральных вод Кузбасса

Области изотопного состава: **1** — воды Березовоярского месторождения; **2** — Борисовского месторождения; **3** — Терсинского месторождения; **4** — Линия Γ . Крейга $\delta D = 8 \cdot \delta^{18} O + 10\%$

Из табл. видно, что для вод Березовоярского И Борисовского месторождений характерны значения δD , HO B одинаковые последних наблюдается небольшой кислородный сторону СДВИГ В утяжеления (рис.3). Bce точки расположены в непосредственной ОТ глобальной близости линии Крейга, характеризующей средний изотопный состав метеорных поверхностных вод земного шара. Это говорит о том, что воды по своему генетическому типу являются инфильтрационными метеорного происхождения. Согласно обобщенной диаграмме

изотопного состава различных генетических типов природных вод [Основы гидрогеологии, 1982] значения точек вод Терсинского месторождения попадают в область значений представителей холодных углекислых вод Восточной Сибири.

Распределение трития, как и следовало ожидать, обнаруживает тенденцию уменьшения содержаний с глубиной.

По значениям δ^{13} С иона HCO_3^- , который формируется за счет CO_2 и гидроксильной группы OH^- , видно, что воды Березовоярского и Терсинского

месторождений значительно обогащены тяжелыми изотопами углерода (табл.3). Предел содержания δ^{13} С в воде Березовоярского месторождения составляет от +0,1 до +0,7%, в Терсинских водах — от +2,8 до +4,3%. Известно, что значения δ^{13} С атмосферной углекислоты находится в пределах от -11 до -5%, метаморфогенной углекислоты, образованной в результате разложения карбонатных пород, — от -10 [Bergfeld и др., 2001] до +3%, при окислении органического вещества, нефтей и углей, — от -20 до 0% и биогенной (почвенной) углекислоты — от -28 до -18% [Галимов, 1968]. Согласно этому, очевидно, что в минеральной воде Терсинского месторождения имеет место глубинный (метаморфогенный) генезис CO_2 , источником которого служат, вероятно, карбонатные породы, подвергшиеся метаморфизации.

Изотопный состав С, входящего в СН₄, выявленного в подземных водах Сибирского региона, достаточно хорошо изучен многими авторами [Валяев,1997 и др.; Калябин,2004]. В работе С.Л.Шварцева и др. (2006) приведены значения δ^{13} С СН₄ для подземных вод Ерунаковского района Кузбасса, которые колеблются в пределах от -51 до -38%. В соответствие с этим, мы предполагаем, что в водах Борисовского месторождения источником поступления метана служат, в большинстве своем, угольные отложения Кузбасса средней стадии метаморфизма.

Таким образом, все минеральные воды Кузбасса являются инфильтрационными, но имеют различный генезис газа: метан минеральных вод Борисовского и Березовоярского месторождений биохимического (угольного), а углекислый газ вод Терсинского месторождения глубинного (метаморфического) происхождения.

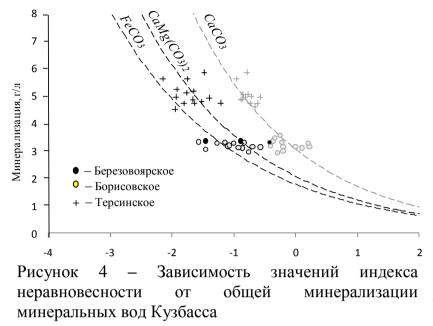
Третье защищаемое положение.

Минеральные воды Кузбасса равновесны с вторичными карбонатными (кальцитом, доломитом, сидеритом) и алюмосиликатными минералами (иллитом, каолинитом, монтмориллонитом), иногда с альбитом, но в то же время неравновесны с эндогенной породой (анортитом, оливином и др.). Равновесно-неравновесный характер системы вода-порода служит основой для объяснения механизма формирования содовых вод.

Для того, чтобы разобраться в условиях формирования состава минеральных вод, необходимо знать состояние их равновесия с горными породами. На основе

имеющихся данных химического состава минеральных вод (табл. 1, 2) нами была исследована система взаимодействия вода-порода.

первую очередь было оценено состояние равновесия этих вод с карбонатными породами в стандартных условиях (T=25°C, P=1 атм). При расчете учитывались следующие минералы: доломит – CaMg(CO₃)₂, витерит – BaCO₃, стронцианит – SrCO₃, кальцит – CaCO₃, родохрозит – MnCO₃ и сидерит – FeCO₃. В основу расчетов положена реакция взаимодействия $MCO_3 = M^{2+} + CO_3^{2-}$. При изучении степени насыщенности минеральных вод к карбонатным минералам нами использован индекс неравновесности A=lg(K/Q). При отрицательном значении A вода является насыщенной рассматриваемого относительно минерала, нулевое значение характеризует состояние равновесия, а положительное - недонасыщение вод по отношению к данному минералу. Результаты расчета, в основу которых положена методика Р.М.Гаррелса и Ч.Л.Крайста (1968), приведены в табл.6.


Таблица 6 – Основные термодинамические параметры реакций растворения некоторых карбонатных минералов

	A T:0		Минеральные воды месторождений						
Минерал	$\Delta F^{o}_{ofp.B-Ba}$,	lgΠP*	Березовоярское	Борисовское	Терсинское				
	ккал		Индекс нера	вновесности А=	lg(K/Q)				
CaMg(CO ₃) ₂	-520,5	-17,09	-0,89	-0,24	-1,59				
BaCO ₃	-272,2	-8,32**	+1,59	+1,45	+1,64				
SrCO ₃	-271,9	-9,27	+0,61	+0,41	+0,61				
CaCO ₃	-269,9	-8,48	-0,36	-0,20	-0,85				
MnCO ₃	-195,7	-10,39	+2,51	+0,72	-0,51				
FeCO ₃	-161,1	-10,89	-1,45	-0,53	-1,82				
* по данным С.Л.Шварцева; ** – по данным Б.Н.Рыженко									

Видно, что все минеральные воды равновесны с доломитом, кальцитом и сидеритом, а воды Терсинского месторождения, кроме того, равновесны с родохрозитом.

Располагая полученными значениями А, нами был построен график зависимости этого показателя от минерализации минеральных вод Кузбасса (рис.4), на котором прослеживается рост насыщенности вод к кальциту, сидериту и доломиту в зависимости от величины минерализации. Видно, что для минеральных вод региона характерна высокая степень насыщенности к сидериту, который теоретически в минеральных водах может формироваться в первую очередь. Наиболее насыщенными к сидериту являются воды Терсинского месторождения, восстановительная и кислая среда которых способствует миграции Fe²⁺ в растворе в форме иона.

Из рис.5 видно, что минеральные воды Кузбасса равновесны и с вторичными алюмосиликатными

минералами, в частности, с каолинитом и различными по составу монтмориллонитами.

Наибольшая степень насыщенности с Са, Мg и К-монтмориллонитом (б, в, е) наблюдается в водах Терсинского месторождения, с Na-монтмориллонитом (а) — в водах Борисовского, которые также насыщены

относительно мусковита и гидромусковита (д, е). Длительное взаимодействие воды с горными породами в конечном итоге приводит к равновесию раствора не только с глинами, но и иногда с Mg-хлоритом и альбитом как, например, на Борисовском месторождении. На Терсинском месторождении минеральные воды, несмотря на слабокислую среду, так же достигают равновесия с альбитом. В отличие от щелочных, эти воды также равновесны и с калиевым полевым шпатом.

Вместе с тем, минеральные воды находятся в глубоко неравновесном состоянии с эндогенными минералами (анортитом, оливином и др.), что связано с наличием карбонатного барьера, который всегда встречается на пути установления равновесия с первичными алюмосиликатами [Шварцев,1998]. Как было отмечено выше, минеральные воды Кузбасса в разной степени равновесны с кальцитом. Источником кальция, а также других элементов, выступают, главным образом, алюмосиликатные породы. Это взаимодействие протекает по схеме:

$$2Ca[Al_2Si_2O_8] + 6H_2O + 4CO_2 = Al_4Si_4O_{10}(OH)_8 + 4HCO_3^- + 2Ca^{2+}$$
(1),

$$Ca^{2+} + 2HCO_3^- = CaCO_3 + H_2O + CO_2$$
 (2).

Зная степень равновесия вод с горными породами можно решить проблему формирования содовых вод, которая до сих пор вызывает споры. По данному вопросу существует множество гипотез, основными из которых является геологическая и ионно-обменная. Однако в последнее время показано [Шварцев, 2007], что содовые

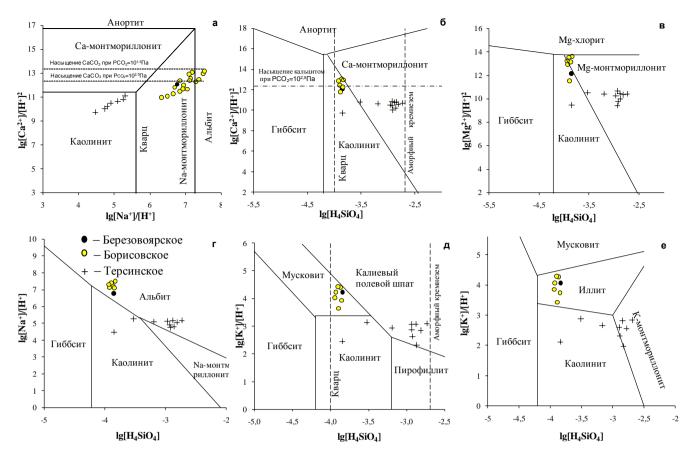


Рисунок 5 — Диаграммы равновесия основных алюмосиликатных минералов при 25°C с нанесением данных по составу минеральных вод Кузбасса: (а) — система H_2O —HCl— Al_2O_3 —CaO— Na_2O — CO_2 — SiO_2 ; (б) — система H_2O —HCl—CaO— CO_2 — SiO_2 — Al_2O_3 ; (в) — система H_2O —HCl— Na_2O — CO_2 — SiO_2 — Al_2O_3 ; (е) — система H_2O —HCl— Na_2O — CO_2 — SiO_2 — Al_2O_3 ; (е) — система H_2O —HCl— Ra_2O — Ra_2O_3

воды — это продукт определенной стадии взаимодействия воды с горной породой и именно равновесно-неравновесное состояние этой системы определяет непрерывную её эволюцию. Согласно данной гипотезе, образование содовых вод происходит с момента насыщения вод кальцитом. Такое насыщение обычно наступает при минерализации вод >0.6 г/дм 3 и при рН>7.4. С появлением в составе вторичного $CaCO_3$ рост Ca^{2+} в водном растворе крайне затруднен. Глины связывают большую часть Mg^{2+} и K^+ из раствора. Таким образом, предпочтение для концентрирования получает Na^+ , содержание которого непрерывно растёт. Воды, пересыщенные к $CaCO_3$, остаются неравновесными с первичными алюмосиликатами, в результате чего Ca^{2+} , попадая в раствор, сразу же высаживается в виде $CaCO_3$ и других карбонатных минералов. Формирующийся в этих условиях геохимический тип вод называется щелочным карбонатно-кальциевым.

На основе данных по изотопному составу минеральных вод, а также результатов оценки состояния их равновесия с горными породами, нами составлена схема формирования химического и газового состава исследуемых вод (рис.6).

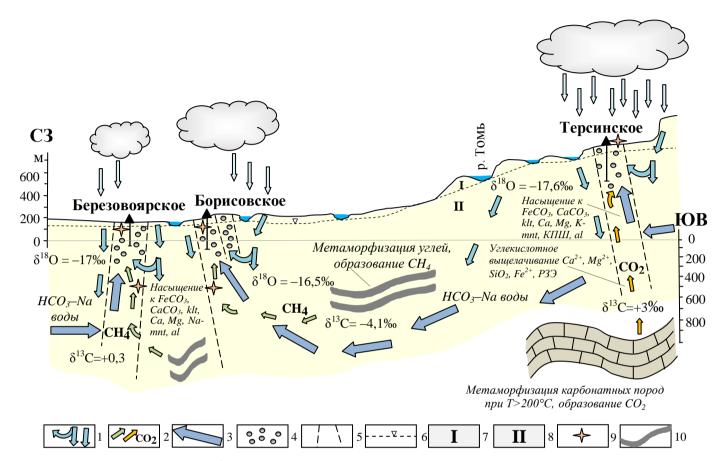


Рисунок 6 — Схема формирования состава минеральных вод Кузбасса: 1 — Направление движения инфильтрационных вод; 2 — Направление движения и пути поступления газа; 3 — Направление движения содовых вод региона; 4 — Воды с высокой газонасыщенностью, образование свободного газа; 5 — Трещины, тектонические разломы; 6 — Уровень грунтовых вод; 7 — Зона активного водообмена в верхнепермских отложениях; 8 — Зона замедленного водообмена отложений пермо-карбона; 9 — Образование карбонатных отложений (травертинов); 10 — Залежи углей.

Процесс формирования состава вод Борисовского месторождения, как уже было отмечено выше, предполагает участие биохимических газов. Метан, образованный в результате метаморфизма углей, смешивается с щелочными содовыми водами, залегающими в зоне замедленного водообмена. Поднимаясь вместе с содовыми водами выше по разлому, растворенный в воде газ стремится мигрировать из зон пьезомаксимумов в зоны пьезоминимумов и с момента появления в воде кислорода, метан может окисляться с образованием углекислого газа и воды по реакции:

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$
.

В зоне активного водообмена к содовым высокогазонасыщенным метановым водам

могут подмешиваться воды неглубокого залегания с более низкими значениями pH и минерализации, в газовом составе которых доминирует азот.

Подобная схема формирования применима и к водам Березовоярского месторождения. Отличие от Борисовского лишь в том, что в формировании состава вод участвуют более щелочные содовые воды с большим содержанием хлор-иона.

Терсинском месторождении предполагается несколько иная схема формирования состава вод (рис.6). Углекислый газ, образующийся при разложении карбонатных пород на значительных глубинах при температурах выше 200°C, поднимаясь по разлому из зоны весьма замедленного водообмена, смешивается с щелочными содовыми водами зоны замедленного водообмена. Это ведет к понижению рН и нарушению установившегося термодинамического равновесия. Все это ускоряет процесс углекислотного выщелачивания алюмосиликатов в условиях повышенного давления CO_2 . В результате формируется новое парциального неравновесное состояние, которое в случае вод Терсинского месторождения отличается более кислой средой, более высокой соленостью воды, содержанием HCO_3^- , Ca^{2+} , Fe^{2+} , SiO_2 и др. Поскольку в условиях новой геохимической среды неравновесный характер системы минеральная вода-первичные алюмосиликаты сохраняется, растворение последних восстанавливает равновесие с кальцитом, который и формируется в этих условиях при рН 6,4-6,8. Поскольку содержание СО₂ в данных водах превышает его растворимость, он выделяется в свободную газовую фазу и вместе с водой стремится к поверхности земли в область более низких давлений.

В целях изучения изменений химического состава вод Терсинского месторождения во времени нами были проанализированы результаты многолетних наблюдений (рис. 7). К сожалению, из-за недостаточного количества данных по содержанию в воде CO_2 мы не можем точно проследить уменьшается ли его содержание со временем. Однако по более ранним данным известно, что его концентрации могли достигать 8,0 г/дм³ [Овчинников,1964], в настоящее же время они колеблются в пределах 1,5–3,0 г/дм³. Видно, что поведение CO_2 носит скачкообразный характер, что говорит о неравномерности поступления углекислого газа из глубины.

Поведение системы CO_2 –pH–H CO_3 , в целом, согласуется с общепринятыми гидрогеохимическими правилами: при повышенном содержании CO_2 значение pH воды и концентрация HCO_3^- снижаются.

Вместе с тем, с уверенностью можно сказать, что в минеральной воде Терсин-

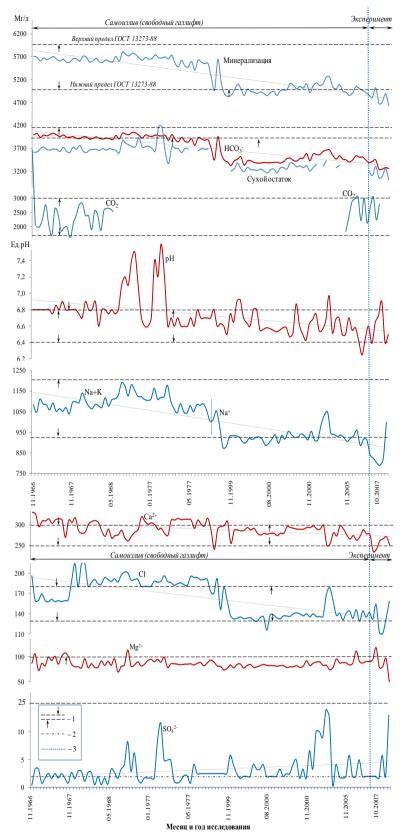


Рисунок 7 — Динамика изменения химического состава минеральных вод Терсинского месторождения во времени

Линии: 1 — пределы показателей согласно ГОСТ 13273-88 (стрелка вверх/вниз — нахождение фактических концентраций относительно верхнего и нижнего предела); 2 — нижний предел обнаружения компонента; 3 — граница разделения режимов эксплуатации

ского месторождения co временем произошло снижение общей минерализации, значения которой, начиная с 1999 г. и по настоящее время, сохраняются 4,7-5,2 на уровне Концентрации HCO₃⁻, Na⁺ и Cl⁻ временем так же со заметно Данное снизились. явление объяснить, трудно но предположительно снижение произойти либо могло В результате сильного подкисления воды из-за более обычно, мощного, чем поступления СО₂ из глубины, либо результате резкого

разубоживания минеральных вод в зоне активного водообмена, либо просто в результате появления более точных методов определения содержаний HCO_3^- , Na^+ и CI^- . В любом случае данный вопрос, а также наличие неравномерности поступления CO_2 из глубины, пока остается открытым, что требует дополнительных исследований.

Таким образом, минеральные воды Кузбасса при наличии существенных различий в химическом составе имеют определенное геохимическое сходство: все они в той или иной степени равновесны с карбонатными минералами (доломитом, кальцитом, сидеритом), которые выпадают из раствора, но в то же время наравновесны с некоторыми эндогенными породами. Содержание химических элементов в минеральных водах является более низким, чем это требуется для установления равновесия, например, с анортитом, но уже достаточным для насыщения вод относительно глин, иллита, кальцита, альбита и КПШ. Равновесно-неравновесное состояние системы вода-порода и является отправной точкой в понимании условий формирования содовых вод.

Список основных работ, опубликованных по теме диссертации: Центральные издания, входящие в перечень ВАК

я минеральных вод Терсинского месторождения Кемеровской об

- 1. Геохимия минеральных вод Терсинского месторождения Кемеровской области // Записки горного института. 2007. Т.170. Ч.II. С.38–41
- Условия формирования химического состава Терсинских углекислых минеральных вод // Водные ресурсы. – 2009. – Т.36. – №5. – С.606–614 (соавторы Копылова Ю.Г., Лепокурова О.Е.; переведена на английский язык)

Издания за рубежом

- 3. Равновесие минеральных вод Кузбасса с алюмосиликатными минералами // География, геоэкология, геология: опыт научных исследований. Днепропетровск, 2008. C.113–117
- 4. Изотопный состав метановых минеральных вод Кузбасса // География, геоэкология, геология: опыт научных исследований. Днепропетровск, 2009. C.155–160

Всероссийские конференции и совещания

- Выделение геохимических типов минеральных вод Кузбасса как развитие учения В.И.Вернадского // Материалы региональной научно-практической конференции. – Омск, 2009. – С.186–189
- 6. К вопросу о распространенности микроорганизмов в минеральных водах Кузбасса на основе учения В.И.Вернадского о живом веществе // Материалы региональной научно-практической конференции. Омск, 2009. С.189–193
- 7. Новые данные о микрокомпонентном составе Березовоярских минеральных вод // Проблемы геологии и освоения недр. Томск, 2009. C.272–274

- 8. Влияние режима эксплуатации Терсинского месторождения минеральных вод на качество добываемого сырья // Всероссийское совещание по подземным водам востока России. Тюмень, 2009. С.380–383
- 9. Степень насыщенности минеральных вод Кузбасса к карбонатным минералам // Проблемы геологии и освоения недр. Томск: ТПУ, 2008. C.282–285
- 10. Геохимия Борисовских минеральных вод Кузбасса // Современные проблемы геохимии. Иркутск, 2007. С.103–105 (соавторы Копылова Ю.Г., Лепокурова О.Е.)
- 11. Особенности экологического состояния подземных вод центральной части Кузбасса // Экология и безопасность жизнедеятельности. Пенза, 2007. C.183–185
- 12. Особенности экологического состояния минеральных вод Терсинского месторождения Кузбасса // Исследование, разработка и применение высоких технологий в промышленности (научно-технические, экономические, юридические, политологические, социальные и международные аспекты). Санкт-Петербург, 2006. C.269–271
- 13. Микробиологический состав минеральных вод Терсинского месторождения // Севергеоэкотех. Ухта, 2006. С.384–387
- 14. Новые данные о микрокомпонентном составе углекислых минеральных вод Терсинского месторождения (Кузбасс) // XVIII Совещание по подземным водам Сибири и Дальнего Востока. Иркутск, 2006. С.274–277 (соавторы Копылова Ю.Г., Табатчикова Т.Н.)
- 15. Эколого-геохимические особенности формирования углекислых минеральных вод Терсинского месторождения Кемеровской области // Рациональное природопользование. Ярославль, 2005. C.300–304
- 16. Ecological and geochemical peculiarities of Tersin deposit mineral waters territory of Kuzbass // Проблемы геологии, экологии и рационального природопользования. Новочеркасск, 2005. C.10–13
- 17. Особенности геохимического состава Терсинского месторождения углекислых минеральных вод // Ломоносов–2005. Москва: МГУ, 2005. C.82–83
- Экологический мониторинг углекислых минеральных вод Терсинского месторождения // Молодежь и наука третье тысячелетие. Красноярск, 2005. C.386–388

- 19. Микрокомпонентный состав минеральных вод Терсинского месторождения как показатель их экологического состояния // Проблемы геологии и освоения недр. Томск: ТПУ, 2005. C.256–258
- 20. Литий в углекислых минеральных водах Терсинского месторождения // Экология Южной Сибири и сопредельных территорий. Абакан, 2004. С.172–173
- 21. Характеристика Терсинского месторождения минеральных вод // Экология России и сопредельных территорий. Экологический катализ. Новосибирск, 2003. C.110–112