alopf-

Рассказова Людмила Алексеевна

ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ МАГНИЙ- И КРЕМНИЙ-МОДИФИЦИРОВАННЫХ ГИДРОКСИАПАТИТОВ И БИОРЕЗОРБИРУЕМЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕРОВ МОЛОЧНОЙ КИСЛОТЫ

05.17.11 – Технология силикатных и тугоплавких неметаллических материалов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена на кафедре неорганической химии ФГАОУ ВО «Национального исследовательского Томского государственного университета»

Научный руководитель: Козик Владимир Васильевич

доктор технических наук, профессор

Официальные оппоненты: Комлев Владимир Сергеевич

доктор технических наук, ведущий научный сотрудник Института металлургии и материаловедения им. А.А. Байкова РАН, Лаборатория керамических композиционных

материалов, г. Москва

Зеличенко Елена Алексеевна

кандидат технических наук, доцент кафедры «Химия и технология материалов современной энергетики» Северского технологического института

НИЯУ «МИФИ», г. Северск

Ведущая организация: Институт общей и неорганической химии

им. Н.С. Курнакова Российской академии

наук, г. Москва

Защита состоится 22 декабря 2015 г. в 14.00 часов на заседании диссертационного совета Д 212.269.08 при ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: 634050, г. Томск, пр. Ленина, дом 43а, 117 аудитория.

С диссертацией можно ознакомиться в научно-технической библиотеке ФГАОУ ВО «Национального исследовательского Томского политехнического университета» и на сайте http://portal.tpu.ru/council/915/worklist.

Автореферат разослан «<u>05</u>» <u>11</u> 2015 г.

И.о. ученого секретаря диссертационного совета Д 212.269.08 д.т.н., доцент

иващ

Ивашкина Е.Н.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Биологическая совместимость, уникальная биоактивность, структурное и химическое подобие костной ткани человека позволяют синтетическому гидроксиапатиту $(Ca_{10}(PO_4)_6(OH)_2, \Gamma A)$ — аналогу неорганической компоненты костного материала — находить широкое применение в современной медицине и материаловедении.

Трудоемкость и длительность процессов жидкофазного синтеза ГА заставляют химиков и технологов проводить поиск новых методов его получения и разрабатывать упрощенные технологии синтеза ГА. Так, за последние 15 лет количество статей, посвященных разработкам новых методов синтеза ГА, возросло ~ в 3 раза. В этом плане преимущества применения сверхвысокочастотного (СВЧ) излучения при получении ГА очевидны: малая длительность синтеза, быстрый нагрев реакционной смеси, хорошая воспроизводимость, а также значительный выход и высокая степень чистоты продукта. Но материалы на основе чистого ГА в настоящее время имеют ограниченное что связано с его низкой растворимостью (и как следствие, резорбируемостью) в жидкостях организма, а также высокой хрупкостью. Для пеленаправленного получения новых биоматериалов на основе ГА с необходимым набором физико-химических характеристик и функциональных свойств новые возможности открываются при изоморфном замешении ГА биологически активными ионами и использовании полимерных композитов на его основе. Введение ионов Mg²⁺ и SiO_4^{4-} в структуру ГА позволяет управлять процессами биорезорбции, с одной стороны, и, с другой стороны, способствует формированию костного вещества на поверхности материала. Материалы на основе магний- и кремний-модифицированного ГА проявляют высокую биоактивность и резорбируемость, способствуют ускорению процессов биоминерализации и интеграции имплантатов в области костных дефектов.

Для приближения свойств ΓA к свойствам натуральной кости, которая представляет собой композит ΓA -коллаген, в настоящее время актуальна разработка полимерных композитов на основе ΓA . Особый интерес представляют полимеры молочной кислоты, что связано с их способностью к биодеградации в организме с оптимальной скоростью резорбции, нетоксичностью продуктов распада (CO_2 , H_2O) и высокой механической прочностью.

Работа выполнена в соответствии с научным направлением кафедры неорганической химии НИ ТГУ «Создание физико-химических принципов для целенаправленного синтеза и модифицирования композиционных и наноструктурных полифункциональных материалов» в рамках работы по темплану НИР ТГУ № 1.29.09. (2008–2013 г.); в рамках государственного задания Минобрнауки России (задание №11.801 2014/К) по теме «Создание фундаментальных основ получения нанокристаллических и стеклообразных материалов для катализа и биомедицины методами «мягкой химии»; при поддержке Фонда содействия развитию малых форм предприятий в научно-технической сфере (программа «УМНИК») в рамках проекта «Разработка экономичной методики СВЧ-синтеза порошков на основе гидроксиапатита, применяющегося в медицине» контракт № 11662/17207 от 05 апреля 2013 г.

<u>**Цель работы**</u> – разработка технологии получения и исследование физикохимических свойств биорезорбируемых материалов на основе синтезированного при СВЧ-воздействии модифицированного ГА и композитов немодифицированного ГА с полимерами молочной кислоты.

Для достижения поставленной цели решены следующие задачи:

• разработка и определение условий СВЧ-синтеза немодифицированного ГА; установление влияния СВЧ-излучения на фазовый состав, растворимость и физико-химические свойства ГА;

- синтез магний- и кремний- модифицированных гидроксиапатитов (MgГA и SiГA) с использованием CBЧ-излучения, исследование их качественного и количественного состава; определение влияния ионов ${\rm Mg}^{2+}$ и ${\rm SiO_4}^{4-}$ на дисперсность, растворимость порошков в физиологическом растворе (pH 7, 25 °C, ω (NaCl) = 0,9 %);
- установление влияния ионов Mg^{2+} и SiO_4^{4-} на кислотно-основные свойства поверхности ГА, способность $Mg\Gamma A$ и $Si\Gamma A$ формировать кальций-фосфатный слой (КФС) на своей поверхности в SBF-растворе (от англ. Simulated Body Fluid искусственная межтканевая жидкость) при 37 °С;
- установление состава и технологических режимов создания биорезорбируемых композитов на основе ГА и полимеров молочной кислоты низкой молекулярной массы (ПМК); исследование растворимости полученных композитов в физиологическом растворе и способности формировать КФС;
- разработка технологической схемы получения биосовместимых композитов на основе ГА и полимера молочной кислоты большой молекулярной массы (полилактид (ПЛ)); исследование их биосовместимости на клетках иммунной системы человека и способности формировать КФС на своей поверхности.

Научная новизна

- $\overline{1}$. Установлено, что синтез под воздействием СВЧ-излучения обеспечивает получение однофазных порошков ΓA , значительно сокращая время их синтеза, повышая дисперсность и растворимость порошков ΓA в физиологическом растворе. Показано, что суммарная концентрация ионов Ca^{2+} в насыщенных растворах увеличивается на 28 % в случае магний-модифицированного ΓA (Mg ΓA) и на 47 % в случае кремний-модифицированного ΓA (Si ΓA) по сравнению с немодифицированным ΓA , что объясняется микронапряжениями в кристаллической решетке ΓA за счет образования твердых растворов замещения и появлением вторичных фаз витлокита и ларнита.
- 2. Установлено, что на поверхности образцов ГА, MgГА и SiГА имеются льюисовские кислотные центры $(Ca^{2+}, Mg^{2+}, Si^{4+})$, сила и концентрация которых в образцах ион-модифицированных гидроксиапатитов убывает в следующем ряду: SiГА > MgГА > ГА, что что связано с бо́льшим значением электроотрицательностей магния и кремния относительно кальция.
- 3. Установлено, что получение композита на основе ГА и полимеров молочной кислоты низкой молекулярной массы происходит с формированием фазы СаНРО₄, наличие которой обуславливает повышенную относительно чистого ГА растворимость композита.
- 4. Установлена зависимость скорости роста кальций-фосфатного слоя на поверхности материалов при 37 °C в модельном SBF-растворе от состава материалов: $Si\Gamma A > Mg\Gamma A > \Gamma A \Gamma \Lambda$ -полилактид $> \Gamma A \Gamma \Lambda$ МК.

Теоретическая значимость работы заключается в развитии представлений о процессах и способах получения биосовместимых полимерных материалов, содержащих неорганический наполнитель; расширении представлений в области жидкофазного СВЧ-синтеза неорганических соединений; обобщении практических знаний о строении, функциональных свойствах и применении биорезорбируемых полимерных материалов на основе фосфатов кальция.

Практическая значимость работы

- 1. Разработана СВЧ-технология экспрессного получения порошков как чистого, так и магний-, кремний-модифицированного гидроксиапатитов, обладающих свойствами улучшенной биоактивности и резорбируемости.
- 2. Разработаны составы и технология получения биосовместимых материалов на основе ГА и полимеров молочной кислоты различных молекулярных масс, способствующие активному формированию КФС на своей поверхности.

3. Разработанная методика СВЧ-синтеза чистого, магний- и кремний-модифицированного гидроксиапатита включена в учебно-методическое пособие «Лабораторный практикум по курсу «Современный неорганический синтез. СВЧ-синтез фосфатов кальция (магистерская программа химического факультета НИ ТГУ «Химия твердого тела», направление подготовки 020100 – Химия).

Реализация работы. Материалы на основе ГА, полученные по разработанной технологии, апробированы в отделе врожденного иммунитета и толерантности, Институт трансфузионной медицины и иммунологии, медицинский факультет (г. Маннхайм, Германия), в отделе «Новые материалы для электротехнической и химической промышленности» и Лаборатории каталитических исследований Томского государственного университета, в лабораториях Института катализа им. Г.К. Борескова СО РАН (г. Новосибирск) (акты прилагаются).

<u>Личный вклад автора</u> состоит в формулировке научной проблемы, выявлении актуальных направлений исследований в результате анализа отечественной и зарубежной литературы по этой проблеме, постановке и организации эксперимента, проведении химических и физико-химических исследований, обработке результатов исследований и представлении их в виде докладов, тезисов, статей, патентных заявок на изобретения.

Апробация работы. По результатам диссертационных исследований были сделаны следующих всероссийских И международных IV Всероссийской конференции молодых ученых «Материаловедение, технологии и экология в третьем тысячелетии» (г. Томск, 2009), VI Всероссийской конференции «Физика и химия высокоэнергетических систем» (г. Томск, 2010), XI Всероссийской научно-практической конференции студентов и аспирантов «Химия и химическая технология в XXI веке» (г. Томск, 2010), Международной научно-практической конференции «Новые технологии создания и применения биокерамики восстановительной медицине» (г. Томск, 2010, 2012, 2013), І Международной Российско-Казахстанской конференции «Химия и химическая технология» (Томск, 2011), II Международной Казахстанско-Российской конференции «Химия и химическая технология» (г. Караганда, 2012), XIII Всероссийской научно-практической конференции с международным участием имени профессора Кулёва студентов и молодых ученых с международным участием «Химия и химическая технология в XXI веке» (г. Томск, 2012, 2013), Всероссийской конференции «Химия и химическая технология: достижения и перспективы» (г. Кемерово, 2012), Всероссийской с международным участием научной конференции «Полифункциональные химические материалы и технологии» (г. Томск, 2012, 2013, 2015), Шестой каргинской конференции «Полимеры 2014» (г. Москва, 2014), X конференции молодых ученых с международным участием «Современные проблемы науки о полимерах» (г. Санкт-Петербург, 2014), XI Международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук» (г. Томск, 2014, 2015).

На защиту выносятся:

- **1.** Условия экспрессного жидкофазного синтеза ΓA под воздействием СВЧ-излучения, позволяющего получать однофазные порошки ΓA с размером частиц 20–40 нм.
- **2.** Результаты исследования процессов формирования и свойств биорезорбируемых материалов на основе Mg- и Si-модифицированных ГА, синтезированных с использованием СВЧ-излучения.
- **3.** Технологическая схема создания биосовместимых композиционных материалов на основе ГА и полимеров молочной кислоты различной молекулярной массы.

<u>Структура и объем диссертации.</u> Работа состоит из введения, пяти глав, выводов, списка литературы из 250 наименований и 5 приложений. Диссертация изложена на 137 страницах, содержит 19 таблиц и 36 рисунков.

<u>Публикации.</u> По материалам диссертации опубликовано 30 печатных работ, включая 7 статей из перечня ВАК, 1 патент РФ на изобретение.

<u>Благодарности.</u> Автор выражает огромную благодарность главному научному консультанту к.х.н., доценту каф. неорг. химии ХФ ТГУ Н.М. Коротченко за поддержку и неоценимую и искреннюю помощь в планировании, получении и оформлении результатов диссертационной работы; д.ф.-м.н., доценту каф. физ.-кол. химии И.А. Курзиной за помощь в планировании и реализации эксперимента; руководителю (д.х.н., профессор А.Г. Филимошкин) и сотрудникам отдела полимеров и мономеров Лаборатории каталитических исследований за помощь в получении, обработке и интерпретации результатов диссертационной работы; руководителю (д.б.н., профессор Ю.Г. Кжышковска) и сотрудникам отдела врожденного иммунитета и толерантности Института трансфузионной медицины и иммунологии (г. Маннхайм, Германия); сотрудникам лаборатории кислотно-основного катализа Института катализа им. Г.К. Борескова (д.х.н., профессор Е.А. Пакштис; к.х.н. Т.В. Ларина) за помощь в получении и обработке результатов работы.

СОДЕРЖАНИЕ РАБОТЫ

Первая глава «Современные материалы для замены костной ткани. Состав, свойства и особенности их модифицирования» посвящена обзору отечественной и иностранной литературы по тематике работы. В ней рассмотрены различные уровни организации костной ткани, так как знание особенностей строения кости позволяет приблизить свойства материалов имплантатов к свойствам натуральной костной ткани. На основании литературных данных обобщены и сформулированы общие требования, предъявляемые в настоящее время к костным имплантатам. Представлена современная классификация фосфатов кальция (ФК) как наиболее подходящих для создания имплантатов материалов. Показаны свойства и способы получения ФК, в т.ч. подробно рассмотрены особенности синтеза ГА различными методами. Даны представления о структуре ГА и возможностях варьирования его свойств посредством модифицирования структуры различными ионами. Рассмотрены свойства синтетических полимеров, применяющихся для создания костных имплантатов для замены и восстановления поврежденной костной ткани, а также описаны их достоинства и недостатки. Показаны применения и особенности свойств композиционных материалов на основе синтетических и биологических полимеров, наполненных ФК, в частности ГА. Освещены аспекты взаимодействия наполнителя с полимерной матрицей: проблемы и возможные пути их решения.

Проанализированы сведения о современном состоянии исследований в области получения, исследования, практического использования биоматериалов на основе фосфатов кальция, в частности ГА, разработанных в ведущих научно-исследовательских центрах РФ: Институт металлургии и материаловедения им. А.А. Байкова (г. Москва); ХФ МГУ им. М.В. Ломоносова (г. Москва); Воронежский государственный университет (г. Воронеж), Национальный исследовательский Томский политехнический университет (г. Томск); Национальный исследовательский Томский государственный университет (г. Томск); Институт физики прочности и материаловедения (г. Томск); Северский технологический институт (г. Северск). Проанализированы современные результаты исследований, посвященных синтезу и изучению свойств ГА и композиционных материалов на его основе, полученных в зарубежных научно-исследовательских центрах Германии, Великобритании, Китая, Соединенных Штатов Америки, Японии и др.

Анализ современного состояния разработок позволил обосновать цель и задачи работы.

<u>Во второй главе</u> «Исходные вещества, методология и методы исследования» представлена структурно-методологическая схема диссертационной работы, даны

характеристика исходных веществ, обоснование использования СВЧ-излучения в ходе синтеза ГА и методы исследования свойств ГА и композитов на его основе.

Методы исследования. Для исследования качественного и количественного составов порошков ГА, композитов на его основе и их физико-химических свойств применены рентгенофазовый (XRD-6000), ИК-спектроскопический (Nicolet 6700, Shimadzu 8300), элементный (энергидисперсионные приставки к электронным микроскопам Zeiss Supra 55VP, Leo Supra 50VP, микроанализатор ShiftED 300) методы анализа. Морфологию поверхности, степень дисперсности, распределение неорганического наполнителя в полимерной матрице оценивали по микрофотографиям, полученным на сканирующих электронных микроскопах Carl Ziess NVision 40, Leo Supra 50VP, JEOL-7500FA, НІТАСНІ-3000. Удельную поверхность, объем и размер пор порошков измеряли на приборе TriStar II Micromeritics. Молекулярные массы полимеров определяли методом гель-проникающей хроматографии (ГПХ) на приборе GPC Agilent System 1100. Силу и концентрацию кислотно-основных центров оценивали методами адсорбции СО с помощью ИК-фурье-спектрометра FTIR 8300 и косвенно по каталитической активности материалов в реакции окислительного дегидрирования пропана на проточной установке. Способность материалов формировать КФС на своей поверхности в SBF-растворе (обладает рН и концентрацией неорганических ионов, близкими к концентрации в плазме крови человека) и растворимость ГА в физиологическом растворе изучали по данным трилонометрического титрования ионов Ca²⁺ в присутствии аммиачного буфера. Биосовместимость как наличие воспалительных реакций на материал и уровень выделившихся цитокинов устанавливали на клеточных культурах моноцитов с использованием метода иммуноферментного анализа (ИФА) с помощью электронного фотоколориметра Infinite 200 NanoQuant.

<u>В третьей главе</u> «Синтез и исследование свойств немодифицированного гидроксиапатита» описан метод синтеза немодифицированного ГА и влияние условий синтеза (мощность и время СВЧ-воздействия, время перемешивания реакционной смеси и выдерживания осадка в маточном растворе) на его фазовый и элементный состав.

Синтез ГА осуществляли в соответствии с уравнением реакции (1)

$$10Ca(NO_3)_2 + 6(NH_4)_2HPO_4 + 8NH_4OH \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 20NH_4NO_3$$
 (1)

из свежеприготовленных растворов четырехводного нитрата кальция (х.ч.), гидрофосфата аммония (х.ч.); для поддержания рН среды использовали гидроксид аммония (х.ч.).

Разработанная методика СВЧ-синтеза, позволяющая получать однофазные порошки ГА, включает в себя следующие этапы: приготовление растворов нитрата кальция $[C(Ca(NO_3)_2)=0,5\ \text{моль/л}]$ и гидрофосфата аммония $[C((NH_4)_2HPO_4)=0,3\ \text{моль/л}]$; смешивание их в объемах, необходимых для соблюдения стехиометрического соотношения Ca/P=1,67 при $pH\geq 10$; обработка смеси реагентов СВЧ-излучением (бытовая СВЧ-печь Samsung с частотой 2450 ГГц) в течение 30 мин (в расчете на объем смеси 200 мл), мощностью 100 Вт; отстаивание осадка в маточном растворе в течение 48 ч; фильтрование и промывание осадка спиртовым раствором; высушивание полученных осадков ГА на воздухе при 90 °C до постоянной массы; измельчение на мельнице, просеивание через сито с $d_{sq}=40\ \text{мкм}$ и термическую обработку при 800 °C в течение 1 ч.

Приведены результаты исследования влияния СВЧ-излучения на фазовый состав, дисперсность и растворимость ГА в физиологическом растворе при 20 и 37 °С (рН 7, ω (NaCl) = 0,9 %) в сравнении с ГА, полученным классическим жидкофазным методом (ГА_{ж/ф}). Классическая методика синтеза ГА включает в себя следующие стадии: медленное (по каплям) сливание растворов исходных реагентов, перемешивание при 60 °С в течение 7 ч, отстаивание в течение 48 ч реакционной смеси с целью созревания

осадка, фильтрование, высушивание при 90–100 °C в течение 15 ч, измельчение и термическую обработку при 800 °C в течение 1 ч.

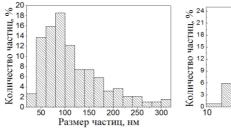
Показано, что использование СВЧ-излучения в ходе синтеза Γ А способствует значительной экономии трудовых и временных затрат (табл. 1) за счет замены стадий трудоемкого сливания растворов исходных реагентов и их длительного перемешивания при температуре 60 °C этапом обработки СВЧ-излучением смеси реагентов.

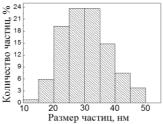
Установлено, что продукты СВЧ-синтеза представляют собой однофазные порошки ГА с ячейкой типа $Ca_5(PO_4)_3OH_{resc}$, соотношение Ca/P=1,66, в то время как $\Gamma A_{x/\phi}$, полученный по классической жидкофазной технологии, содержит $\sim 5\%$ примесной фазы β - $Ca_3(PO_4)_2$, соотношение Ca/P составляет 1,64.

Таблица 1 – Сравнение условий обычного синтеза ГА и синтеза с использованием СВЧ-излучения (рассчитано на 10 г порошка)

Стадия синтеза	Классический способ синтеза	СВЧ-синтез	
Время перемешивания реагентов	60 мин	1 мин	
Перемешивание реакционной смеси при 60 °C	7 ч	Не требуется	
Время синтеза до стадии отстаивания	~ 8 ч	~ 30 мин	

Размер частиц, удельную поверхность ($S_{yд}$) и степень дисперсности порошковых материалов можно изменять за счет применения СВЧ-воздействия в ходе их синтеза. Установлено, что воздействие СВЧ-излучения на реакционную смесь, полученную в результате смешения реагентов в стехиометрических соотношениях, способствует уменьшению размеров кристаллитов (областей когерентного рассеяния (ОКР)) и частиц ГА (рис. 1, табл. 2).


По результатам измерения плотности и удельной поверхности порошков ГА с использованием формулы (2)


$$S_{y\partial} = 6/\rho \cdot d \tag{2}$$

произведена оценка размеров частиц ($d_{\text{по Sy},0}$) в предположении о сферичности их формы. Здесь ρ – пикнометрическая плотность гидроксиапатита, г/см³.

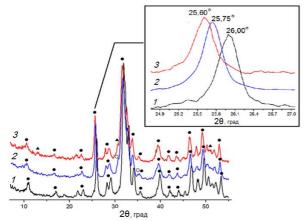
Таблица 2 – Размеры ОКР, частиц и величины удельной поверхности для порошков ГА, полученного по классической методике, и ГА, синтезированного при СВЧ-воздействии

Параметр диспе	рсности	$\Gamma A_{\varkappa/\Phi}$	ГА
d OKP ₀₀₂ , 1	НМ	24	15
$S_{\rm vg}$, ${\rm m}^2/{\rm r}$		65 ± 3	106
Суммарный объе	ем пор, см ³ /г	0,4	0,5
d по $_{ m Syg}$, ни	M	36	22
d (по СЭМ)	, HM	50-120	20–40
Растворимость порошко	ов в физиологиче	ском растворе при рН	$7, \omega \text{ (NaCl)} = 0.9 \%$
${C_{\rm Ca}}^{2+}\cdot 10^3$, моль/л	20 °C	$1,19 \pm 0,03$	$1,59 \pm 0,03$
	37 ℃	$1,33 \pm 0,02$	$1,74 \pm 0,04$

Рисунок 1 – Гистограммы количественного распределения частиц ГА, полученного по классической методике (слева), и ГА, синтезированного при СВЧ-воздействии (справа)

Значение плотности составило $(2,60\pm0,07)$ г/см³ для ГА, полученного обычным способом и $(2,58\pm0,07)$ г/см³ для ГА, полученного при СВЧ-воздействии. Показано, что растворимость ГА в физиологическом растворе при 20 и 37 °C (pH 7, ω (NaCl) = 0,9 %) примерно в 1,3 раза выше растворимости обычного ГА $_{\pi/\varphi}$, что объясняется уменьшением размеров частиц ГА, полученного при СВЧ-воздействии.

В четвертой главе «Модифицирование гидроксиапатита ионами ${\rm Mg^{2^+}}$ и ${\rm SiO_4^{4^-}}$ » исследовано влияние ионов ${\rm Mg^{2^+}}$ и ${\rm SiO_4^{4^-}}$ на физико-химические свойства ГА, полученного с использованием СВЧ-излучения. Для этой цели в качестве объектов исследования синтезированы образцы ${\rm Mg\Gamma A}$ (x=0,1) и ${\rm Si\Gamma A}$ (x=0,6). Значения $x_{\rm Mg}^{2^+}=0,1$ и $x_{\rm SiO_4}^{4^-}=0,6$ соответствуют минимальному содержанию ионов, при котором изменения фазового состава и физико-химических свойств (дисперсность, растворимость) становятся фиксируемо заметными:


$$(10-x)\text{Ca}(\text{NO}_3)_2 + 6(\text{NH}_4)_2\text{HPO}_4 + x\text{Mg}(\text{NO}_3)_2 + 8\text{NH}_4\text{OH} \rightarrow \\ \qquad \qquad \rightarrow \text{Ca}_{10-x}\text{Mg}_x(\text{PO}_4)_6(\text{OH})_2 + 6\text{H}_2\text{O} + 20\text{NH}_4\text{NO}_3, \qquad (3)$$
 где x (мол.дол.) = 0,1;
$$10\text{Ca}(\text{NO}_3)_2 + (6-x)(\text{NH}_4)_2\text{HPO}_4 + x\text{Si}(\text{C}_2\text{H}_5\text{O})_4 + (8-2x)\text{NH}_4\text{OH} \rightarrow \\ \qquad \qquad \rightarrow \text{Ca}_{10}(\text{PO}_4)_{6-x}(\text{SiO}_4)_x(\text{OH})_{2-x} + 4x\text{C}_2\text{H}_5\text{OH} + (6-x)\text{H}_2\text{O}, \qquad (4)$$
 гле $x = 0.6$.

Методом РФА показано (рис. 2, табл. 3), что основной фазой образцов MgГA и SiГA является гидроксиапатит с элементарной ячейкой $Ca_5(PO_4)_3OH_{resc}$.

Таблица 3 – Количественная оценка содержания фаз (мас. %) в продуктах синтеза чистого, магний- и кремний-модифицированных ГА, прокаленных при 800 °C

Фаза	Сингония	ГΑ	МgГА	SiΓA
Ca ₅ (PO ₄) ₃ OH	Гексагональная	98	85	79
$Ca_{10}(PO_4)_6(OH)_2$	Моноклинная	2	6	10
Витлокит $Ca_{2,71}Mg_{0,29}(PO_4)_2$	Гексагональная		9 $(\omega_{Mg} = 0.19 \text{ Mac. }\%)$	_
Ларнит Са ₂ SiO ₄	Гексагональная	-	-	$(\omega_{Si} = 1,85 \text{ Mac. \%})$

Установлено, что MgГA содержит вторую фазу витлокит в количестве ~ 9 масс. %, а SiГA – ларнит (~ 11 мас. %). Частичное встраивание ионов Mg²+ и SiO₄⁴- в структуру ГА с образованием твердых растворов подтверждается несколькими фактами: едвигом рефлексов на рентгенограммах в область меньших углов (рис. 2), появлением (до 10 мас. %) фазы ГА с пониженной симметрией $Ca_{10}(PO_4)_6(OH)_{2\text{мон}}$ (переход от гексагональной к моноклинной сингонии), а также изменением параметров элементарной ячейки основных фаз ГА (табл. 4).

Рисунок 2 -

Рентгенограммы продуктов синтеза:

кр. $I - \Gamma A$, кр. 2 – магний-модифицированный ΓA , кр. 3 – кремний-модифицированный ΓA ;

− гидроксиапатит
 Ca₅(PO₄)₃OH/
 Ca₁₀(PO₄)₆(OH)₂,

 \blacktriangle – ларнит Ca_2SiO_4 ,

o- витлокит $Ca_{2,71}Mg_{0,29}(PO_4)_2$

Таблица 4 – Параметры элементарной ячейки фаз $Ca_5(PO_4)_3OH$ и $Ca_{10}(PO_4)_6(OH)_2$ в составе продуктов синтеза чистого, магний- и кремний- модифицированных ΓA

	$Ca_5(PO_4)_3OH_{resc}$		$Ca_{10}(PO_4)_6(OH)_{2_{MOH}}$					
Образец	$a=b, \ {A}$	c, Å	V, Å ³	a, Å	b, Å	c, Å	β, °	V, Å ³
ГΑ	9,485	6,937	540,5	9,472	18,911	6,796	119,16	1063
МgГА	9,409	6,873	526,9	9,519	18,748	6,784	118,98	1060
SiΓA	9,424	6,883	529,4	9,407	18,808	6,784	118,98	1050

Уменьшение объема элементарной ячейки и снижение интенсивностей полос колебаний ОН-групп в ИК-спектре SiГA (рис. 3), вызванные замещением фосфатных и гидроксильных групп силикатными, говорит об образовании твердых растворов типа замещения.

ИК-спектры образцов, смешанных с КВг (массовая доля исследуемого вещества 1 %), показывают наличие полос поглощения, характерных для колебаний всех функциональных групп ГА: полосы $3570~{\rm cm}^{-1}$, соответствующие валентным колебаниям ОН-групп, валентным ($950-1200~{\rm cm}^{-1}$) и деформационным ($560-610~{\rm cm}^{-1}$) колебаниям фосфатных групп.

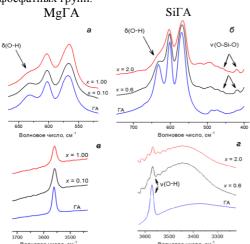


Рисунок 3 — Фрагменты ИКспектров чистого, магний- и кремний-модифицированных ΓA , характеризующие колебания связей ν (P–O) и ν (O–H): $a, \epsilon - Mg\Gamma A$; $\delta, \epsilon - Si\Gamma A$

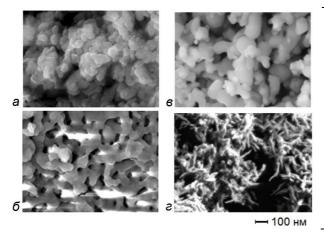
Уменьшение интенсивности полосы деформационных колебаний ОН-групп при 630 см $^{-1}$, проявляющееся в образцах MgГA с разным содержанием ионов магния, связано с уменьшением содержания фазы ГА Са $_5(PO_4)_3OH$ при одновременном увеличении содержания фазы витлокита Са $_{2,71}Mg_{0,29}(PO_4)_2$. Уменьшение интенсивности полос валентных (при 3570 см $^{-1}$) и деформационных (при 630 см $^{-1}$) колебаний ОН-групп, проявляющееся в образцах SiГA с разным содержанием ионов кремния, косвенно подтверждает частичное встраивание SiO $_4$ 4 - ионов в структуру ГА.

Заряд SiO_4^{4-} -иона выше заряда иона PO_4^{3-} , поэтому при образовании твердого раствора замещения происходит компенсация заряда посредством участия ОН⁻-групп согласно механизму гетеровалентного замещения: $SiO_4^{4-} \Rightarrow PO_4^{3-} + OH^-$.

Заниженное содержание элементов кремния и магния в составе порошков $Mg\Gamma A$ и $Si\Gamma A$, определенное по результатам элементного анализа (табл. 5), по-видимому, связано с тем, что ионы Mg^{2+} и SiO_4^{4-} частично остаются в маточном растворе в ходе жидкофазного синтеза образцов.

Таблица 5 – Содержание элементов Mg и Si в магний- и кремний-модифицированных ГА

SiΓA				ГА				
ω(Si), мас	2. %	Ca/(P+Si)	ω(Mg), мас. %		ω(Mg), мас. %		(Ca+Mg)/P	Ca/P
Практ.	Teop.	1.72	Практ.	Teop.	1 61	1 66		
$1,51 \pm 0,10$	1,69	1,72	$0,20 \pm 0,03$	0,24	1,61	1,66		


Количественная оценка состава образцов MgГA и SiГA, полученная по результатам $P\Phi A$ (табл. 3) и PCMA (табл. 5), позволяет предполагать, что в составе порошков значительная часть ионов Mg^{2+} и SiO₄⁴⁻ присутствует в составе вторичных фаз (витлокит и ларнит соответственно). Об этом также свидетельствует изменение соотношения Ca/P, которое в стехиометрическом ГА составляет 1,67 и сохраняется постоянным при условии полного изоморфного замещения ионов кристаллической решетки ГА ионами Mg^{2+} и SiO₄⁴⁻.

Модифицирование ГА ионами ${\rm Mg}^{2+}$ и ${\rm SiO_4}^{4-}$ приводит к изменению морфологии, размеров частиц, удельной поверхности и степени дисперсности образцов (рис. 4, табл. 6).

Таблица 6 – Размеры ОКР, частиц и величины удельной поверхности продуктов синтеза: чистого, магний- и кремний-модифицированных ГА

Параметр микро	оструктуры	ГА	МgГА	SiΓA		
d OKP ₀₀₂	, HM	30	40	35		
S_{yz} , M^2	/Γ	106 ± 5	74 ± 4	84 ± 4		
Суммарный объ	ем пор, см ³ /г	0,40	0,41	0,33		
ρ, г/см	1 ³	$2,54 \pm 0,05$	$2,56 \pm 0,05$	$2,58 \pm 0,07$		
$d_{ m no\ Syg}$, нм		22	32	28		
Раство	Растворимость порошков в физиологическом растворе при					
pH 7, ω (NaCl) = 0,9 %						
$C_{\text{Ca}}^{2+} \cdot 10^3$, моль/л	20 °C	$1,59 \pm 0,03$	$2,04 \pm 0,07$	$2,35 \pm 0,20$		
	37 °C	$1,72 \pm 0,12$	$2,19 \pm 0,12$	$2,26 \pm 0,15$		

Видно, что дисперсность и величина удельной поверхности модифицированных ΓA ниже, а размер его частиц выше относительно незамещенного ΓA , что связано с агрегацией и слипанием частиц модифицированных ΓA .

Рисунок 4 -

Микрофотографии поверхности порошков: $a - \Gamma A$, полученного по классической методике; $\delta - \Gamma A$, синтезированного при СВЧ-воздействии; ϵ – магний-модифицированного ΓA , ϵ – кремний-модифицированного ΓA . \times 200 000

Поверхностные характеристики важны при изучении свойств биоматериалов, так как от них зависят такие жизненно важные процессы, как адгезия белков, клеток и биорезорбируемость материалов при вживлении имплантатов в организм. Показано, что на поверхности образцов ГА, MgГА и SiГA имеются льюисовские кислотные центры (ЛКЦ), вероятно, координационно ненасыщенные катионы Ca^{2+} , Mg^{2+} (в образцах MgГА) и Si^{4+} (в образцах SiГA), характеризующиеся частотами колебаний СО при 2150–2170 см $^{-1}$. Сила ЛКЦ и их концентрация в образцах ион-модифицированных ГА увеличиваются в следующем ряду: ГA < MgГA < SiГA, о чем свидетельствует сдвиг полос поглощения СО в область бо́льших частот (рис. 5) и увеличение ее интенсивности.

Увеличение силы ЛКЦ связано с бо́льшим значением электроотрицательностей Mg и Si относительно Ca, а также, возможно, с появлением границ раздела фаз в модифицированных порошках ΓA , способствующим упрощенной к поверхности ΓA диффузией молекул CO. Усиление ЛКЦ в случае $Si\Gamma A$ также может быть связано с наличием вакантных орбиталей 3d-подуровня у атома кремния, выступающих в качестве акцептора неподеленных электронных пар молекул CO.

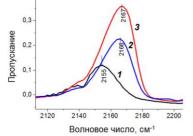


Рисунок 5 — ИК-спектры адсорбированного при -196 °С СО на поверхности продуктов синтеза: кр. $I - \Gamma A$,

кр. 2 — магний-модифицированного ΓA , кр. 3 — кремний-модифицированного ΓA

Кислотно-основные свойства поверхности можно дополнительно оценить при изучении каталитической активности материалов. Каталитическую активность образцов определяли в ходе реакции окислительного дегидрирования пропана при температурах 350-550 °C в присутствии Γ A, Mg Γ A и Si Γ A в качестве катализаторов. Ряд активности не совпадает с рядом силы кислотных центров, что может указывать на то, что в окислительном дегидрировании пропана больший вклад вносят основные центры. Ожидаемый ряд силы основных центров (ОН-группы) для полученных образцов Mg Γ A > Si Γ A, и этот ряд хорошо коррелирует с рядом каталитической активности (табл. 7).

Таблица 7 – Данные каталитических испытаний при температуре 550 °C исследованных образцов гидроксиапатитов

Образец	ΓА	SiΓA	МgГА
Конверсия пропана,%	9,4	9,3	17,1
Селективность образования пропилена + этилена,%	17	13	57

Биомиметические исследования образцов ГА, MgГА и SiГА проводили согласно методике, предложенной Кокубо, путем выдерживания изготовленных прессованием подложек в виде таблеток диаметром 5 мм ($S = 220 \text{ мм}^2$) в модельном SBF-растворе, который по своему минеральному составу и концентрации ионов идентичен плазме крови человека. Таблетки выдерживали в SBF растворе при 37 °C в течение 28 сут с ежедневным обновлением раствора. Так как селективное определение ионов Ca²⁺ методом трилонометрического титрования в присутствии ионов Mg²⁺ затруднительно (константы устойчивости комплексов кальция и магния с ЭДТА близки по значениям $1gK [10.7 для CaY^{2-} и 8.7 для MgY^{2-}])$, то скорость формирования КФС на поверхности подложек оценивали по уменьшению суммарной концентрации ионов кальция и магния в SBF-растворе. По результатам измерений концентрации ионов Ca^{2+} и Mg^{2+} в растворе строили кривые их накопления на поверхностях подложек из SBF-раствора ($\Delta m/V$, r/л – τ , сут) (рис. 6). На поверхности чистого Γ А адсорбция ионов Ca^{2+} и Mg^{2+} из SBF раствора идет медленнее, чем на поверхностях модифицированных ГА, что связано с усилением кислотных свойств поверхности модифицированных ГА и появлением границ раздела фаз, вследствие чего диффузия и адсорбция противоионов из SBF-раствора проходит быстрее.

Морфологию поверхности подложек со сформированным КФС исследовали с помощью сканирующей электронной микроскопии, наглядно подтвердившей результаты биомиметических исследований. Формирование КФС на подложках ГА, SiГА и MgГА (рис. 7) происходит уже через 14 сут выдерживания их в SBF-растворе. К 28 сут наличие КФС становится явным, размер зерен фосфатов кальция на поверхностном слое новосформированного КФС составляет 2-7 мкм. По результатам РСМА поверхности исходных таблеток и полученных после 28 дней выдерживания их в SBF-растворе определено, что в составе исходных образцов соотношение Ca/P > 1, в то время как в составе новосформированного КФС $\text{Ca/P} \approx 1$, что позволяет предположить формирование кислого фосфата кальция CaHPO_4 , являющегося по литературным данным предшественником формирования ГА.

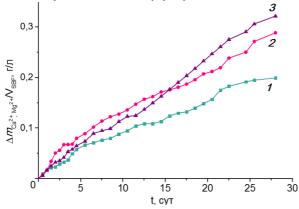
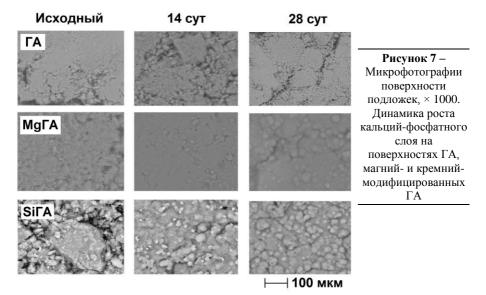
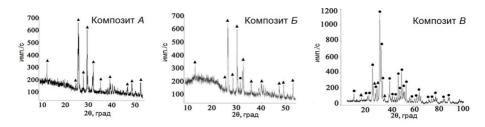



Рисунок 6 – Кривые накопления ионов Ca^{2+} и Mg^{2+} из SBF-раствора на поверхностях: кр. $I - \Gamma A$, кр. 2 – магниймодифицированного ΓA , кр. 3 – кремниймодифицированного ΓA

<u>Пятая глава</u> «Исследование композиционных материалов на основе гидроксиапатита и полимеров молочной кислоты» посвящена определению условий получения и разработке технологической схемы создания композитов на основе ГА и полимеров молочной кислоты различной молекулярной массы, установлению состава композитов и исследованию их биосовместимости и биомиметических свойств.

Получение композитов на основе ГА *и полимеров молочной кислоты низкой молекулярной массы* проводили в роторном испарителе (Hei-VAP) при давлении 75 мм.рт.ст., в течение 5 ч. Композиты ГА-ПМК получали *in situ* в процессе поликонденсации молочной кислоты, протекающей по схеме (5),

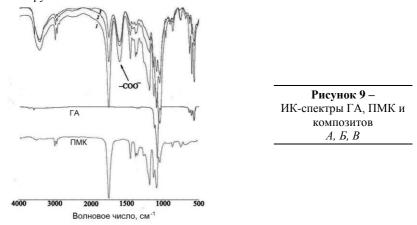

$$x \text{ HO} - \text{CH} - \text{C} \longrightarrow \text{H} - \text{O} - \text{CH} - \text{C} \longrightarrow \text{OH} + (x-1) \text{ H}_2\text{O}$$
 (5)

путем добавления порошка ΓA к раствору молочной кислоты, в котором предварительно растворяли n-TCK (катализатор поликонденсации).

Изменением массового соотношения исходного ГА и образующегося количества ПМК в соответствии с предварительным расчетом получали композиты следующих составов:

Условное обозначение	Композит $\it A$	Композит \mathcal{B}	Композит <i>В</i>
Содержание (мас. %) ГА _{исх} /ПМК	25/75	50/50	75/25

Основной кристаллической фазой композита A по результатам рентгенофазового анализа (рис. 8) является гидрофосфат кальция, композиты E и E содержат две фазы – гидроксиапатит E СаE С

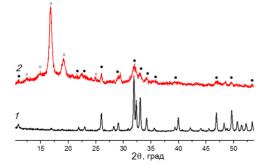

Рисунок 8 – Рентгенограммы композитов *Б* и *B*: • – $Ca_5(PO_4)_3OH$, \blacktriangle – $CaHPO_4$

Результаты количественной оценки содержания представлены в табл. 8.

Таблица 8 — Соотношение Са/Р и количественное содержание фаз в составе композитов A, B, B

Композит	ω (Ca ₅ (PO ₄) ₃ OH), мас. %	ω (CaHPO ₄), мас. %	Са/РФК	Са/Рпм	Са/Рсред
A	0	100	1,08	1,05	1,07
Б	32	68	1,46	1,37	1,42
В	83	17	1,42	1,47	1,45

Анализ ИК спектров композита в сравнении с чистыми ГА и ПМК (рис. 9) показывает появление новых интенсивных полос в области 1630-1580 см⁻¹, относящихся к колебаниям группы –СОО⁻.


Результаты РФА и ИК-спектроскопии позволяют предложить следующую схему образования гидрофосфата кальция при взаимодействии ГА и молочной кислоты в момент ее поликонденсации:

Отсутствие фазы лактата кальция в составе композитов, по-видимому, связано с образованием олигокальциевой соли молочной кислоты. С целью сохранения фазы ΓA в составе полимерных композитов в качестве полимерной матрицы был взят *полимер молочной кислоты бо́льшей молекулярной массы* (полилактид, ΠJ), полученный из L-

лактида (M (ПЛ) = 60000, предоставлен ЛКИ, «Отдел полимеров и мономеров»). Актуальность применения ПЛ в качестве полимерной составляющей композитов обусловлена оптимальной скоростью его биодеградации в жидкостях организма и нетоксичностью продуктов его распада (CO_2 и H_2O). Находясь в составе композита, ПЛ придает ему гибкость и эластичность (подобно коллагену, присутствующему в природной костной ткани), которые практически отсутствуют у ГА и других фосфатов кальция.

Композит ГА-ПЛ в виде пленок получали смешением раствора ПЛ в хлороформе и порошка ГА, затем полученную суспензию обрабатывали ультразвуком с частотой 40кГц и высушивали до полного испарения растворителя при комнатной температуре.

Результаты РФА полученных композитов ГА-ПЛ показали наличие фазы ГА с ячейкой типа $Ca_5(PO_4)_3OH_{resc}$, примесных фаз фосфатов кальция не обнаружено (рис.10).

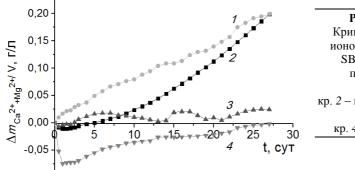
Рисунок 10 – Рентгенограммы: $\kappa p. \ I - \Gamma A;$

кр. 2 – композит ГА-полилактид;

Значения общей концентрации ионов ${\rm Ca}^{2^+}$ (моль/л) в физиологическом растворе, насыщенном ионами кальция, в результате длительного (в течение 7 суток) выдерживания в нем $\Gamma {\rm A}$ и полимерных композитов позволяют судить об ожидаемой резорбируемости композитов в среде *in vivo*:

	Образец	ГΑ	Композит A	Композит \mathcal{F}	Композит B	ГА-ПЛ
_	$C_{Ca}^{2+} \cdot 10^3$, моль/л	$1,59 \pm 0,03$	$4,45 \pm 0,09$	$7,05 \pm 0,11$	$3,39 \pm 0,08$	$0,38 \pm 0,01$

Общая растворимость фосфатов кальция в составе композитов A, B, B в 2–4 раза выше растворимости чистого Γ A, что связано со вкладом фазы $CaHPO_4$, растворимость которой значительно выше растворимости Γ A (при 25 °C $p\Pi P_{\Gamma A} = 58,6$; $p\Pi P_{CaHPO4} = 6,9$). При этом значение концентрации ионов Ca^{2+} в физиологическом растворе композита Γ A-ПЛ ниже, чем у Γ A и композитов A, B, B. Это, по-видимому, связано с тем, что Π Л «блокирует» частицы Γ A, затрудняя выход свободных ионов кальция Γ 0 их поверхности в раствор.


Таким образом, количественная оценка фазового состава и растворимости композитов A, B, B позволяет рекомендовать композит B для дальнейшего исследования его свойств с перспективой применения в качестве костных заменителей. Композит B содержит ~ 83 мас. % (по отношению к другим кристаллическим фазам) ΓA , обеспечивающего материалу механическую прочность и остеокондуктивность, в то же время содержание ~ 17 мас.% ΓA 0 способствует увеличению общей резорбируемости материала.

Анализ кинетических кривых, выполненный по результатам SBF-исследований, позволяет отметить следующие факты:

1) На поверхности чистого ГА (рис.11, кривая I) происходит активная адсорбция ионов $\mathrm{Ca^{2+}}$ и $\mathrm{Mg^{2+}}$ из SBF-раствора в течение всего времени выдерживания подложек в растворе. Скорость формирования КФС на поверхности чистого ГА выше, чем на

поверхностях композитов ПЛ и B, о чем свидетельствует бо́льшее значение угла наклона зависимости кривой I.

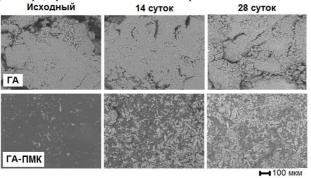

- 2) Проявление повышенной растворимости ГА в составе композита ГА-ПЛ (рис. 11, кривая 2) в первые 2–3 сут, по-видимому, связано со взаимодействием его с молекулами молочной кислоты, образующимися в ходе гидролиза ПЛ в SBF-растворе.
- 3) На поверхности чистого ПЛ (рис. 11, кривая 3) происходят незначительные процессы «адсорбции-десорбции» ионов кальция из SBF-раствора, о чем свидетельствуют небольшие скачки концентрации ионов ${\rm Ca}^{2^+}$ и ${\rm Mg}^{2^+}$ в растворе.
- 4) Заметная убыль ионов кальция с поверхности композита B (рис. 11, кривая 4) в первые 48 часов выдерживания его в растворе обусловлена относительно высокой растворимостью гидрофосфата кальция, входящего в состав композита; затем, начиная со вторых суток, происходит адсорбция ионов кальция из раствора на поверхности.

Рисунок 11 — Кривые накопления ионов Ca^{2+} и Mg^{2+} из SBF-раствора на поверхности: кр. $I - \Gamma A$, кр. 2 — композита ΓA - ΠJ , кр. 3 — ΠJ , кр. 4 — композита B

Данные СЭМ (рис. 12) наглядно подтверждают результаты биомиметических исследований и свидетельствуют о формировании КФС на подложках ГА и композита ГА-ПМК, который становится заметным уже через 14 сут выдерживания их в SBF растворе.

На электронных микрофотографиях подложек композита ГА-ПЛ (рис. 13) видно, что формирование КФС начинает происходить уже через 7 сут выдерживания их в SBF растворе, при этом на чистой полимерной подложке наблюдается отсутствие КФС.

Рисунок 12 — Микрофотографии поверхности подложек, увеличение 3000. Динамика роста КФС на поверхностях ГА и композита ГА- полимер молочной кислоты (композит В)

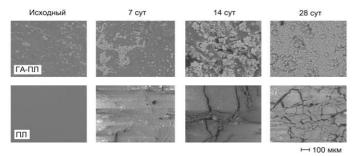
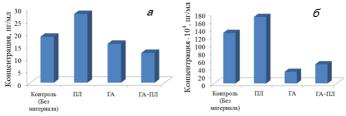
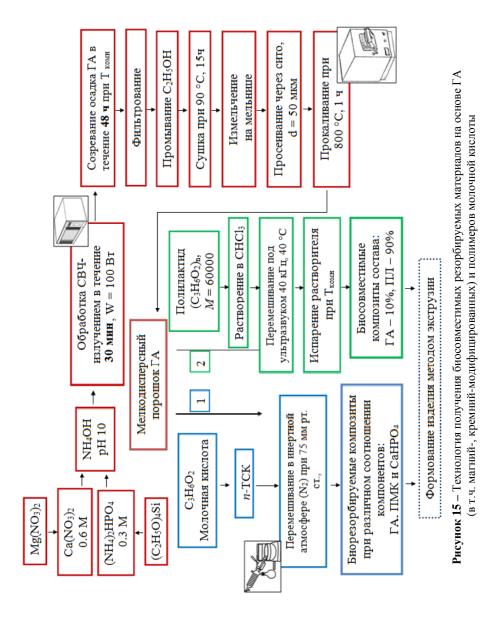


Рисунок 13 — Микрофотографии поверхности подложек, × 3000. Динамика роста КФС на поверхностях ПЛ и композита ГА-ПЛ


Биосовместимость и определение наличия воспалительных реакций (провоспалительная активность) в присутствии материалов Γ A, Π Л и Π Л- Γ A, сформированных прессованием в виде таблеток, изучали на клеточно-опосредованный иммунный ответ индивидуальных доноров *in vitro*, используя клетки иммунной системы человека (CD14 $^+$ моноциты).

Концентрация и тип выделившихся цитокинов (пептидные информационные молекулы, участвующие в формировании и регуляции защитных реакций организма, отвечающие за эффективность протекания иммунных реакций) определяют наличие воспалительных реакций, вызываемых материалом. По механизму действия цитокины можно разделить на следующие группы:

- провоспалительные, обеспечивающие мобилизацию воспалительного ответа (ИЛ-1,2,6,8, ФНОα, интерферон γ). Выделение провоспалительных цитокинов вызывает формирование очага воспаления.
- противовоспалительные, ограничивающие развитие воспаления (ИЛ-4,10). Одной из причин выделения цитокинов противовоспалительного типа может служить наличие противовоспалительных свойств у материала.


С помощью клеток иммунной системы человека на примере одного донора в ходе пилотного эксперимента оценены свойства биосовместимости материалов ГА, ПЛ и ГА-ПЛ. Высокий уровень провоспалительных цитокинов (как правило, более 30–40 пкг/мл) является показателем протекания воспалительного процесса. Уровень интерлейкина ИЛ-4 повышается при любых воспалительных процессах. Результаты ИФА представлены на рис. 14.

Видно, что незначительное выделение цитокинов провоспалительного типа M1 (~ 25 –35~ пкг/мл) наблюдается в контрольном образце (без материала), а также в присутствии ΓA , $\Pi Л$ и композита ΓA - $\Pi Л$. Выделению противовоспалительных цитокинов типа M2 способствует $\Pi Л$ на 6-й день культивирования, что может свидетельствовать о проявлении потенциальных противовоспалительных свойств полимерного материала.

Рисунок 14 – Влияние ПЛ, ГА и композита ГА-ПЛ на выделение макрофагами: a – ФНО- α в присутствии провоспалительного цитокина ИНФ- γ ;

б – ССЛ18 в присутствии противовоспалительного цитокина ИЛ-4.

Таким образом, полученные по разработанной схеме (рис. 15) композиты на основе ГА и полимеров молочной кислоты могут быть рекомендованы для дальнейшего исследования их в качестве биосовместимых материалов для создания костных имплантатов.

выводы

- 1. Применение СВЧ-излучения в ходе жидкофазного синтеза гидроксиапатита (ГА) значительно снижает время его получения и позволяет синтезировать однофазные порошки ГА, влияя на его свойства: уменьшается средний размер частиц от 52 до 22 нм, увеличиваются однородность частиц по форме и степень полидисперсности порошков в интервалах от 50–120 до 20–40 нм; удельная поверхность порошков от 44 до 106 м²/г; растворимость порошков в физиологическом растворе ($C_{\rm ca}^{2+}{}_{nac}$, моль/л) от $(1,19\pm0,03)\cdot10^{-3}$ до $(1,59\pm0,03)\cdot10^{-3}$ при 20 °C и от $(1,33\pm0,02)\cdot10^{-3}$ до $(1,74\pm0,04)\cdot10^{-3}$ при 37 °C.
- **2.** Синтез ГА в присутствии ионов ${\rm Mg}^{2+}$ и ${\rm SiO_4}^{4-}$ проходит с образованием бифазных продуктов. Ионы ${\rm Mg}^{2+}$ и ${\rm SiO_4}^{4-}$ присутствуют в составе продуктов синтеза как в виде вторичных фаз витлокит (магний-модифицированный ГА, ${\rm Mg}$ ГА) и ларнит (кремний-модифицированный ГА, ${\rm Si}$ ГА), так и в составе фазы ГА, образуя твердые растворы замещения.
- 3. В продуктах синтеза модифицированных ГА наблюдается увеличение размеров частиц относительно немодифицированного ГА. Дисперсность уменьшается в следующем ряду: ГА > SiГА > MgГА. На поверхности образцов ГА, MgГА и SiГА имеются льюисовские кислотные центры (Ca²+, Mg²+, Si³+), сила которых убывает в ряду материалов: SiГА > MgГА > ГА, что связано с бо́льшим значением электроотрицательностей магния и кремния относительно кальция. Данный ряд изменения кислотных свойств поверхности материалов сохраняется и при оценке скорости формирования кальций-фосфатного слоя на их поверхности из SBF-раствора при 37 °C.
- **4.** Формирование композита ГА-ПМК (полимер молочной кислоты низкой молекулярной массы) проходит с образованием фазы СаНРО₄ как продукта взаимодействия ГА и молочной кислоты непосредственно в момент ее поликонденсации. Формирование гидрофосфата кальция СаНРО₄ способствует увеличению растворимости композитов ГА-ПМК в физиологическом растворе в 2–4 раза относительно чистого ГА.
- 5. Разработанная технология получения биорезорбируемых композитов на основе ΓA и полимеров молочной кислоты высокой молекулярной массы (полилактид, $\Pi \Pi$) с массовым соотношением компонентов $\omega(\Gamma A)$: $\omega(\Pi \Pi)=10$: 90 позволяет сохранять фазовый состав исходных компонентов и однородное распределение частиц ΓA в полимерной матрице.
- **6.** Скорость формирования кальций-фосфатного слоя на поверхности материалов при 37 °C в модельном SBF-растворе зависит от состава материалов: $Si\Gamma A > Mg\Gamma A > \Gamma A > \Gamma A$ ΓA -ПЛІ > ΓA -ПМК. Уменьшение скорости роста кальций-фосфатного слоя на поверхности полимерных композитов связано с «блокирующим» действием полимера на частицы ΓA , являющиеся центрами адсорбции ионов Ca^{2+} из SBF-раствора.
- 7. Оценка способности материалов вызывать воспалительные реакции у клеток иммунной системы человека подтвердила, что материалы ГА, ПЛ и ГА-ПЛ не способствуют выделению провоспалительных цитокинов ($C_{\Phi HO-\alpha} < 25$ -35 пкг/мл) у исследуемого донора, что свидетельствует об отсутствии воспалительных реакций на материал. Присутствие ПЛ способствует выделению моноцитами противовоспалительных цитокинов ($C_{\text{ССЛ-18}} \approx 180 \cdot 10^4$ пкг/мл), что указывает на потенциальные противовоспалительные свойства этого материала.

По теме диссертации опубликованы следующие работы:

Статьи, опубликованные в журналах, входящих в перечень ВАК

- **1. Рассказова** Л.А. Синтез и исследование обычного и карбонатзамещенного гидроксиапатита / Т.С. Петровская, Л.А. **Рассказова**, К.С. Куляшова, Н.М. Коротченко, Ю.П. Шаркеев, В.В. Козик // Известия ТПУ. 2010. Т. 317, № 3. С. 86—90.
- **2.** Рассказова Л.А. СВЧ-синтез гидроксиапатита и физико-химическое исследование его свойств / Л.А. Рассказова, Н.М. Коротченко, Г.М. Зеер // Журнал прикладной химии. 2013. Т. 86, № 5. С. 744–748.
- **3.** Рассказова Л.А. Сравнение свойств немодифицированного и кремниймодифицированного гидроксиапатитов, полученных при микроволновом воздействии / Л.А. Рассказова, Н.М. Коротченко, В.В. Гузеев // Ползуновский вестник. 2013. № 1. С. 176—179.
- **4.** Рассказова Л.А. Сравнение свойств различных ионзамещенных гидроксиапатитов, полученных по СВЧ-технологии / Л.А. Рассказова, Н.М. Коротченко // Вестник КузГТУ. -2013. -№ 2. C. 88–90.
- **5. Рассказова** Л.А. Исследование свойств кремниймодифицированного гидроксиапатита с различным содержанием силикат-ионов, синтезированного в микроволновом поле / Л.А. Рассказова, Н.М. Коротченко, В.В. Козик, В.К. Иванов, Л.П. Шиляева // Химическая технология. 2013. № 12. С. 706—711.
- **Rasskazova L.A.** Study of the properties of silicamodified hydroxyapatite with various contents of silicate ions synthesized in microwave field / L.A Rasskazova, N.M. Korotchenko, V.V. Kozik, V.K. Ivanov, L.P. Shilyaeva // Theoretical Foundations of Chemical Engineering. 2014. Vol. 48, No 5. P. 682–686.
- **6. Rasskazova L.A.** Bioactivity and physico-chemical properties of composites on basis of hydroxyapatite with oligomers of lactic and glycolic acids / L.A. Rasskazova, D.N. Lytkina, Y.G. Shapovalova, V.V. Botvin, M.A. Pozdnyakov, I.V. Zhuk, A.G. Filimoshkin, N.M. Korotchenko, V.V. Kozik // Advanced Materials Research. 2015. Vol. 1085. P. 394–400.
- 7. Рассказова Л.А. Полученные *in situ* биоактивные композиты на основе фосфатов кальция и олигомеров молочной кислоты / Л.А. Рассказова, Д.Н. Лыткина, Е.Г. Шаповалова, В.В. Ботвин, М.А. Поздняков, А.Г. Филимошкин, Н.М. Коротченко, В.В. Козик // Журнал прикладной химии. -2015. -T. 88, № 4. -C.64-70.

Патенты

8. Патент 2507151 Российская Федерация, МПК С01В 25/32, Н05В 6/64, С01В 33/00. Способ получения кремниймодифицированного гидроксиапатита с использованием СВЧ-излучения / Н.М. Коротченко, Л.А. Рассказова; заявитель и патентообладатель ГОУ ВПО «Томский государственный университет». — Опубл. 20.02.2014, Бюл. № 5. — 9 с.

Другие публикации

- **9.** Рассказова Л.А. Синтез и методы исследования гидроксилапатита, имеющего важное значение для медицины / Л.А. Рассказова, К.С. Куляшова, Н.М. Коротченко // Материалы IV Всерос. конф. молодых ученых «Материаловедение, технологии и экология в третьем тысячелетии». Томск, 2009. С. 256–259.
- **10.** Рассказова Л.А. Синтез и определение растворимости карбонатзамещенного гидроксилапатита различного стехиометрического состава / Л.А. Рассказова, К.С. Куляшова, Н.М. Коротченко // Материалы VI Всерос. конф. «Физика и химия высокоэнергетических систем». Томск, 2010. С. 45–47.
- **11. Рассказова Л.А.** Структурные исследования немодифицированного и карбонатмодифицированного гидроксилапатитов / Л.А. Рассказова, К.С. Куляшова, Н.М. Коротченко // Материалы Междунар. науч.-практич. конф. «Новые технологии

- создания и применения биокерамики в восстановительной медицине». Томск, 2010. С.134–136.
- 12. Рассказова Л.А. Изучение свойств обычного и кремниймодифицированного гидроксиапатита, полученного по СВЧ-технологии / Л.А. Рассказова, Н.М. Коротченко // Материалы Общероссийской с международным участием науч. конф., посвященная 80-летию химического факультета ТГУ «Полифункциональные химические материалы и технологии». Томск, 2012. С. 83–85.
- 13. Рассказова Л.А. Создание и исследование биологически активных композитов на основе синтетического гидроксиапатита и олигомеров молочной кислоты / Л.А.Рассказова, Д.Н. Лыткина, Е.В. Шаповалова, М.А. Поздняков, В.В. Ботвин, Н.М. Коротченко, А.Г. Филимошкин, В.В. Козик // Материалы III Междунар. научларактич. конф. «Новые технологии создания и применения биокерамики в восстановительной медицине». Томск, 2013. С. 142–146.
- **14.** Рассказова Л.А. Создание биокомпозитов медицинского назначения на основе гидроксиапатита и олигомолочной кислоты / Л.А. Рассказова, Д.Н. Лыткина, Е.Г. Шаповалова, М.А. Поздняков, В.В. Ботвин // Материалы Всероссийской с междунар. участием научной конференции «Полифункциональные химические материалы и технологии». Томск, 2013. С. 73–75.
- **15. Рассказова** Л.А. Синтез наноразмерного гидроксиапатита с выгорающими добавками / Л.А. Рассказова, Н.М. Коротченко // Материалы Всерос. с международным участием науч. конф. «Полифункциональные химические материалы и технологии». Томск, 2013. С. 186–188.
- **16.** Рассказова Л.А. Получение биоактивных композитов *in situ* на основе олигомеров молочной кислоты, привитых на поверхность гидроксиапатита / Л.А. Рассказова, Д.Н. Лыткина, Е.Г. Шаповалова, М.А. Поздняков, В.В. Ботвин, К.В. Рубцов, И.В. Жук, Н.М. Коротченко, А.Г. Филимошкин // Сб. тез. стендовых докл. шестой каргинской конф. «Полимеры 2014». М.: Авторское изд-во, 2014. Т.2. С. 525.
- **17. Rasskazova L.A.** The question of bioactivity and physico-chemical properties of composites on the basis of hydroxyapatite with oligomers of lactic and glycolic acids / I.V. Zhuk, D.N. Lytkina, **L.A. Rasskazova** // Перспективы развития фундаментальных наук: труды XI Междунар. конф. студентов и молодых ученых. Томск: ТГУ, 2014. C. 356–358.
- **18. Рассказова** Л.А. Влияние ионных замещений на поверхностные свойства гидроксиапатита / Л.А. Рассказова, Н.М. Коротченко, И.В. Жук, В.В. Козик, Е.А. Паукштис // Материалы Междунар. науч. конф. «Полифункциональные химические материалы и технологии». Томск: ТГУ, 2015. Т. 1. С. 161–163.