СПИСОК ЛИТЕРАТУРЫ

- Стыров В.В., Тюрин Ю.И. Неравновесные хемоэффекты на поверхности твердых тел. – М.: Энергоатомиздат, 2003. – 507 с.
- 2. Соколов В.А. Кондолюминесценция. Томск: Изд-во Томского ун-та, 1969. 130 с.
- 3. Руфов Ю.Н., Кадушин А.А., Рогинский С.З. Возникновение люминесценции при адсорбции паров и газов на твердых телах // Доклады АН СССР. 1956. Т. 171. № 4. С. 905—906.
- Волькенштейн Ф.Ф., Горбань А.Н., Соколов В.А. Радикало-рекомбинационная люминесценция полупроводников. – М.: Наука, 1976. – 278 с.
- 5. Elias L., Ogryslo E.A., Schiff H.I. The study of electrically discharged O_2 by means of an isothermal calorimetric detector // Canad. J. Chem. $-1959.-V.37.-N\!\! \cdot 10.-P.1680-1689.$

- Патент 2065152 РФ. МКИ G01N 21/64. Способ определения атомарного кислорода в газах / С.Х. Шигалугов, Ю.И. Тюрин, В.В. Стыров. Заявл. 07.12.93, опубл. 10.08.96. – 7 с.: ил.
- Шигалугов С.Х., Емельянов В.Н., Китаев А.Н., Тюрин Ю.И. Установка для изучения неравновесных атомно-молекулярных и электронных процессов на поверхности твердых тел // Радиационнотермические эффекты и процессы в неорганических материалах: Матер. IV Междунар. научной конф. Томск, 2004. —С. 289—295.
- Шигалугов С.Х., Кротов Ю.В., Черноок В.М. Оптимальные условия синтеза СаО и СаО:Ві-фосфоров для гетерогенной хемилюминесценции // ГХЛ и другие неравновесные эффекты на границе газ – твердое тело: Межвуз. и межвед. сб. научн. тр. – Норильск, 1984. – С. 91–95.
- 9. А.с. 1650684 A1 СССР. МКИ С09К 11/55. Способ формирования тонкопленочного люминофора из оксида кальция // С.Х. Шигалугов, Ю.И. Тюрин. Заявл.10.06.88, опубл. 23.05.91. 2 с.: ил.

УДК 621.039.52.034.3:621.039.555.4

МЕТОДИКА РАСЧЕТНОГО МОДЕЛИРОВАНИЯ НЕЙТРОННО-ФИЗИЧЕСКОГО И ТЕПЛОГИДРАВЛИЧЕСКОГО СОСТОЯНИЯ РЕАКТОРА В БЫСТРОПРОТЕКАЮЩИХ ПРОЦЕССАХ

В.И. Бойко, В.В. Шидловский*, П.М. Гаврилов*, М.Г. Герасим*, И.В. Шаманин

Томский политехнический университет E-mail: shamanin@phtd.tpu.ru *ФГУП Сибирский химический комбинат. г. Северск

Разработана методика расчетного моделирования нейтронно-физического и теплогидравлического состояния канала водоохлаждаемого реактора с графитовым замедлителем в быстропротекающих процессах. Произведен расчет гипотетической аварийной ситуации, возникающей при отказе приводов насосов и падении давления в контуре многократной принудительной циркуляции, которое вызвано частичным разрывом трубопровода.

Введение

Технические системы большой сложности и повышенной мощности неизбежно создают определенную степень риска для человека и окружающей среды. Можно лишь сократить до минимума вероятность тяжелой аварии и стремиться уменьшить ее возможные последствия. Проектом АЭС рассматриваются возможные аварии, для которых известны гипотетические исходные события и конечное состояние. Для них создаются системы безопасности, ограничивающие последствия установленными пределами.

Расчетные пакеты прикладных программ являются основным инструментом в анализе тепловых и гидродинамических процессов канальных реакторов, в том числе при частичных разрывах контура многократной принудительной циркуляции РБМК (реактор большой мощности канальный). Характерной чертой исследований безопасности РБМК при авариях с потерей теплоносителя является широкое использование зарубежных пакетов прикладных программ RELAP, ATHLET и др. [1]. Они созданы применительно к анализу безопасности реакторов типа PWR (pressured water reactor), поэтому анализ аварийных режимов РБМК на их основе имеет свою специфику. Прежде всего, встает вопрос о воз-

можности применения кодов в условиях, определенных особенностями канального реактора с графитовым замедлителем [2]. В кодах RELAP и ATH-LET в явном виде не моделируется динамика парообразования и динамика двухфазного потока. Для PWR и BBЭР (водо-водяной энергетический реактор) в этом нет необходимости. Поэтому при использовании указанных пакетов прикладных программ нет возможности определить, какой эффект превалирует — отрицательная обратная связь за счет Допплер-эффекта или положительная обратная связь, обусловленная парообразованием.

Цель работы и методика решения задачи

Целью настоящей работы являлась разработка методики расчетного моделирования нейтроннофизического и теплогидравлического состояний канала реактора в быстропротекающих процессах.

Быстропротекающие процессы в реакторах могут инициироваться нештатными ситуациями, в частности, неконтролируемыми изменениями:

- расхода и давления теплоносителя в контуре многократной принудительной циркуляции;
- реактивности и, соответственно, нейтронной мощности.

Основным принципом, используемым в методике, является явный учет обратных связей между возмущением, вносимым в систему, и откликом системы на возмущение. В качестве возмущения выступает изменение реактивности, в качестве отклика — нейтронная мощность. Она определяет теплофизическое состояние активной зоны, изменение которого, в свою очередь, обусловливает степень отклонения реактора от критического состояния, т.е. реактивность. Такая модель системы относится к классу самосогласованных-замкнутых.

Связь между реактивностью и нейтронной мощностью описывается в терминах функции линейного отклика [3].

Быстропротекающий процесс дробится во времени; в пределах каждого интервала времени путем организации итерационного процесса решается самосогласованная нейтронно- и теплофизическая задача.

На рис. 1 представлена структура модели системы и алгоритм вычислений, которые составляют основу пакета прикладных программ.

Это частный случай, поскольку обратная связь в нем образована с учетом изменения физических свойств теплоносителя — воды (пароводяной смеси).

На первом временном интервале $\Delta \tau$, начиная с t_0 =0, для фиксированного стационарного уровня мощности n_0 =1 отн. ед., при заданном расходе тепло-

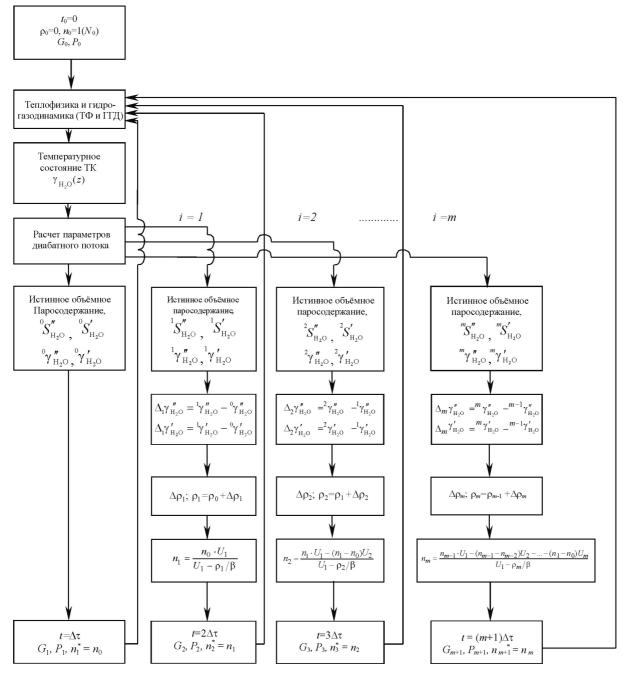


Рис. 1. Структура модели и организация вычислений

носителя G_0 и при неизменном давлении P_0 проводится расчет теплофизического (ТФ) и гидрогазодинамического (ГГД) состояния технологического канала (ТК). Рассчитываются изменение температуры и скорости теплоносителя при движении в ТК, коэффициенты теплоотдачи с поверхности твэла, проводится оценка критических тепловых потоков.

В результате определяется температурное состояние элементов ТК по аксиальной координате z, в т.ч. плотность потока теплоносителя (ТН) — $\gamma_{\rm H,0}(z)$. Затем проводится расчет параметров диабатного потока, результатом которого является значение истинного объемного паросодержания, и, следовательно:

- площади проходного сечения ТК, занятого паровой ${}^{0}S_{\text{H,0}}^{"}$ и жидкой ${}^{0}S_{\text{H,0}}^{"}$ фазами;
- плотности молекул H_2O в паровой ${}^0\gamma''_{H_2O}$ и жидкой ${}^0\gamma'_{H_2O}$ фазах.

Далее следует задание новых значений расхода и давления — G_1 и P_1 . Новое значение нейтронной мощности полагается неизменным $n_1^*=n_0$. Цикл расчетов (ТФ и ГГД) \rightarrow расчет параметров диабатного потока повторяется. В результате (i=1) определяются новые значения ${}^1S'_{\text{H,O}}$, ${}^1S''_{\text{H,O}}$ и ${}^1\gamma''_{\text{H,O}}$.

Приращения $\Delta_1 \gamma'_{\text{H,O}}, \ \Delta_1 \gamma''_{\text{H,O}}$ и изменения значений $S'_{\text{H,O}}, \ S''_{\text{H,O}},$ определяют значение приращения реактивности $\Delta \rho_1$.

Затем определяется «истинное» значение нейтронной мощности n_1 в формализме, использующем понятие функции линейного отклика.

Далее следует изменение расхода и давления: G_2 и P_2 . Новое значение нейтронной мощности полагается неизменным $n_2^*=n_1$. Цикл расчетов [(ТФ и ГГД) \rightarrow расчет параметров диабатного потока] повторяется. В результате (i=2) определяются новые значения ${}^2S'_{\rm H_2O}$, ${}^2S'_{\rm H_2O}$, ${}^2\gamma'_{\rm H_2O}$ и следует нейтронно-физический расчет.

Начиная с i=1 последовательность вычислений остаётся неизменной и повторяется. Результатом вычислений является динамика нейтронно-физических и теплогидравлических параметров TK.

Последовательность вычислений при определении параметров диабатного потока

Расчет по соотношениям, которые используются при определении параметров диабатного потока [4], проводится в последовательности, изложенной ниже.

В соотношениях приняты следующие обозначения: p — давление, МПа; t — температура, °C; G — массовый расход, кг/с; F — проходное сечение, м²; d — диаметр твэла, мм; q_s — плотность теплового потока, МВт/м²; $(\rho \omega)$ =G/F — массовая скорость, кг/м²-с.

Из подпрограмм-таблиц по заданным p и t определяются: r — удельная теплота парообразования (теплота испарения), Дж/кг; h — удельная энтальпия потока, Дж/кг; h' — для жидкой фазы, Дж/кг; h'' — для паровой фазы, Дж/кг; v — удельный объём потока, $M^3/K\Gamma$; V' — для жидкой фазы, $M^3/K\Gamma$;

 $\rho'=1/\nu'$ — плотность жидкой фазы, кг/м³; ν'' — для паровой фазы, м³/кг; $\rho''=1/\nu''$ — плотность паровой фазы, кг/м³; ν' — коэффициент кинематической вязкости для жидкой фазы, м²/с; для заданной t определяется $p_{\kappa\rho}$ — критическое давление, МПа. Затем проводятся вычисления:

- 1) $\omega_0 = \rho \omega / \rho' \text{скорость циркуляции};$
- 2) $\pi = p/p_{\kappa p}$;
- 3) коэффициент скольжения:

$$s=1+2,27(1-\pi^2)(\rho'/\rho\omega)^{0.7};$$

4) средняя энтальпия потока в точке начала интенсивного роста истинного объёмного паросодержания:

$$h_0 = h' - \frac{q_s}{\rho \omega} \cdot 7,5 \left(\frac{gd}{r \rho'' v'} \right)^{0.08} \cdot \left(\frac{\omega_0 d}{v'} \right)^{0.2};$$

5)
$$\Delta h = (h + h' - 2h_0) \exp\left(-2\frac{h - h_0}{h' - h_0}\right);$$

6) массовое расходное паросодержание:

$$x = (h - h' + \Delta h)/(r + \Delta h);$$

 граничное значение истинного объёмного паросодержания:

$$\varphi_{n}=(1+0.333s)^{-1};$$

 граничное значение массового расходного паросодержания:

Истинное объёмное паросодержание потока φ :

$$x_p = (1+0.333 \rho'/\rho'')^{-1};$$
9)
$$\varphi_0 = 1.17 q^{0.35}/p^{0.15}(\rho\omega)^{0.15};$$

10) $x_0 = -0.537 q^{0.7} (p/\rho\omega)^{0.3};$

11) φ =0 при $x < x_0$ (п. 6, п. 10),

$$\varphi = \varphi_0 (1 - x/x_0)^{1.35}$$
 при $x_0 < x < 0$, $\varphi = \varphi_0 + \frac{x}{x_p} (\varphi_p - \varphi_0)$ при $0 < x < x_p$, $\varphi = \varphi_0$ при $x > x_p$.

Площадь проходного сечения ТК, занятого паровой фазой — $S_{\text{H},0}^{"}=\varphi F$, занятого жидкой фазой — $S_{\text{H},0}^{"}=F-S_{\text{H},0}^{"}$.

Расчет отклика нейтронной мощности на возмущение реактивности

Выражения для концентрации ядер-предшественников запаздывающих нейтронов i-ой группы при:

$$\tau = 0 \qquad \overline{C}_{i,0} = \frac{\beta_i}{\beta} \cdot \frac{n_0}{\lambda_i} = a_i \cdot \frac{n_0}{\lambda_i}; \tag{1}$$

$$0 < \tau \le \Delta \tau \qquad \overline{C}_i = \frac{a_i n}{\lambda_i} - \frac{\Delta n}{\Delta \tau} \cdot \frac{a_i (1 - e^{-\lambda_i \tau})}{\lambda_i^2}; \tag{2}$$

$$\tau > \Delta \tau \quad C_i = \frac{a_i n_1}{\lambda_i} - \frac{\Delta n}{\Delta \tau} \cdot \frac{a_i (1 - e^{-\lambda_i \Delta \tau})}{\lambda_i^2} \cdot e^{-(\tau - \Delta \tau) \lambda_i}. \tag{3}$$

Здесь $a_i = \beta_i/\beta$ — относительный выход запаздывающих нейтронов по группам; $\Delta n = n_1 - n_0$ — изменение мощности за время $\Delta \tau$.

Функция линейного отклика

Подстановка выражений (1–3) в $\overline{\rho} = 1 - \sum_{i} \frac{\overline{C_i} \lambda_i}{n}$ позволя-

ет получить следующее выражение для изменения реактивности при заданном законе изменения мощности:

$$\overline{\rho} = \frac{\Delta n}{n(\tau)} \cdot U_{\Delta \tau}(\tau).$$

При указанной подстановке учтено, что

$$\sum_{i=1}^{6} a_i = 1.$$

Функция $U_{\Delta \tau}(\tau)$ называется функцией линейного отклика [3].

Эта функция задается следующими соотношениями при:

$$0 \le \tau \le \Delta \tau \qquad U_{\Delta \tau}(\tau) = \sum_{i=1}^{6} \frac{a_i (1 - e^{-\lambda_i \tau})}{\lambda_i \Delta \tau};$$

$$\tau > \Delta \tau \qquad U_{\Delta \tau}(\tau) = \sum_{i=1}^{6} \frac{a_i (1 - e^{-\lambda_i \Delta \tau})}{\lambda_i \Delta \tau} \cdot e^{-\lambda_i (\tau - \Delta \tau)}.$$

Из (3) получаем следующее значение конечного уровня мощности реактора n_1 , которое достигается после ввода реактивности $\bar{\rho}$ за время $\Delta \tau$

$$n_1 = \frac{n_0}{1 \pm \frac{\overline{\rho}}{U_{\Lambda \sigma}(\Delta \tau)}}.$$

В нашем случае возмущение реактивности обусловлено изменением значения истинного объёмного паросодержания (изменением концентрации молекул воды)

$$\Delta \rho = \Delta n_{\rm H_2O} \cdot \left(\frac{d \rho}{d n_{\rm H_2O}} \right).$$

Для реактора с отражателем необходимо учитывать «эффективные добавки» за счёт отражателя. В этом случае, при расчёте геометрического параметра, фактические полуразмеры зоны увеличиваются на величину эффективной добавки δ : $H'=H+2\delta$; $R'=R+\delta$.

Для уран-графитовых реакторов с графитовым отражателем

$$\delta = 1,2L_{omp} \text{th} \frac{T}{L_{omp}},$$

где $L_{\it omp}$ — длина диффузии в отражателе (графите), $L_{\it omp}$ = 57 см, T — толщина отражателя, см.

Для реактора PБМК-1000 толщина отражателей: бокового — 75 см; верхнего и нижнего — 50 см.

$$\tau = \tau_{\rm C} \left(\frac{S_{\rm gu}}{S_{\rm gu} - S_{\rm mv}} \right)^2,$$

где $S_{mk} = S_{\text{H,O}} + S_{\kappa M}$, $\tau_{C} = 312.5$ см 2 — возраст нейтронов в графите, S_{su} , S_{mk} — площади поперечного сечения ячейки и ТК, S_{kM} — конструкционных элементов ТК, $S_{\text{H,O}}$ — проходного сечения под пароводяную смесь.

Вероятность избежать резонансного захвата определяется соотношением:

$$\varphi = \exp \left[-\frac{(k_T R_U \sqrt{R} n \varepsilon_1 + 0.73 \cdot n R_U^2 \varepsilon_1)}{(\xi \sum_{s3} S_3 + \xi \sum_{s\phi} S_{\phi})} \right],$$

где $\xi \Sigma_{S3}$ и $\xi \Sigma_{S\phi}$ — замедляющая способность замедлителя и «фиктивного блока»; S_3 и S_ϕ — площадь замедлителя и фиктивного блока; R_U — радиус уранового блока; k_T — температурный коэффициент; n — число стержней в пучке; R — радиус пучка; ε_1 — пористость блока по урану-238. Коэффициент k_T имеет вид:

$$k_T = 0,775(1+17,5\cdot10^{-3}\sqrt{T_U}),$$

где R_U — средняя температура урана, K.

Изменение концентрации молекул воды наиболее сильно влияет на коэффициент использования тепловых нейтронов θ , поэтому при дифференцировании формулы четырех сомножителей считаем остальные сомножители константами:

$$\rho = 1 - \frac{1 + L^2 B^2}{\eta \varepsilon \varphi \theta \cdot \exp(-B^2 \tau)},$$

$$\rho' = \left(-\frac{1}{\eta \varepsilon \varphi \cdot \exp(-B^2 \tau)} \right) \cdot \left(\frac{1 + L^2 B^2}{\theta} \right) =$$

$$= \left(-\frac{1}{\eta \varepsilon \varphi \cdot \exp(-B^2 \tau)} \right) \cdot \left(-\frac{\theta'}{\theta^2} (1 + L^2 B^2) \right),$$

$$\frac{d\rho}{dn_{\text{H,O}}} = \frac{d\theta}{dn_{\text{H,O}}} \cdot \frac{1 + L^2 B^2}{\theta^2 \eta \varepsilon \varphi \cdot \exp(-B^2 \tau)}.$$
(4)

Дифференцируем выражение для определения коэффициента использования тепловых нейтронов:

$$\theta = \frac{\sum_{a}^{monn}}{\sum_{a}^{nu}} = \frac{\sum_{a}^{monn}}{\sum_{a}^{Zr} + \sum_{a}^{Nb} + \sum_{a}^{C} + \sum_{a}^{H_2O} + \sum_{a}^{monn}},$$

$$\frac{d\theta}{dn_{\text{H,O}}} = \sum_{a}^{mons} \left(-\frac{\sigma_{a}^{\text{H,O}}}{\left(\sum_{a}^{Zr} + \sum_{a}^{Nb} + \sum_{a}^{C} + \sum_{a}^{H,O} + \sum_{a}^{mons}\right)^{2}} \right).$$

При расчете по соотношению (4) значения θ и $\frac{d\theta}{dn_{\rm H_2O}}$ определяются для $\Sigma_a^{\rm H_2O}$, которое вычисляется по формуле:

$$(\Sigma_a^{\rm H_2O}) = (\Sigma_a^{\rm H_2O})^* \frac{S_{\rm H_2O}'' \gamma_{\rm H_2O}'' + S_{\rm H_2O}' \gamma_{\rm H_2O}'}{S_{\rm H_2O} \cdot \gamma_{\rm H_2O}},$$

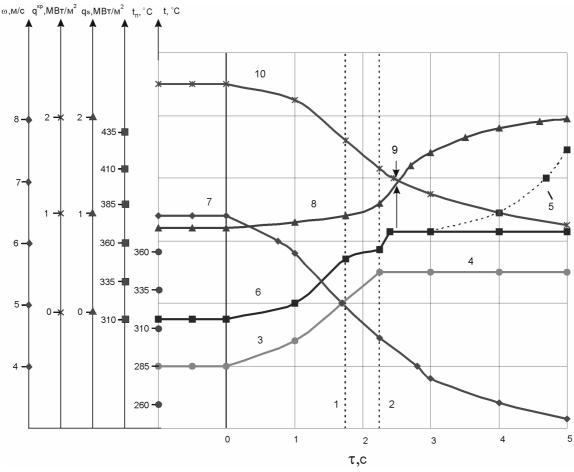
где $(\Sigma_a^{\mathrm{H,O}})^*$ — макроскопическое сечение поглощения в пароводяной смеси (в воде) на предыдущем шаге интегрирования по времени. Для воды

$$\Sigma_a = rac{\gamma_{
m H_2O}}{\gamma_{
m H_2O}^{
m H_3V}} \cdot 0,0221,~{
m CM}^{-1},~{
m ГДе}~\gamma_{
m H_2O}^{
m H.V.}~-$$
 плотность воды в

нормальных условиях, $\gamma_{\rm H,0}$ — при текущих значениях температуры и давления.

Результаты расчетов и их обсуждение

В расчетах моделировалась гипотетическая аварийная ситуация, возникающая при отказе приводов насосов и падении давления в контуре многократной принудительной циркуляции, которое вызвано частичным разрывом трубопровода.


Динамика теплового состояния технологического канала приведена на рис. 2.

Расход теплоносителя за 1,8 с уменьшается в 1,3 раза, и в этот момент возникают условия, необходимые для инициации местного кипения на наиболее энергонапряженном участке ТК. Температура поверхности твэла достигает 350 °C, превышая температуру насыщения на 65 °C. За следующие 0,5 с возникают условия, необходимые для объемного кипения. В случае, если паросодержание достигает граничного значения, наступает кризис теплообмена 2-ого рода: жидкая пленка высыхает, вся выделяющаяся энергия идет на разогрев твэла, в том числе – его оболочки. Это иллюстрируется ходом зависимости температуры поверхности твэла от времени (рис. 2, зависимость 5). Температура теплоносителя достигает температуры насыщения и далее не изменяется. Нейтронная мощность стремительно нарастает, и через 2,5 с после начала падения расхода теплоносителя плотность теплового потока достигает критического значения. Начиная с этого момента времени очень вероятно стремительное нарастание температуры оболочки твэла и, как следствие, ее разрушение.

С учетом срабатывания аварийной защиты динамика процесса следующая. Время возрастания мощности составляет 1,5...2,0 с. Нейтронная мощность сначала, вслед за ростом паросодержания, возрастает до 115 % номинального значения. После срабатывания защиты она быстро снижается до уровня остаточного тепловыделения.

Результаты расчетов [5] показывают, что с учетом того, что около 20 % запасенного в твэле тепла расходуется на прогрев оболочки, ее температура при адиабатическом выравнивании профиля температуры может превысить 1100 °С. Это значение характеризует температуру, которая может быть достигнута в авариях рассматриваемого типа.

Оценка неопределенностей результатов, полученных в расчетах, позволяет определить ключевые процессы и явления в канале водоохлаждаемого реактора.

Рис. 2. Динамика теплового состояния технологического канала: 1) начало местного кипения; 2) начало объёмного кипения; 3) t – температура потока; 4) t_s – температура насыщения; 5) возможный рост t_n ; 6) t_n – температура поверхности твэла; 7) ω – скорость потока; 8) q_s – плотность теплового потока; 9) возможность начала кризиса теплообмена; 10) q_{so} – критическая тепловая нагрузка

Ими следует считать:

- запасенное тепло в ядерном топливе;
- термодинамическое состояние системы и, в первую очередь — особенности течения двухфазного потока, вызывающие колебания расхода теплоносителя и условий теплообмена на поверхности твэла.

Определяющими параметрами при моделировании процесса отвода тепла, запасенного в топливе, являются:

- термическое сопротивление зазора между топливом и оболочкой;
- коэффициент неравномерности энерговыделения;

СПИСОК ЛИТЕРАТУРЫ

- Достов А.И. Исследование на основе программы RE-LAP4/MOD6 аварийных процессов в реакторах РБМК при частичных разрывах раздаточного группового и напорного коллекторов. Отчет ИАЭ им. И.В. Курчатова, инв. № 33P/1-477-89, 1989.
- 2. Гаврилов П.М. Эволюция уравнения Рэлея в задаче с фазовым переходом // Теплофизика высоких температур. -2001. Т. 39. № 2. С. 311-315.

теплопроводность топлива и коэффициент теплоотдачи с поверхности твэлов.

Для условий канального водоохлаждаемого реактора с графитовым замедлителем (РБМК, АДЭ – аппарат двухцелевой энергетический) присутствие воды в нормальном режиме эксплуатации лишь занижает значение коэффициента использования тепловых нейтронов. Образование устойчивого диабатного потока приводит к резкому возрастанию реактивности и, следовательно, нейтронной мощности. Проведенный расчетный анализ совокупности нейтронно- и теплофизических процессов показывает, что обратная положительная связь «по пару» оказывается гораздо более сильной и динамичной, чем отрицательная обратная связь «по Допплер-эффекту».

- 3. Кузнецов И.А. Аварийные и переходные процессы в быстрых реакторах. М.: Энергоатомиздат, 1987. 176 с.
- Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы) / П.Л. Кириллов, Ю.С. Юрьев, В.П. Бобков. Под общей ред. П.Л. Кириллова. М.: Энергоатомиздат, 1990. 360 с.
- Достов А.И., Крамеров А.Я. Исследование безопасности РБМК при авариях, инициируемых частичными разрывами контура циркуляции // Атомная энергия. – 2002. – Т. 91. – № 1. – С. 23–30.

УДК 378:001.891

СЕВЕРСКОМУ ГОСУДАРСТВЕННОМУ ТЕХНОЛОГИЧЕСКОМУ ИНСТИТУТУ – 45 ЛЕТ

М.Д. Носков

Северский государственный технологический институт E-mail: nmd@ssti.ru

Изложен исторический путь, пройденный Северским государственным технологическим институт с момента его создания в 1959 г. Перечислены приоритетные направления исследований, выполняемых в СГТИ, достижения и заслуги ученых и преподавателей вуза. Отмечено, что за прошедшие годы институт стал не только крупнейшим образовательным, но и научным центром г. Северска.

Северский государственный технологический институт (СГТИ) был основан в 1959 г. как вечерний филиал физико-технического факультета Томского политехнического института в г. Томск-7. В 1965 г. вечерний филиал ФТФ ТПИ был реорганизован в вечернее Отделение № 1 ТПИ со статусом вуза и передачей контингента студентов 1—3 курсов Министерству среднего машиностроения. В 1995 г. Отделение № 1 ТПУ было аттестовано Госинспекцией по аттестации высших учебных заведений России и переименовано в Северский технологический институт Томского политехнического университета (СТИ ТПУ). В 2001 г. Распоряжением Правительства РФ СТИ ТПУ реорганизован в Северский государственный технологический институт и ему придан статус самостоятельного вуза.

За прошедшие 45 лет СГТИ стал не только образовательным, но и научным центром г. Северска, в котором проводятся исследования, относящиеся к физико-математическим, химическим, техническим, историческим, экономическим, философским, педагогическим наукам. Тематика научно-исследовательских работ определяется потребностями региона, атомной отрасли и соответствует профилю подготовки специалистов. В настоящее время в институте развиваются 13 научных направлений:

- 1. Математическое моделирование в механике жидкости и газа, деформации сплавов. Руководители: к.ф.-м.н., доц. В.Н. Брендаков; к.ф.-м.н., доц. И.В. Карелина.
- 2. Формирование стохастических структур в нелинейных неравновесных системах. Руководите-