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the fracture is better when it intersects more with natural fractures, which creates more permeable inner surfaces, so a good 

study of the nature of the geological plates as well as natural fractures is necessary to determine the ideal dimensions. 
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Increasing global warming in the Arctic leads to a significant rate of terrestrial and submarine permafrost degradation 

[6, 9]. A vast amount of remobilized organic matter (OM) is involved in the modern biogeochemical cycle. It was shown that 

an increased supply of remobilized (“old”) OC may lead to severe acidification of the Arctic waters and significantly contributes 

to the greenhouse effect as a result of the OC to CO2 transformation. Understanding of the fate of terrestrial OM moving from 

the land to the Arctic shelf is essential for predicting the potential feedback of Arctic ecosystems. Reliable identification of 

both OM sources and the mechanisms of its trans-formation within the “land – shelf” system is an important step towards a 

comprehensive understanding of the modern Arctic carbon cycle. 

The East Siberian Arctic Shelf (ESAS), represented by the Laptev Sea, the East Siberian Sea, and the Russian part of 

the Chukchi Sea, is unique because it occupies a huge area (>2*106 km2) and has a shallow average depth (~50 m). Moreover, 

the ESAS contains more than 80% of the world's subsea permafrost which is believed to store permafrost-related and 

continental slope methane hydrates [8, 9]. 

 

Fig. 1 Sample stations 

The Laptev Sea is an Arctic sea dominated by terrestrial OM that receives a substantial contribution from both coastal 

erosion and Lena river runoff [7]. It was previously shown that accelerating coastal erosion acts as the main contributor to the 

terrestrial OM pool exported to the Laptev Sea [10]. About 25% of the Laptev Sea coastline is composed of ice-rich permafrost 

deposits known as the Yedoma Ice Complex which is highly susceptible to erosion. The retreat rate of the permafrost-dominated 

coast has been steadily increasing due to the combined action of thermal and mechanical forces [4]. The total input of the 
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intense coastal erosion to the Laptev Sea and the East Siberian Sea is estimated at 4.0 – 22.0 ± 8.0 Tg/year (the submarine 

permafrost degradation is included) [6, 10]. Besides, the Lena River exports large volumes of the fresh water discharged to the 

Laptev Sea, being the main fluvial sediment source for the ESAS. During the land-to-shelf transport, exported organic matter 

undergoes aerobic biochemical decomposition, which can be re-mineralized to CO2 or delivered to the deep-water part of the 

Arctic Ocean [1]. 

Our research attempts to characterize the modern OM stored in the surface sediments of the Laptev Sea in order to 

estimate its composition variability and attempt to identify the OM sources along the profile “coastline - outer shelf”. 

We analyzed 14 surface sediment samples (horizon 0 - 2 cm) collected across the Laptev Sea shelf during the Arctic 

expedition onboard the Russian R/V Academician M. Keldysh during fall 2018 (Fig.1). A box corer was used to collect 

sediment samples. 

Grain-size (laser diffraction method; SALD-710, «Shimadzu»), pyrolytic (Rock-Eval 6 Turbo, VINCI Technologies), 

and GC-MS (Agilent 7890В (GC) – Аgilent Q-TOF 7200 (MS)) analyses were performed. To provide relevant data for the 

modern OM an adapted Rock-Eval temperature program “Reservoir” has been applied. 

According to the pyrolysis data, total organic carbon (TOC) varies from 0.4 to 2.71 wt%. Free hydrocarbons and low 

molecular weight OM, considered as lipid fraction (S1), range from 0.11 to 0.73 mg HC/g. The predominantly higher TOC and 

S1 values are found in the coastal zone (> 1 wt% and > 0.4 mg HC/g, respectively). 

The contents of relatively thermo-labile hydrogen-rich OM or biopolymers (S2) and CO/CO2, released by oxygen-

containing OM or geopolymers (S3), correspond to 0.67 – 2.92 mg HC/g and to 1.18 – 5.4 mg HC/g, respectively. Consequently, 

the fraction of the lipid extractable component in the total OM yield is, on average, 13 times less than the fraction of 

biogeopolymers stored in the sediments (S2 + S3). 

The sediment distribution suggests a relatively low HI (hydrogen index) and a higher OI (oxygen index). The HI of 

all samples is higher than 100 mg HC/g Corg and ranges from 103 to 181 mg HC/g Corg, which indicates the presence of a 

hydrobiont component in the OM. The maximum HI values are recorded in the samples taken from the outer shelf. The OI 

ranges from 199 to 309 mg HC/g Corg. The OI can reflect both the export of already oxidized OM with river runoff and coastal 

erosion and the subsequent degradation of allochthonous and autochthonous OM in the water column, as far as it is buried in 

sediments; therefore, it is important to separate these two processes. The ratio HI/OI < 1 may be compared to a mix of “Type 

2” and “Type 3” kerogens for matured OM determining planktonogenic and terrestrial origin, respectively [5].  

Sediments are dominated by clay (< 2 μm) and silt (2 - 63 μm) fractions. The sand fraction (> 63 μm) is almost absent. 

The significant HI and clay content correlation (r = 0,71) was also revealed. 

The qualitative interpretation of n-alkanes (neutral non-polar fraction) and isoprenoids (pristane and phytane) 

distribution was conducted. Obviously, terrestrial input is a main contributor to the OM of the studied sediments. Overall 

dominance of the high molecular weight (HMW) odd C25 – C31 n-alkanes indicates a significant portion of terrestrial OM 

exported with river discharge and thermo abrasion material [2, 3, 4]. However, for many outer shelf samples both the hydrobiont 

markers of the autochthonous nature (C15-C19 n-alkanes) and the terrestrial markers mentioned before are contrastingly 

expressed.  

Such classic geochemical indices were calculated based on the peak exit areas on received chromatograms: CPI 

(Carbon Preference Index), OEP17, OEP19 (Odd Even Predominance) indexes, Ki, TAR (terrigenious to aquatic ratio), Paq, and 

Pr/Phy ratio. 

High values of the CPI (>> 3) indicate a prevalence of vascular land plants as a source of OM and low microbial 

degradation state. The average Ki (0.46) and OEP (1.28) indexes also confirm low diagenetic transformation of OM. The TAR 

traces an increasing supply of autochtonous OM with increasing distance from the coast. In the zone of coastal sediments, the 

terrestrial component is clearly pronounced (TAR = 31.6), while for the outer shelf sediments, the index is 4 times lower (TAR 

= 7.6). The Paq index points out a low contribution of macrophytes (Paq = 0.31) with increasing values in the coastal part. The 

Pr/Phy ratio confirms the suboxidative environment revealed by the pyrolysis data (HI/OI ratio). 

The GC-MS records are directly comparable to Rock-Eval data. The terrestrial OM contribution is clearly traced 

despite the great distance from the coast. This is a distinctive feature of the Laptev Sea biogeochemical regime, which was 

previously noted by other researchers. Our results confirm and enhance their findings with new geochemical data providing a 

deeper understanding of the modern biogeochemical carbon cycle in the Arctic. 
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The full-scale development of the Zapadno-Malobalykskoe oil field began in 1999, with produced water re-injection 

being started in 2000. Since then, the production history has been determined by wells of highly porous and permeable 

development targets (AS4, BS2, BS8). Over the first four years, oil and fluid production was marked by its low rate due to the 

very moderate field development of the main BS8 formation. Having reached its peak in 2005, the oil production stabilized at 

the level of 2.4 to 2.6 million tons up to 2007, with the rate of putting wells on production significantly reducing from 45 to 10 

to 20 wells per year (Fig. 1) [3].  

 

Fig. 1 Production history (1999-2014) of the Zapadno-Malobalykskoe development targets AS4, BS2, BS8 

During the entire field development period, the water cut was expanding at a high rate: 6-10% per year reaching 

82.7% in 2009, with the withdrawal of 39.6% of recoverable reserves in compliance with the industrial categories. Over 2010-

2014, well drilling at the main BS8 formation enabled water cut rate to be stabilized at 0.5-2.0%. In 2014, the fractional water 

content amounted to 92.6 %, with only 46.6% of all recoverable oil reserves being withdrawn. The main reason for the 

withdrawals discrepancy is the advancing water production of the main development target AS4 (extensive self-induced 

fracturing network) and BS2 (putting into operation under-saturated oil bottom intervals) [1].  

Since the production history began, the field has produced 20,509 th.tonnes of oil and 88,274 th.tonnes of fluids, with 

the accumulated water injection amounted to 91,617 thousand cubic meters. 46.6% of them were drawn from the initial 

recoverable reserves. Remaining recoverable reserves are estimated to 23,492 th.tonnes. Reserves-to-production ratio is 39 

years. 

The formation AS4 is represented by three oil deposits. Almost all recoverable oil reserves are concentrated in the 

main deposit, that is 99.4% (9,059 th.tonnes). The formation well stock has been developed by 70%. Well drilling is planned 

in the marginal areas of the main deposit. The current 3-line drive system is aimed at maintaining reservoir pressure [2]  




