КРАФТ СВЕТЛАНА ЛЕОПОЛЬДОВНА

ФОРМИРОВАНИЕ РАДИАЦИОННЫХ ПОКАЗАТЕЛЕЙ В ПРОЦЕССЕ ГИДРОЗОЛОУДАЛЕНИЯ И ХРАНЕНИЯ ЗОЛОШЛАКОВЫХ ОТХОДОВ БУРОУГОЛЬНЫХ ТЭС (НА ПРИМЕРЕ БЕРЕЗОВСКОЙ ГРЭС-1)

25.00.36 – Геоэкология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата геолого-минералогических наук

Работа выполнена в федеральном государственном образовательном учреждении высшего профессионального образования «Сибирский федеральный университет», Институте градостроительства, управления и региональной экономики

Научный руководитель: доктор технических наук, профессор

Назиров Рашит Анварович

Официальные оппоненты: доктор геолого-минералогических наук,

профессор

Мананков Анатолий Васильевич

кандидат геолого-минералогических наук

Коваленко Виталий Владимирович

Ведущая организация: ГОУ ВПО «Иркутский государственный

технический университет»

Защита состоится 9 июня 2010 г. в 14 часов 00 минут на заседании совета по защите докторских и кандидатских диссертаций Д 212.269.07 при Национальном исследовательском Томском политехническом университете по адресу: 634050 г. Томск, ул. Советская, 73, 1-й корп. ТПУ, ауд. 111.

С диссертацией можно ознакомиться в научной библиотеке Национального исследовательского Томского политехнического университета (г. Томск, ул. Белинского, 55).

Автореферат разослан « 7 » мая 2010 г.

Ученый секретарь совета по защите докторских и кандидатских диссертаций

С.И. Арбузов

Общая характеристика работы

<u>Актуальность работы.</u> В настоящее время мировая общественность уделяет огромное внимание вопросам экологической безопасности населения. Влияние человека на окружающую среду огромно и всесторонне, топливно-энергетические комплексы не являются исключением в этом смысле.

В России, как и во всем мире, значительную долю в производстве электроэнергии составляют теплоэлектростанции, работающие на твердом топливе (68,7 %). Вклад России в производство электроэнергии угольными станциями составляет примерно 50 %. При сжигании углей образуются массовые отходы (зола, шлак, сточные технологические воды), которые наносят вред окружающей среде.

последнее место в теплоэнергетической отрасли занимает Красноярский край. Так, В Красноярском крае количество теплоэлектростанций и котельных – 796 единиц, на которых ежегодно сжигается 14,4 млн. т углей Канско-Ачинского бассейна. При сжигании углей образуется 906,4 тыс. т в год золошлаковых отходов, которые 297 объектах, включая 21 размещаются на золоотвал. Утилизации подвергаются только 98,9 тыс. т в год золошлаковых отходов.

Зола-унос, полученная в результате сжигания топлива, вывозится в сухом виде либо удаляется по системе гидрозолоудаления в золоотвалы, где хранится, свободно контактируя с воздухом и почвой либо находясь под слоем воды, поступающей в процессе гидрозолоудаления.

Вода золоудаления из секций золоотвала, просачиваясь через слои подстилающих пород, попадает в водоносные горизонты, которые могут служить источниками водоснабжения населенных пунктов, сельхозугодий, промышленных предприятий; кроме того, она может попадать в прилегающие водоемы рыбохозяйственного и хозяйственно-питьевого назначения. Все вышесказанное не может не вызывать опасений.

При сжигании бурые угли дают золу, обогащенную естественными радионуклидами (ЕРН). Известно, что удельная активность ЕРН золы-уноса буроугольных ТЭС в 3–10 раз выше, чем активность бурых углей.

В отечественной и зарубежной литературе практически отсутствуют работы оценке ПО загрязнения окружающей среды естественными радионуклидами, поступающими (ЗШО) ИЗ золошлаковых отходов теплоэлектростанций. Имеющиеся работы касаются оценки валового содержания ЕРН в золах бурых углей, поведение радионуклидов в процессе гидрозолоудаления (ГЗУ) ранее не изучалось.

Особенностью золы бурых углей Канско-Ачинского угольного бассейна является гидравлическая активность. Естественные ee радионуклиды, содержащиеся в минеральной составляющей золы, вступают в химическое взаимодействие с водой, в результате чего происходит перераспределение ЕРН и их миграция в водную среду системы ГЗУ, а затем, просачиваясь через подстилающие слои золоотвалов, ЕРН поступают в подземную гидросферу.

Предметом исследований в данной работе явилось изучение процессов обогащения естественными радионуклидами продуктов сжигания бурых углей, закономерностей выщелачивания ЕРН в процессе гидрозолоудаления и количественная оценка эксхаляции радона как дочернего продукта распада радия, содержащегося в золошлаковых отходах.

<u>**Цель работы**</u>: установить изменение и дать количественную оценку формирования радионуклидного состава золошлаковых отходов в процессе гидрозолоудаления и хранения в золоотвалах.

Основные задачи исследования заключались в следующем:

- 1) исследовать гранулометрический, химический и минералогический составы буроугольной золы, а также изменение химико-минералогического состава золы-уноса в процессе гидрозолоудаления;
- 2) определить радионуклидный состав и установить класс опасности золы-уноса по направлению утилизации;

- 3) дать количественную оценку выщелачивания естественных радионуклидов в процессе гидрозолоудаления и хранения золошлаковых отходов в золоотвалах;
- 4) оценить уровни активности радона в воде системы гидрозолоудаления и дать их количественную оценку;
 - 5) изучить эманирование ЗШО в процессе их хранения в отвалах.

<u>Фактический материал.</u> Материалом для написания диссертации послужили результаты исследований проб золы-уноса и золошлаковой смеси, отобранные и изученные автором в период 2004 – 2009 гг. в цехе переработки золы и в секциях золоотвала БГРЭС-1. Кроме того, были использованы опубликованные материалы ЦГСЭН по Красноярскому краю.

В процессе исследования изучено более 150 проб золы-уноса, 70 проб золошлаковой смеси из золоотвала и около 50 проб воды из водопровода и скважин гг. Красноярск, Шарыпово, п. Дубинино Шарыповского района. Выполненные анализы, включая экспериментальные исследования, включили в себя около 1500 определений.

<u>Методы исследований.</u> Для решения поставленных задач использовались следующие методы:

- 1. Физические методы определения свойств золы и золошлаковой смеси.
- 2. Петрографический анализ для изучения минерального состава золычнос и золошлаковой смеси.
- 3. Рентгенофазовый и термогравиметрический анализы (выполнялся с применением дифрактометра общего назначения и дериватографа 1500Q для определения количественного и качественного минералогического состава золы-уноса и золошлаковой смеси).
- 4. Химический анализ золошлаковых отходов (производился в аккредитованной химической лаборатории ИГУРЭ СФУ).
- 5. Гамма-спектрометрический анализ золы-уноса и золошлаковой смеси (выполнялся с применением гамма-спектрометра «ПРОГРЕСС» в аккредитованной лаборатории радиационного контроля и строительной физики ИГУРЭ СФУ).

6. Определение концентрации радона в воде и в зольных суспензиях (осуществлялось с применением комплекса «КАМЕРА» и радон-монитора «AlphaGUARD mod.PQ2000» в лаборатории радиационного контроля и строительной физики ИГУРЭ СФУ).

<u>Научная новизна</u> работы представлена следующими результатами:

- 1. Проведена комплексная оценка поведения естественных радионуклидов в процессе гидрозолоудаления и хранения золошлаковых отходов. Количественно установлена миграция естественных радионуклидов c водную среду при контакте золы-уноса водой системы гидрозолоудаления.
- 2. Установлено, что выщелачивание ЕРН происходит и после длительного хранения золошлаковых отходов в золоотвале, что при отсутствии геохимических барьеров будет способствовать загрязнению подземных водоносных горизонтов.
- 3. Установлены закономерности изменения нормируемой величины удельной эффективной активности ЕРН в результате сжигания угля, в процессе гидрозолоудаления и при хранении золошлаковых отходов.
- 4. Установлены количественные характеристики эманирования золыуноса и золошлаковой смеси в процессе гидрозолоудаления и хранения ЗШО.

Практическая значимость работы и внедрение в практику:

- 1. Научно обоснована необходимость контроля и нормирования миграции ЕРН в процессе гидрозолоудаления и хранения буроугольных золошлаковых отходов. Высказана необходимость устройства геохимических барьеров при проектировании золоотвалов.
- 2. Основные результаты исследований миграции ЕРН в водную среду и методики определения содержания радона в воде и зольных суспензиях внедрены в учебный процесс для магистрантов и аспирантов специальности «Водоснабжение и водоотведение».

<u>Личный вклад автора.</u> Автором высказана идея необходимости изучения процессов миграции ЕРН в подземные горизонты, собраны и проанализированы первичные материалы исследований, осуществлено

проведение экспериментов, обобщены результаты расчетов и экспериментальных данных. Выполнена статистическая обработка полученных результатов, сделаны основные выводы.

Апробация работы. Основные положения и отдельные материалы диссертации доложены и обсуждены на международных и всероссийских Всероссийской конференциях, числе: научно-практической TOM конференции «Сибири – новые технологии в архитектуре, строительстве и 2005 жилищно-комунальном хозяйстве» (Красноярск, г.); XI конференции «Экономика Международной научно-практической XXV (Пенза, 2008 г.); природопользования И природоохраны» региональной научно-технической конференции (Красноярск, 2007 г.); XXVI региональной научно-технической конференции (Красноярск, 2008) г.); V научно-практической конференции «Проблемы градостроительства, экологии и образования» (Шарыпово, 2008 г.).

<u>Публикации.</u> По теме диссертации опубликовано 7 научных работ, в том числе 1 в рекомендованном ВАК журнале.

Объем и структура диссертации. Диссертационная работа состоит из введения, 4 глав и общих выводов, списка литературы (142 наименования). Диссертация изложена на 176 страницах основного текста, содержит 41 таблицу, 45 рисунков и приложения.

Благодарности. Автор выражает огромную благодарность научному руководителю, доктору техн. наук, профессору Р.А. Назирову за помощь в работе над диссертацией. За ценные советы в процессе обсуждения работы автор выражает искреннюю благодарность и признательность доктору геолмин. наук Л.П. Рихванову (Томский политехнический университет). Особую благодарность автор выражает Т.Я. Пазенко за моральную поддержку. За помощь в проведении экспериментальных исследований автор выражает свою благодарность зав. лабораторией радиационного контроля и строительной физики Е.В. Пересыпкину и зав. лабораторией химии И.С. Рубайло.

Содержание работы и обоснование защищаемых положений

Во введении обоснована актуальность работы, обозначены цели и задачи исследований, отмечена научная новизна и практическая значимость работы, приведены защищаемые положения. В первой главе на основании обзора опубликованной литературы отражено состояние вопроса, дано обоснование необходимости проведения исследований, сформулированы цели и задачи исследований. Во второй главе представлены основные методы изучения физико-химических свойств И определения радиологических характеристик золошлаковой золы-уноса И смеси. Проанализированы обобщены экспериментальные И данные ПО гранулометрическому, минералогическому, физико-химическому составу проб золы-уноса и золошлаковой смеси. Изучены особенности гидратации золошлаковых отходов. В третьей главе рассмотрены основные вопросы исследований. Выполнена статистическая обработка данных по удельной **EPH** представительных активности выборок проб золы-уноса золошлаковой смеси. Приведены результаты экспериментов, выполнена статистическая обработка данных, экспериментально подтвержден эффект выщелачивания естественных радионуклидов и изменения радионуклидного состава при гидрозолоудалении и хранении золошлаковых отходов. ${f B}$ четвертой главе изучено эманирование золы при гидравлическом золоудалении и в процессе хранения ЗШО в отвалах. Экспериментально установлен эффект обогащения воды радоном при хранении золошлаковых отходов от сжигания бурых углей.

1. Золы бурых углей Березовского месторождения по уровням накопления ЕРН в большинстве случаев не превышают нормируемую величину удельной эффективной активности 370 Бк/кг для отходов производства и сырья. Золы-уноса являются гидравлически активными, в процессе гидрозолоудаления и хранения происходит изменение химико-минералогического состава золы, что обуславливает миграционную способность естественных радионуклидов и уменьшение их содержания в золошлаковых отходах.

В табл. 1 представлены результаты статистической обработки данных по удельной эффективной активности представительных выборок проб золычноса, отобранных в различные периоды времени.

Таблица 1 Удельная эффективная активность золы-унос

Показатель	Удельная эффективная активность (A эфф) золы-уноса, Бк/кг							
Показатель	A-1998	B-2004	C-2005	Д-2005	E-2005	F-2005	G-2005	
Среднее значение	416	69,4	35,9	50,2	210	183	41,4	
Стандартная ошибка	61,8	3,10	1,95	2,3	15,3	11,2	1,5	
Стандартное отклонение	333	13,5	8,73	10,2	68,3	50,0	6,77	
Дисперсия выборки		182	76,2	104	4658	2504	45,9	
Минимум	75,5	48,2	25,8	30,3	104	98,6	29,9	
Максимум	1758	92,9	52,1	69,0	327	244	51,3	
Количество проб	29	19	20	20	20	20	20	

В результате статистического анализа полученных экспериментальных данных по радиационным характеристикам можно утверждать о нестабильности состава золошлаковых отходов как следствие неоднородного распространения естественных радионуклидов на отдельных участках месторождения углей.

Установлено, что за период наблюдений удельная эффективная активность золы-уноса не превышала нормируемую ГОСТ 30108-94 величину 370 Бк/кг и средние ее значения не превышали 210 Бк/кг при максимуме 327 Бк/кг, то есть исследуемые золы-уноса относятся к материалам I класса. В то время, как в пробах 1998 г. удельная эффективная активность золы в среднем составляла 416 Бк/кг, что объясняется повышенным содержанием радионуклидов в "сажистых" углях.

Полученные в химической лаборатории ИГУРЭ СФУ экспериментальные данные по гранулометрическому, минералогическому, физико-химическому составу проб золы-уноса и золошлаковой смеси проанализированы и обобщены.

Минералогический состав золы-уноса весьма разнообразен. представлен реликтовыми минералами: кварцем, полевыми шпатами, плагиоклазами, пироксеном, альмандином, турмалином, цирконом, доля которых в общей массе составляет около 10 %. Кроме того в золе-уноса присутствуют рудные минералы: магнетит, гематит, пирит. В качестве новообразований большом присутствуют В количестве глобулы ошлакованного силикатного стекла, которые появляются при высоких температурах в процессе горения. Основная масса минеральной фракции золы-уноса состоит из кальцита, доломита, глинисто-слюдисто-карбонатных агрегатов призматической формы.

Методами рентгенофазового дифференциально-термического И установлено, анализов что процессе гидратации изменяется минералогический состав золы. Так, исследуемые пробы негидратированной золы-уноса (рис. 1,а) преимущественно состоят из гидравлически активных минералов: CaSO₄, свободных оксидов кальция и магния, минералов портландцементного клинкера (белита, возможно алита, количество которого весьма незначительно).

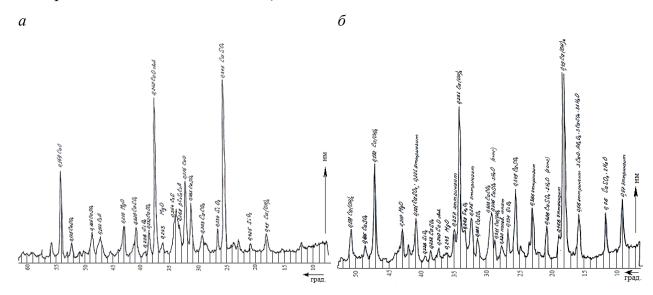


Рис. 1. Дифрактограммы исходной золы-уноса (a) и гидратированной золы (δ)

При взаимодействии золы-уноса с водой ее минералогический состав резко изменяется. На дифрактограммах гидратированной золы появляются значительные по величине пики $Ca(OH)_2$ (d=0,179₆; 0,192₇; 0,262₁₀; 0,311₅;

 $0,493_{10}$ нм) и двуводного гипса $CaSO_4\cdot 2H_2O$ (d= $0,306_6$; $0,428_{10}$ нм), образовавшегося в результате гидратации ангидрита (рис.1,6). Известь, алюминатная и сульфатная фазы золы-уноса при взаимодействии с водой образуют значительное количество гидросульфоалюмината кальция – эттрингита $3CaO\cdot Al_2O_3\cdot 3CaSO_4\cdot 31H_2O$ (d=0,220; 0,276; 0,387; 0,56; 0,97 нм).

Экспериментально установлено, что по принятой нами технологии подготовки пробы (контакт золы с водой в течение 20 ч) не происходит полной гидратации ангидрита, CaO и MgO. В гидратированной пробе наблюдаются их аналитические пики (соответственно d=0,242₄ нм; d=0,239₁₀ и 0,210₁₀ нм).

Золошлаковая смесь из золоотвала (рис.2,a) по минералогическому составу представлена гидроксидом кальция $Ca(OH)_2$ (d=0,179 $_6$; 0,192 $_7$; 0,263 $_10$; 0,311 $_5$; 0,493 $_10$ нм) и кальцитом $CaCO_3$ (d=0,122; 0,228 $_7$; 0,302 $_10$ нм). Во всех пробах ЗШС содержится кварц SiO_2 (d=0,227 $_4$; 0,334 $_10$ нм). Дифрактограммы ЗШС характеризуются меньшей интенсивностью пиков диоксида кремния. Пиков эттрингита на дифрактограммах проб золошлаковой смеси не наблюдается. По всей видимости, при длительном хранении ЗШС в золоотвале происходит его разложение.

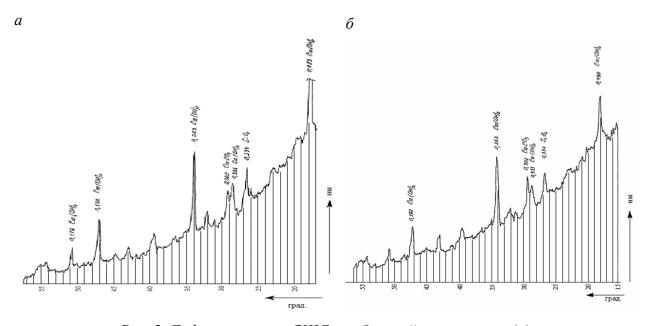


Рис. 2. Дифрактограммы ЗШС, отобранной в золоотвале (a) и ЗШС, подвергнутой дополнительному контакту с водой (δ)

Золошлаковые отходы, длительное время хранящиеся в золоотвале, вновь подвергнутые выщелачиванию водой (рис.2,6), имеют повышенное на 1,3 – 5,8 % содержание CaCO₃ в сравнении с исходной золошлаковой смесью и пониженное на 1,3 – 5 % содержание Ca(OH)₂. При этом общее содержание этих минералов в пересчете на CaO в этих пробах практически не изменяется. Это свидетельствует о том, что в ЗШС, длительное время хранившейся в золоотвале, практически не происходит дальнейшей гидратации минералов, продуктом гидратации которых является гидроксид кальция.

2. В процессе гидравлического удаления золы-уноса и хранения золошлаковых отходов в золоотвале происходит миграция естественных радионуклидов в водную среду, что при отсутствии геохимических барьеров будет обуславливать загрязнение подземных водоносных горизонтов.

В табл. 2 представлены результаты статистической обработки данных по удельным активностям естественных радионуклидов золошлаковой смеси из золоотвала.

Таблица 2 Результаты статистической обработки данных по удельным активностям ЕРН золошлаковой смеси из золоотвала

Показатель	Удель золош.	$A_{ m 9}$ ф золошлаковой		
	²²⁶ Ra	²³² Th	⁴⁰ K	смеси, Бк/кг
Среднее значение	20,5	8,68	47,1	29,5
Стандартная ошибка	2,80	0,79	9,44	2,42
Стандартное отклонение	20,8	5,89	70,0	16,6
Дисперсия выборки	433	34,7	4904	276
Минимум	2,50	1,41	0,00	11,5
Максимум	99,8	38,4	272	69,0
Количество проб	55	55	55	55

Среднее значение удельной активности ²²⁶Ra в золошлаковой смеси из золоотвала составляет 20,5 Бк/кг, в то время как в пробах золы-уноса,

отобранных в различные периоды наблюдений, среднее содержание этого радионуклида находится в пределах 35,9 – 145 Бк/кг. Содержание ²³²Th в золошлаковой смеси не превышает 9 Бк/кг, при среднем его содержании в золе-уноса от 9,1 до 26,3 Бк/кг. Среднее значение удельной активности ⁴⁰K в пробах золошлаковой смеси из золоотвала составляет 47 Бк/кг, тогда как в исследуемых пробах золы-уноса ⁴⁰K содержится от 17 до 483 Бк/кг.

В результате сравнения показателей удельной активности ЕРН материалов установлено, что активность золошлаковой смеси значительно ниже активности золы-уноса независимо от даты отбора пробы. Учитывая, что шлаковая составляющая в золошлаковой смеси не превышает 5 %, можно констатировать, что при гидрозолоудалении и хранении ЗШО происходят процессы, которые обуславливают снижение активности золошлаковых отходов.

По данным табл. 3 можно наблюдать динамику изменения ЕРН в процессе технологических преобразований сырья и продуктов сжигания топлива.

Таблица 3 Средние значения активности материалов

Среднее значение удельной активности, Бк/кг	²²⁶ Ra	²³² Th	⁴⁰ K	Аэфф	
Березовский уголь	$12,6 \pm 10,6$	$6,31 \pm 2,47$	$35,4 \pm 9,85$	$23,9 \pm 14,4$	
Зола-унос	$107 \pm 63,4$	$15,9 \pm 8,47$	$202 \pm 98,6$	$146 \pm 70,0$	
Гидратированная зола	$31,3 \pm 28,1$	$9,32 \pm 5,57$	156 ± 134	$57,5 \pm 41,6$	
Золошлаковая смесь	$20,5 \pm 20,0$	$8,68 \pm 5,89$	$47,1 \pm 70,0$	$36,1 \pm 27,8$	

Как видно из табл. 3 в золе-уноса содержание естественных радионуклидов в среднем в 4–6 раз выше их содержания в углях. В результате гидратации золы средние значения активности естественных радионуклидов снижаются. В свою очередь в золошлаковой смеси из

золоотвала активность радионуклидов меньше в сравнении с гидратированной золой.

происходит Таким образом, при сжигании УГЛЯ обогащение естественными радионуклидами минеральной части за счет выгорания органической составляющей бурых углей; в процессе гидрозолоудаления за счет гидратации и карбонизации гидравлически активной золы-уноса, а также выщелачивания естественных радионуклидов в водную среду системы гидрозолоудаления происходит уменьшение содержания EPH; при длительном хранении золошлаковых отходов в золоотвалах происходит дальнейшее выщелачивание естественных радионуклидов в водную среду.

В табл. 4 приведены результаты экспериментальных данных по выщелачиванию естественных радионуклидов из золы-уноса в результате гидратации последней в избыточном количестве воды и при перемешивании.

Таблица 4 Удельные активности ЕРН в пробах исходной и гидратированной золы и выщелачивание (средние значения) радионуклидов с учетом п.п.п.

Наименование	ппп,		я активно Бк/кг	ŕ	Выщелачивание ЕРН с учетом п.п.п., %			
пробы	масс.%	²²⁶ Ra	²³² Th	40 K	²²⁶ Ra	²³² Th	40 K	
(Б-исх.) Зола-унос исходная	3,54	47,0	18,8	212	_	-	_	
(Б-гидр.) Зола после выщелач.	29,7	14,0	11,0	0	59,2	19,6	100	
(Е-исх.) Зола-унос исходная	2,1	66,4	12,8	215	I	I	-	
(Е-гидр.) Зола после выщелач.	19	30,5	6,72	89,9	44,5	36,5	49,4	
(Ж-исх.) Зола-унос исходная	3,12	154	11	493	I	I	_	
(Ж-гидр.) Зола после выщелач.	16,6	61,1	7,15	176	53,5	24,04	58,3	
Средний % выщелачивания с учетом п.п.п.		_			52,4	26,7	69,3	

Снижение удельной активности радия в процессе выщелачивания весьма значительно и составляет в среднем 52,4 %. Это свидетельствует о том, что ²²⁶Ra в основном не образует нерастворимых соединений, несмотря на присутствие в золах значительного количества SO₃. Радий поступает в воду золоудаления, что предопределяет его потенциальную опасность для окружающей среды.

Торий как менее подвижный элемент выщелачивается с меньшими показателями – 26,7 %.

Миграцию другого природного радионуклида 40 К в золах с низкой удельной активностью ($A_{\rm K40}{\le}170~{\rm K}$) трудно проследить гаммаспектрометрическим методом, однако можно оценить по содержанию ${\rm K}_2{\rm O}$ в химическом составе зол (табл. 5).

Таблица 5 Химический состав проб исходной и гидратированной золы (средние значения)

Наименова	Химический состав, масс. %								
ние пробы	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO_3	TiO ₂	Na ₂ O	K ₂ O
Зола-унос исходная	15,0	9,0	6,0	48,0	6,0	14,0	0,3	2,6	0,4
Зола гидратиро- ванная	15,0	9,0	6,0	48,0	6,0	15,0	0,3	0,6	0,3
Выщелачивание, %								78,9	25,7

В табл. 5 приведены средние значения химического состава исследуемых проб золы. По нашим оценкам в водную среду выщелачивается от 25 до 90 % оксида калия.

Калий содержится, в том числе, и в остеклованных частицах золошлаковых отходов. Растворимость золошлаковых стекол может быть различной, следовательно, тот калий, который находился в легкорастворимых стеклах перешел в воду системы ГЗУ, а в золоотвале присутствует калий в труднорастворимых остеклованных золошлаковых

частицах. Таким образом, при длительном хранении ЗШО можно прогнозировать поступление ⁴⁰К в естественную среду.

Зависимость удельной активности радия ($A_{\rm Ra}$) после выщелачивания золы-уноса от $A_{\rm Ra}$ до выщелачивания с высоким коэффициентом парной корреляции описывается линейными уравнениями (в зависимости от степени дисперсности золы, то есть от номера поля электрофильтра). Установлено, что на каждый Бк/кг удельной активности 226 Ra исходной золы-уноса приходится от 0,3 до 0,6 Бк/кг радия в гидратированной золе. Следовательно, выщелачиваемость радия без учета потерь при прокаливании можно оценить соответственно в пределах 70–40 %. Установлена тенденция повышения уровня выщелачивания 226 Ra с повышением номера поля электрофильтров. По изменению удельных активностей 232 Th и 40 K до и после выщелачивания надежной корреляции не выявлено.

В табл. 6 приведены сравнительные значения удельных активностей радионуклидов в золошлаковой смеси, хранившейся в золоотвале и подвергнутой дополнительному выщелачиванию водой при перемешивании.

Таблица 6 Удельные активности ЕРН в пробах ЗШС и выщелачивание (средние значения) радионуклидов с учетом п.п.п.

Наименование пробы ЗШС		п.п.п.,		ьная акти ЕРН, Бк/к		Выщелачивание ЕРН с учетом п.п.п.,%		
	эшс		²²⁶ Ra	²³² Th	⁴⁰ K	²²⁶ Ra	²³² Th	⁴⁰ K
1a	из золоотвала	24,8	98,4	10,4	229	_	_	
	дополнительное выщелачивание	27,4	68,5	9,89	214	28,5	1,83	4,22
2a	из золоотвала	22,4	12,4	19,4	0	_	_	_
	дополнительное выщелачивание		6,34	15,5	0	46,2	15,6	_
Средний % выщелачивания с учетом п.п.п.		_	_	_	_	37,4	8,72	2,11

Как видно из табл. 6, в золошлаковой смеси, прошедшей этап гидрозолоудаления и хранившейся в золоотвале в течение нескольких лет, естественные радионуклиды подвержены дополнительному выщелачиванию.

Радий выщелачивается в пределах 30–50 %, а торий и калий – с гораздо меньшими количественными показателями.

На рис. 3 представлена тройная диаграмма формирования средних значений $A_{9\varphi\varphi}$ угля, золы-уноса, гидратированной золы и золошлаковой смеси.

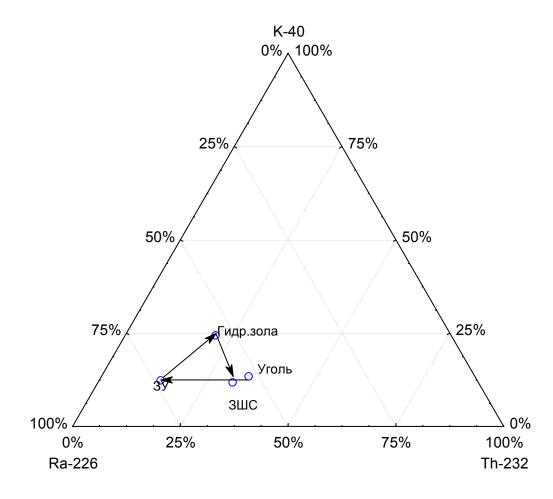


Рис. 3. Формирование величины средних значений $A_{9\varphi\varphi}$ золошлаковых отходов Березовской ГРЭС-1 и Березовского угля естественными радионуклидами

Диаграммой наглядно продемонстрировано перераспределение вкладов EPH эффективной формировании величины удельной активности естественных радионуклидов результате сжигания бурого В угля, гидрозолоудаления и хранения золошлаковых отходов. Хорошо видно, что основным радионуклидом, формирующим $A_{\text{эфф}}$ золошлаковых отходов, является радий, в золе-уноса его доля составляет 75 %. В процессе гидрозолоудаления этот показатель снижается.

Таким образом, показана и экспериментально подтверждена миграция естественных радионуклидов в водную среду в процессе гидрозолоудаления хранения золошлаковых отходов. Выщелачивание естественных радионуклидов в процессе гидратации золы-уноса составило: по 226 Ra - 52,4 %; 232 Th -26.7 %; 40 K -69.3 %. При дополнительном контакте золошлаковой смеси, хранившейся в золоотвале длительное время, с избыточным количеством воды И активном перемешивании, выщелачивание радионуклидов составило: по 226 Ra - 37,4 %; 232 Th - 8,72 %; 40 K - 2,11%. Обращает на себя внимание высокий процент выщелачивания ²²⁶Ra как в процессе гидрозолоудаления, так и в процессе хранения золошлаковых отходов в золоотвалах.

3. При контакте золы-унос с водой происходит насыщение водной среды радоном. На выделение радона влияет водотвердное отношение, это обусловлено кинетикой происходящих химических процессов. При содержании естественных радионуклидов в золе-уноса в пределах величины удельной эффективной активности 370 Бк/кг содержание радона в воде источников водоснабжения, прилегающих к золоотвалу территорий, не превышает нормируемого НРБ – 99/2009 значения 60 Бк/л.

Поскольку радия выщелачивается в водную среду системы гидрозолоудаления и золохранилищ около 40–50%, а, как известно, радон является дочерним продуктом распада ²²⁶Ra, возникает необходимость изучения эманирования золошлаковых отходов в воду.

В проведенных нами исследованиях эманирование золы-уноса и как сравнение с ней цемента изучалось на предмет выделения радона в жидкую фазу суспензий, поскольку выделение радона в водную среду системы гидрозолоудаления может служить источником дополнительного поступления радона в воздух как производственных помещений, так и в окружающую среду (воздух и в воду) из секций золоотвала. Если эманирование материалов в воздух в достаточной степени изучено, то

эманирование по радону гидравлически активных материалов в воду в отечественной и зарубежной литературе практически не освещено.

На рис. 4 представлены результаты исследований концентрации радона фазе зольных и цементных суспензий сразу жидкой после дистиллированной Дистиллированная приготовления воде. вода чтобы экспериментах использовалась τογο, исключить влияние ДЛЯ содержания радона в водопроводной воде.

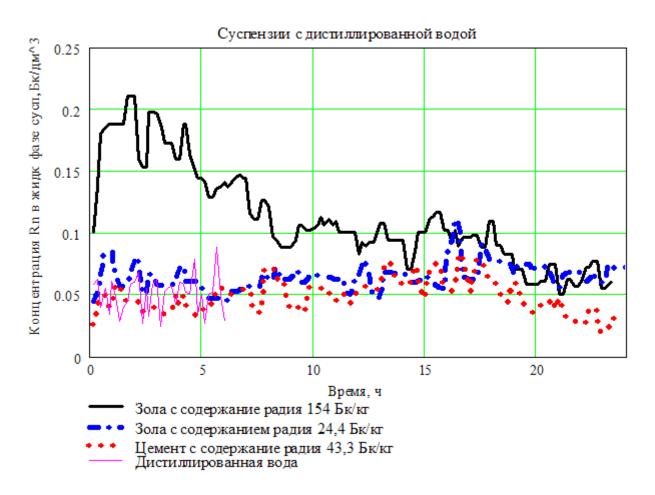


Рис. 4. Выделение радона из материалов в дистиллированную воду при водотвердном отношении 10:1

Как видно из рис. 4, значительное насыщение воды радоном, зависящее от содержания ²²⁶Ra в пробах золы-уноса, наблюдается при содержании радия в золе 154 Бк/кг. При удельных эффективных активностях исследуемой нами золы-уноса, не превышающих нормативный показатель 370 Бк/кг, концентрация радона в зольно-водной суспензии не оказывает

существенного влияния на содержание радона в воде источников водоснабжения, нормируемое HPБ–99/2009 в пределах 60 Бк/л. Более активные по радию золы из аномальных участков угольных разработок на предмет обогащения воды радоном нами не исследовались.

При исследовании суспензий с различным водотвердным отношением (В/Т) при меньшем количестве воды наблюдается большее насыщение водной среды радоном, причем увеличение концентрации радона в жидкой фазе непропорционально увеличению массы золы (рис. 5).

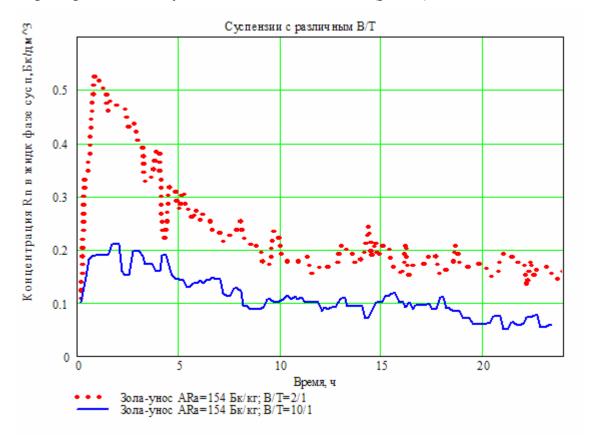


Рис. 5. Концентрация радона в зольно-водных суспензиях с водотвердным отношением 2:1 (верхний ряд) и 10:1 (нижний ряд)

Так, в первом случае при отношении B/T=10/1 (200 г воды + 20 г золы) пик выделения радона, приходящийся на 1 час контакта золы с водой, составляет 0,21 Бк/л (A_{Ra} =154 Бк/кг), а во втором случае при B/T=2/1 (200 г дистиллированной воды + 100 г золы) выделение радона из этой же золы (A_{Ra} =154 Бк/кг) увеличилось более чем в два раза и составило 0,526 Бк/л. Совершенно очевидно, что эта зависимость непропорциональна B/T в пробах

(при увеличении массы пробы в 5 раз максимальная концентрация радона в воде увеличивается всего в 2,5 раза). Данное обстоятельство объясняется изменением кинетики гидратации гидравлически активных минералов при водотвердном отношении. Это косвенно согласуется различном результатами исследований химического состава жидкой фазы гидратирующихся цементных и зольных композиций при разном В/Т.

Учитывая результаты проведенных исследований, нами проведена оценка концентрации радона в воде источников водоснабжения населенных пунктов, расположенных в непосредственной близости к золоотвалу. Установлено, что в воде источников водоснабжения этих населенных пунктов нормируемый НРБ – 99/2009 показатель 60 Бк/л не превышен.

Таким образом, изучение эманирования золошлаковых отходов в водную среду показало, что при контакте золы-уноса с водой происходит насыщение воды радоном. Следовательно, при гидрозолоудалении и хранении золошлаковых отходов в золоотвалах возможно обогащение подземных водоносных горизонтов радоном. Однако при удельных эффективных активностях золы-уноса не превышающих 370 Бк/кг, существенного влияния золоотвала на содержание радона в источниках водоснабжения не происходит.

Выводы

- 1. При сжигании угля происходит обогащение минеральной части золошлаковых отходов естественными радионуклидами в 4–6 раз по отношению к исходному топливу. В результате гидрозолоудаления и хранения ЗШО удельная активность ЕРН значительно снижается по отношению к их содержанию в золе-унос. Удельная эффективная активность ЗШС из золоотвала в среднем в 3–4 раза ниже активности золы-уноса.
- 2. Экспериментально подтверждено, что наиболее активным элементом в золошлаковых отходах от сжигания бурых углей является ²²⁶Ra. Снижение удельной активности ЕРН в пробах гидратированной золы по отношению к золе-унос составило: по ²²⁶Ra от 46 до 60 % при среднем

значении 52,4%; по 232 Th до 30 %, в среднем – 26,7 %; по 40 K – от 25 до 90 % при среднем 69,3 %.

- 3. Показано, что при повторном выщелачивании золошлаковой смеси, хранящейся в золоотвале в течение длительного периода, происходит дальнейшее снижение удельной эффективной активности ЕРН за счет снижения удельных активностей радия, тория и калия. В среднем ²²⁶Ra из золошлаковой смеси выщелачивается 37,4 %, в то время как для ²³²Th и ⁴⁰K эти показатели гораздо меньше.
- 4. Установлено, что в процессе гидрозолоудаления и хранения ЗШО происходит переформирование вкладов удельных активностей ЕРН в нормируемую величину удельной эффективной активности. Почти на 75 % $A_{9\varphi\varphi}$ золы-унос формирует ²²⁶Ra, в процессе гидрозолоудаления этот показатель снижается до 55 %.
- 5. Экспериментально подтверждено, что при взаимодействии золыунос с водой ее минералогический состав резко изменяется, появляется Са(OH)₂ и двуводный гипс CaSO₄·2H₂O, образуется значительное количество гидросульфоалюмината кальция — эттрингита (3CaO·Al₂O₃·3CaSO₄·31H₂O). В золошлаковой смеси из золоотвала при дополнительном перемешивании с избыточным количеством воды не происходит дальнейшей гидратации.
- 6. Установлено насыщение воды радоном при контакте золы-уноса с водой. На выделение радона влияет водотвердное отношение. Это обусловлено кинетикой происходящих химических процессов.
- 7. При удельных эффективных активностях исследуемых проб золыуноса, не превышающих нормативный показатель 370 Бк/кг, концентрации радона в зольно-водной суспензии не оказывают существенного влияния на содержание радона в воде источников водоснабжения.

Список публикаций по теме диссертации

1. Назиров, Р.А. Поведение естественных радионуклидов в высококальциевых золах в процессе их гидрозолоудаления / Р.А. Назиров, С.Л. Крафт (Рогачева) // Вестник Красноярской государственной архитектурно-строительной академии: сб. науч. тр. Всерос. науч.-практ.

- конф. «Сибири новые технологии в архитектуре, строительстве и жилищнокомунальном хозяйстве» Вып. 8 / под ред. В.Д. Наделяева. – Красноярск: КрасГАСА, 2005. – С.216–218.
- 2. **Крафт (Рогачева),** С.Л. Влияние теплоэнергетики на формирование уровня естественной радиации местности / С.Л. **Крафт (Рогачева)** // Проблемы строительства и архитектуры: сб. материалов XXV регион. науч.техн. конф. Красноярск: Сибирский федеральный ун-т, 2007. С. 218–221.
- 3. Назиров, Р.А. Экспериментальная оценка выщелачивания естественных радионуклидов в процессе гидрозолоудаления высококальциевых зол / Р.А. Назиров, С.Л. Крафт (Рогачева) // Изв. вузов. Строительство. №1 (589) Новосибирск: НГАСУ (Сибстрин), 2008. С. 82–85.
- 4. **Крафт (Рогачева)**, С.Л. Изучение процессов миграции естественных радионуклидов в водную среду в результате гидрозолоудаления и хранения золошлаковых отходов Березовской ГРЭС-1 / С.Л. **Крафт (Рогачева)** // Молодежь и наука: начало XXI века: сб. материалов конф. Красноярск, ИПК СФУ, 2008. С. 118–119.
- 5. **Крафт** (**Рогачева**), С.Л. Изучение проблемы загрязнения водных ресурсов естественными радионуклидами в процессе гидроудаления золошлаковых отходов на теплоэнергетических станциях / С.Л. **Крафт** (**Рогачева**) // Труды НГАСУ. Новосибирск: НГАСУ (Сибстрин), 2008. Т. 11. №1 (43). С.148 –152.
- 6. **Крафт (Рогачева), С.Л.** Проблемы утилизации и хранения золошлаковых отходов теплоэлектростанций / **С.Л. Крафт (Рогачева)** // XI Международ. науч.-практ. конф. «Экономика природопользования и природоохраны»: сб. ст. XI Международ. науч.-практ. конф. Пенза, Приволжский дом знаний, 2008. С. 91—93.
- 7. **Крафт (Рогачева), С.Л.** Влияние предприятий угольно-топливного цикла на формирование уровня естественной радиации местности / **С.Л. Крафт (Рогачева)** // «Человек и Вселенная». СпБ, 2008. С. 80–84.