## ХАРАКТЕРИСТИКИ НЕУСТАНОВИВШЕГОСЯ ДВИЖЕНИЯ КАПЛИ ЭМУЛЬСИИ ПРИ СОУДАРЕНИИ СО СТЕНКОЙ В УСЛОВИЯХ ПЛЕНОЧНОГО ИСПАРЕНИЯ

А.Е. Семёнова<sup>1</sup>, М.В. Пискунов<sup>2</sup> Томский политехнический университет<sup>1,2</sup> ИШЭ, НОЦ И.Н. Бутакова<sup>1,2</sup>, группа 5БМ03<sup>1</sup>

Во многих современных технологиях, в которых основной рабочий процесс неуклонно связан с соударением групп капель и спреев между собой и с различными поверхностями, применяются многокомпонентные жидкости для оптимальной настройки функционала этих технологий. Малоизученными являются вопросы, связанные с поведением первично распыленных капель эмульсионных топлив при соударении со стенкой и между собой. Другим важным и малоисследованным аспектом в изучении поведения капель эмульсий, соударяющихся с твердой поверхностью, является температура последней. Таким образом, поскольку для капель эмульсий подобных результатов не обнаружено, то в качестве цели работы рассматривается экспериментальное исследование динамических (соотношений энергий, движущих процесс взаимодействия) и кинематических (интегральных параметров растекания и разбрызгивания) характеристик неустановившегося движения капли обратной эмульсии при соударении с твердой нагретой стенкой в условиях пленочном испарения.

Для приготовления эмульсий типа «вода-в-масле» использовались три основных компонента: дистиллированная вода в качестве дисперсной фазы, углеводород н-декан и масло базовое изопарафиновое HVI-2 в качестве непрерывной фазы. Для стабилизации эмульсий применялось поверхностно-активное вещество (ПАВ) сорбитан моноолеат Span 80. Эмульсии приготовлены путем перемешивания компонентов с помощью гомогенизатора в течение трех минут при скорости 10 тыс. об/мин. Полученные составы, а также их свойства: плотность, эффективная вязкость и коэффициент поверхностного натяжения, приведены в таблице 1. В рассматриваемых диапазонах скоростей сдвига эмульсии C1, C2, C4-C6 могут рассматриваться как ньютоновские жидкости, потому что значения их эффективной вязкости изменялись пренебрежимо мало. Вязкость эмульсии C3 уменьшалась в рассматриваемом диапазоне скоростей сдвига в несколько раз с 60,3 до 14,5 мПа·с. Зависимость напряжения сдвига от скорости сдвига данной эмульсии хорошо описывалась реологической моделью Гершеля-Балкли, поэтому данная жидкость определена как неньютоновская.

Экспериментальный стенд для взаимодействия капли с твердой нагретой поверхностью состоит из двух высокоскоростных видеокамер для регистрации процесса взаимодействия снизу и сбоку под углом 90° относительно оси падения капли, системы освещения, сапфировой подложки, нагреваемой снизу до температур  $T_w = 20, 40, 60, 80^{\circ}$ С с использованием нагревательного элемента, и системы генерации капель, включающей в себя дозирующий перистальтический насос и иглу с тупым наконечником. Игла помещалась в термостатируемую рубашку (металлическая камера с отверстием для погружения иглы),

подключенную к криостату для поддержания постоянной температуры исследуемой жидкости  $T_L = 20^{\circ}$ С. Начальный диаметр капли  $D_0 = 0,0021$  м. Для варьирования скорости взаимодействия капли с поверхностью  $U_0 = 1,2;2;3;3,6$  м/с терморубашка с иглой закреплялись на линейном координатном устройстве.

| Со-<br>став | <i>н</i> -Декан<br>(масс.%) | Масло<br>HVI-2<br>(масс.%) | Вода<br>(масс.%) | Span 80<br>(масс.%) | Плот-<br>ность,<br>кг/м <sup>3</sup> | Вяз-<br>кость,<br>мПа∙с | Поверх-<br>ностное<br>натяжение,<br>мН/м |
|-------------|-----------------------------|----------------------------|------------------|---------------------|--------------------------------------|-------------------------|------------------------------------------|
| C1          | 47                          | 30                         | 20               | 3                   | 829                                  | 3,20                    | 24,33±0.02                               |
| C2          | 37                          | 30                         | 30               | 3                   | 850                                  | 5,78                    | 24,63±0.02                               |
| C3          | 27                          | 30                         | 40               | 3                   | 867                                  | -                       | 25,13±0.01                               |
| C4          | 74                          | 20                         | 5                | 1                   | 792                                  | 1,70                    | $23.95 \pm 0.03$                         |
| C5          | 64                          | 60                         | 5                | 1                   | 826                                  | 4,36                    | $25.72 \pm 0.03$                         |
| C6          | _                           | 94                         | 5                | 1                   | 854                                  | 16,0                    | $28.04 \pm 0.03$                         |

Таблица 1. Компонентный состав и свойства исследуемых эмульсий

Определяемые характеристики включают коэффициент растекания  $\beta$ , коэффициент максимального растекания  $\beta_{max}$ , коэффициент высоты капли  $\zeta$ , коэффициент минимальной высоты капли  $\zeta_{min}$ , безразмерные максимальные высота  $H_{cor}^*$  и диаметр  $D_{cor}^*$  коронообразной структуры, интегральный параметр коронообразной структуры  $H_{cor}^{max} / D_{cor}^{max}$ , где  $H_{cor}^{max}$  и  $D_{cor}^{max}$  – максимальные высота и диаметр, м, соответственно.

В исследовании при пленочном испарении капель рассматриваемых жидкостей, взаимодействующих с нагретой до  $T_w = 20-80^{\circ}$ С поверхностью, не наблюдалось заметного влияния нагрева на  $\beta$ . Это может быть связано с несущественным изменением реологических и поверхностно-активных свойств исследуемых жидкостей в окрестностях пограничного слоя и в целом соответствующих движущих сил процесса растекания в узком диапазоне температур. В то же время, с увеличением числа Вебера *We* во всех случаях увеличивался коэффициент максимального растекания  $\beta_{max}$ . Одновременно с этим выявлено, что  $\beta_{max}$  в основном определяется соотношениями сил в рамках числа Рейнольдса *Re* и хорошо описывается известным поведением  $Re^{1/5}$  для капель однородных однофазных жидкостей [1]. Для того, чтобы одновременно учесть влияние сил вязкости, поверхностного натяжения и инерции в поведении коэффициента  $\beta_{max}$ , введен безразмерный параметр *We/Oh* (рисунок 1*a*).

Минимальная высота растекающейся капли  $h_{\min}$  учтена с помощью интегрального параметра максимального растекания  $\zeta_{\min}/\beta_{\max}$ . Как и в случае  $\beta_{\max}$ , установлена более выраженная зависимость параметра  $\zeta_{\min}/\beta_{\max}$  от числа Re, чем от числа We, а также аналогичным образом предложено масштабирование через комплексный параметр We/Oh (рисунок 1 $\delta$ ). Видно, что увеличение сил поверхностного натяжения и вязкости, выраженное снижением значений параметра We/Oh, отражается комплексно, по степенному закону на значениях  $\zeta_{\min}/\beta_{\max}$ . Введение интегрального параметра максимального растекания  $\zeta_{\min}/\beta_{\max}$  позволяет получить качественную оценку состояния капель однородных и неоднородных (эмульсий) жидкостей в момент максимального растекания при пленочном испарении в условиях пленочного испарения, а также при заданном начальном соотношении всех основных движущих сил процесса.



Рис. 1. Влияние комплексного параметра *We/Oh* на коэффициент максимального растекания (*a*) и интегрального параметра растекания капли (*б*)

В ходе исследований измерены геометрические характеристики коронообразной структуры при разбрызгивании [2] капель рассматриваемых эмульсий при We = 600 и We = 900. В экспериментах очевидно наблюдалась физически правомерная закономерность увеличения  $H_{cor}^*$  и  $D_{cor}^*$  при повышенном значении We (We=900). Также установлено, что интегральный параметр  $H_{cor}^{max}/D_{cor}^{max}$ удовлетворительно масштабируется за счет числа Re. Однако, более важным результатом является заметный тренд снижения значений параметров коронообразной структуры при росте температуры поверхности  $T_w^*$ . Таким образом, температура поверхности взаимодействия при конвективном теплообмене влияет на свойства жидкостей в капле, которые в свою очередь определяют время жизни «короны» как целостной структуры.

Для того, чтобы учесть влияние кондуктивного нагрева от поверхности взаимодействия на геометрические параметры коронообразной структуры наряду с явным вкладом вязкости жидкости использовано безразмерное число Бринкмана Br. Этот критерий определяет перенос теплоты от нагретой поверхности взаимодействия к растекающейся (движущейся) вязкой жидкости. На рисунке 2 наблюдается увеличение параметра  $D_{cor}^*$  при росте значений числа Br. Такое поведение объясняется тем, что рост числа Br связан с увеличением вязкости жидкости и снижением температуры поверхности взаимодействия. Последнее способствует более длительному существованию коронообразной структуры в виде целостной структуры; известно, что эмульгирование в целом задерживает разбрызгивание капель из-за доминирования сил вязкости [3]. Увеличение же вязкости жидкости служит проявлением большего сопротивления к необратимой деформации и последующей нестабильности коронообразной структуры.



Рис. 2. Максимальный диаметр коронообразной структуры в зависимости от числа *Br* 

Полученные результаты позволяют прогнозировать поведение растекающейся жидкости и коронообразной структуры после взаимодействия капель эмульсий с нагретой (20–80 °C) твердой поверхностью при *We*=100–900 за счет определения вклада энергии вязкой диссипации для потока растекающейся жидкости и энергии (теплоты), передаваемой жидкости от нагретой поверхности за счет молекулярной (тепловой) проводимости. *Исследование выполнено при поддержке гранта Президента РФ (MK-4574.2021.1.1).* 

## ЛИТЕРАТУРА:

- 1. CLANET C. et al. Maximal deformation of an impacting drop // J. Fluid Mech. Cambridge University Press, 2004. Vol. 517. P. 199–208.
- 2. Liang G., Mudawar I. Review of drop impact on heated walls // Int. J. Heat Mass Transf. Pergamon, 2017. Vol. 106. P. 103–126.
- 3. Kumar A., Mandal D.K. Impact of emulsion drops on a solid surface: The effect of viscosity // Phys. Fluids. 2019. Vol. 31, № 102106.

Научный руководитель: М.В. Пискунов, к.ф.-м.н., доцент НОЦ И.Н. Бутакова ИШЭ ТПУ.

## ПРИМЕНЕНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ ДЛЯ ДИАГНОСТИРОВАНИЯ НЕФТЕПРОМЫСЛОВОГО ЭНЕРГОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ

И.С. Сухачев<sup>1</sup>, В.Р. Антропова<sup>2</sup>, В.В. Сушков<sup>3</sup> Тюменский индустриальный университет<sup>1,2</sup> Нижневартовский государственный университет<sup>3</sup>

Одними из наиболее энергоемких в нефтедобывающей отрасли являются процессы добычи нефти, особенно поддержание пластового давления (ППД) (22–25%) глубинно-насосная добыча (15–18%) и переработка попутного