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Abstract: In recent years, intelligent sensing has gained full attention because of its autonomous 1

decision-making ability to solve complex problems. Today, smart sensors complement and enhance 2

the capabilities of human beings and have been widely embraced in numerous application areas. 3

Artificial intelligence (AI) has made astounding growth in domains of natural language processing, 4

machine learning (ML), and computer vision. The methods based on AI enable a computer to 5

learn and monitor activities by sensing the source of information in a real-time environment. The 6

combination of these two technologies provides a promising solution in intelligent sensing. This 7

survey provides a comprehensive summary of recent research on AI-based algorithms for intelligent 8

sensing. This work also presents a comparative analysis of algorithms, models, influential parameters, 9

available datasets, applications and projects in the area of intelligent sensing. Furthermore, we present 10

a taxonomy of AI models along with the cutting edge approaches. Finally, we highlight challenges 11

and open issues, followed by the future research directions pertaining to this exciting and fast-moving 12

field. 13

Keywords: Artificial Intelligence; Machine Learning, Intelligent Sensing; Datasets; Neural Networks; 14

IoT ; Learning Algorithms. 15

1. INTRODUCTION 16

The term “Smart Sensor” was coined in the ’70s [1]. The word “Smart” was related 17

to the capability of microelectronic devices having operative intelligence features. The 18

improvements observed in the ’80s, especially those related to the area of sensor technology, 19

show perfection in signal extraction, real-time data transfer, and adaptability to the physi- 20

cal environment by sensors, which helps in fetching data that seemed to be inaccessible 21

previously. In the ’90s, intelligence was added to devices and more promising results were 22

observed in this area. The evolution in intelligence technology was due to the advancement 23

in computational technologies. Such intelligent devices possess three main features: i) 24

extraction of signal information, ii) signal processing, and iii) instruction execution. It 25

is interesting to observe that applied intelligence was also getting advancement at the 26

same time. In the 80’s machine learning and later in the 90’s deep-learning were also in 27

the progressive state. Artificial intelligence (AI) covers all the important technological 28

development in this domain, including RNN, CNN, Transfer Learning, Continual AI, etc. 29

Thus, both smart Sensors and AI are integrated to form intelligent sensing for the develop- 30

ment of smart applications. It is important to observe that nowadays sensors are not just 31
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used to extract information but are also involved in more complex tasks such as execution 32

of different instructions based on the pattern of data sequence. Indeed, we encounter 33

a vast amount of data in different forms on a daily basis. To extract useful information 34

from the plethora of data, smart sensors are designed that perceive the environment, make 35

decision, and draw conclusions. Intelligent sensing is important for various reasons. It 36

can be applied in different areas such as self-driving cars, autonomous flying droids, and 37

Amazon Kiva systems. 38

In light of recent successes, AI is a trending field in research areas of management 39

science [2], operational research [3], and technology [4]. There is a broad array of applica- 40

tions of AI, ranging from expert systems to computer vision, which improves the everyday 41

lives of ordinary people. For example, [5] investigated the application of machine learning 42

to medicine and reported the diagnostic performance and caution of machine learning in 43

dermatology, radiology, pathology, and microscopy. [6] examined the serious issues of 44

modern transport systems and how AI techniques can be used to tackle the issues. The 45

recent improvements in AI algorithms and computer hardware are expected to exceed 46

human intelligence shortly. The current research on AI, including machine learning (ML) 47

and deep learning (DL), uses real-time algorithms to enable machines to learn information 48

from the sensing parameters. Recently, several AI-based approaches have witnessed rapid 49

growth due to their sensing capability to learn feature representations for decision making 50

and control problems [7]. Furthermore, the critical aspect of AI is to design efficient learning 51

algorithms to unlock new possibilities in the field of intelligent sensing. Algorithms based 52

on AI have been successfully utilized in myriads of areas such as mobile applications [8], 53

social media analytics [9], healthcare [10], agriculture [11], manufacturing processes [12], 54

logistics [13] environmental engineering [14], and intelligent transportation systems [15]. 55
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Table 1. Recent survey articles in Intelligent Sensing.

Refer-
ence

Number
Year Technology Used Elucidation and

Comments Advantages Limitations

[16] 2019
IoT scenarios variables,
sensor analysis and appli-
cation analysis.

The details of emerging
IoT scenarios are dis-
cussed.

Classification is pre-
sented for analysis of
variables and sensors
in IoT scenarios that
will help data analysts
recognize the features
of IoT applications in a
better way.

The source (three pub-
lishers) and quantity of
papers reviewed (48) are
the main limitation of the
paper.

[17] 2019

Coverage models and
classification, network
life maximization, data
fusion, and reinforce-
ment learning-based
coverage optimization.

Methods for tackling the
network lifetime and
coverage optimization
issues of a heterogeneous
sensor network in ge-
ographically scattered
and resource-constrained
environments are dis-
cussed.

Extension of network life-
time and optimization of
coverage based on data
fusion and sensor collab-
oration are summarized
in the paper. Coverage
hole problems in realis-
tic WSNs are also ame-
liorated using reinforce-
ment learning (RL) ap-
proaches.

Some topics need further
elaboration, e.g., how
to elongate the lifetime
and optimize the cover-
age of a wireless sensor
network by various RL
methods such as cellular
learning automata.

[18] 2019

IoT data properties, fu-
sion in IoT, data fusion
requirements, smart grid,
smart home, and smart
transportation.

The data fusion helps to
eliminate the imperfect
data.

To evaluate performance
of existing data fusion
techniques, IoT data fu-
sion is employed as an es-
sential requirement.

The difference in data res-
olution, which affects the
accuracy, reliability and
privacy at some level, is
not achieved.

[19] 2019 Feature selection, Feature
fusion, adaptive fusion.

This survey is focused on
the area of feature fusion,
selection and adaptive
multi-view problems.

This paper discusses the
various feature selection
approaches to tackle mul-
tiview problems.

To select the important
features of unlabeled
data, unsupervised
feature selection faces
some problems.

[20] 2019

Region-based fusion
methods, evaluation
of the performance of
objective fusion.

Saliency map method is
found to be an evolving
technique for use in med-
ical image fusion.

The region partition al-
gorithms produce better
fusion results in medi-
cal image fusion applica-
tions.

Image segmentation is
not proper in region-
based image fusion meth-
ods. Limiting factors
are noise, misregistration,
and blur.

[21] 2019

Environmental monitor-
ing, autonomous sys-
tems for decommission-
ing monitoring, MAS sen-
sors, MAS data

Autonomy has changed
the ocean-based science
and monitoring of the
marine environment.

Marine autonomous sys-
tems reduce the human
risk of seagoing opera-
tions.

The main drawback of
autonomy is its inability
to collect physical sam-
ples in seabed sediments.

[22] 2019

Intelligent vehicle tech-
nologies, In-vehicle ap-
plied biometric grades,
cognitive and context-
aware intelligence.

This paper focused on im-
proving safety of vehicles
against theft using the se-
lection of biometrics.

Traffic and vehicle data
collection enhance the
decision-making in trans-
port systems.

This survey constrained
to address bio-metric
techniques used in
emerging applications
such as Vehicular Ad hoc
Network (VANET) and
self-driving cars.

[23] 2020
Bio-inspired Embodi-
ment, Design challenges
and planning

Discussion on major chal-
lenges in Intelligent sens-
ing for Bio-inspired Em-
bodiment based on dy-
namics, work mechanism
and technology involved

Activity skills and im-
plication for bio-inspired
robots using deep rein-
forcement learning, CNN
and other methods were
discussed.

Implication on robotic
hand grasping was dis-
cussed with explanation
of challenges and limita-
tion related to distortion
from senor nodes.

[24] 2020

6G networks with AI en-
abled Architectures for
knowledge and decision
making in telecommuni-
cation

Application areas for
6G based intelligent
networks and layers
based Intelligent sensing
network for various
applications.

Methods and application
for utilization AI technol-
ogy in the area of 6G net-
works including resource
management, traffic and
signal optimization.

Well discussed content
specifically on 6G cur-
rent trends and chal-
lenges focusing on net-
works and resource uti-
lization based on applica-
tions of 6g Network.
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1.1. Related Works 56

Many researchers have conducted surveys related to intelligent sensing models to 57

tackle challenging issues of particular applications and provide solutions to cope with exist- 58

ing vulnerabilities. However, most of the existing survey articles on intelligent sensing have 59

not explicitly focused on new methods based on AI and ML/DL for real-time applications 60

and associated research challenges. The survey in [25] was conducted from two viewpoints. 61

The first is the intelligent approaches based on AI to solve issues related to wireless sensor 62

networks (WSNs) and the second is to design intelligent applications that incorporate 63

sensor networks. In [26], the authors have discussed the research directions of AI 2.0 and 64

the new models based on AI technology. New forms of intelligent manufacturing systems 65

are also explored. Various AI algorithms are implemented as estimators (i.e., software 66

sensors) in chemical operating units and their advantages are shown. Practical implications 67

and limitations were also discussed for the proper design of AI-based estimators in [27]. In 68

[28], the authors have focused mainly on different intelligent techniques used in vehicular 69

applications and listed research challenges and issues in the integration of AI and vehicular 70

systems. In [29], the authors have discussed AI algorithms coupled with gas sensor arrays 71

(GSAs) embedded in robots as electronic noses to explore potential applications such as gas 72

explosive detection, environmental monitoring, beverage and food production & storage. 73

They also discussed the types of gas sensors, gas sensor limitations and possible solutions. 74

Another application based on intelligent sensing was given in [30] and [31]. They 75

focused on the use of ML and AI technology to fight the coronavirus pandemic. The studies 76

used AI-based embedded sensors to track the spread of COVID-19 infections and side 77

effects, thereby helping health professionals to diagnose common symptoms of the virus. 78

The article [32] surveys the future of healthcare technologies for H-IoT. It summarizes the 79

features of H-IoT systems based on generic IoT systems. 80

Several ML and DL methods were reviewed in [33] for big data applications together 81

with open issues and research directions. Different ML-based algorithms to address issues 82

of WSNs (i.e., congestion control, synchronization, and energy harvesting) were surveyed 83

in [34] and their drawbacks were discussed. An overview of current data mining and ML 84

techniques employed for activity recognition (AR) were presented in [35]. The authors 85

also discussed how an activity is captured using different sensors. In [36], the authors 86

reviewed how recent ML and DL algorithms can be coupled with sensor technologies for 87

particular sensing applications. They have also compared a new smart sensing system 88

based on ML with a conventional sensing system and discussed its future opportunities. 89

A comprehensive survey of various DL algorithms that can be applied to sensor data for 90

predictive maintenance was provided in [37]. [38] performs a comprehensive survey of the 91

applications of the DL models for different network layers, that includes data link layer, 92

physical layer, routing layer etc. Literature review in [39] is based on the ML algorithms, 93

which were used to solve the WSN issues in the period of 2002-2013. Also, this paper 94

investigates the ML solutions to enhance the functional behaviors of WSNs, for example, 95

quality of service (QoS) and data integrity. Table 1 summarizes some recent survey articles 96

in the field of intelligent sensing with their advantages and limitations. 97

1.2. Overview of Intelligent Sensing Elements 98

A smart sensor is a sensor that can detect an object’s information, and can learn, 99

judge, and process the data in the form of signals. It can calibrate automatically, collect 100

data, and compensate it. In the 1980s, the effort was focused on integrating computer 101

memory, signal processing circuit, interface circuit, and a microprocessor to one chip so 102

that the sensor can achieve certain AI capability [40]. Smart sensors have emerged due 103

to technological demands and feasibility [41]. The primary source is the sensing element, 104

which can trigger the sensing component to deliver a self-test facility. For this, a reference 105

voltage is applied to monitor the response of the sensor. Amplification is necessary, as most 106

of the sensors produce signals that are lower than signal levels of a digital processor. For 107

example, a piezoelectric sensor requires charge amplification, while resistive sensors need 108
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instrumentation amplification. Analog filtering is used to block the aliasing effect in the 109

data conversion stage. 110

The data conversion is associated with the digitization process, wherein analog signals 111

are converted into discrete signals [42]. In this stage, input from sensors is fed into the data 112

conversion unit to implement different forms of compensation. Signals in the frequency 113

domain like those from resonant sensors do not need conversion and can be fed directly 114

into a digital system. Digital processors are required to implement sensor compensation 115

like cross-sensitivity, linearization, offset, etc., for pattern recognition methods. Finally, 116

data communication unit sends signals to the sensor bus and deals with the passing and 117

receiving of data. 118

1.3. Contributions of This Work 119

To our knowledge, very little study in the form of review or survey in intelligent 120

sensing has been done by taking into consideration all of the key aspects, specifically 121

projects, application areas, state of the art approaches, datasets, and comparative analysis 122

of existing research works. Thus, this is the first work that comprises various algorithms, 123

approaches, and applications in these domains. Since all these techniques are essential for 124

the understanding of ML and AI, therefore, it is crucial to highlight their interconnection in 125

regards to intelligent sensing and its challenges. This work provides a systematic survey to 126

understand and expand the perspective of AI technologies in intelligent sensing through 127

different approaches to inspire and promote further research in the relevant areas. The 128

main contributions of this work are listed as follows: 129

• Comprehensive discussion of AI techniques, specifically ML and DL algorithms for 130

intelligent sensing - The most promising AI techniques, ML and DL algorithms, 131

are briefly reviewed in the context of intelligent sensing. We also discuss the key 132

factors that affect the efficiency of intelligent sensing and algorithms. Furthermore, 133

we highlight the lessons learned and pitfalls when ML and DL methods are used for 134

intelligent sensing. 135

• In-depth review of practical applications and datasets in intelligent sensing - We 136

discuss a broad array of applications that have used ML and DL algorithms and also 137

include a case study of intelligent sensing for pandemic monitoring and diagnosing. 138

We present various publicly available datasets that can be used in different domains 139

of intelligent sensing. 140

• Noteworthy projects based on the trending technologies - We enumerate several 141

ongoing research projects around the world that make use of and contribute toward 142

intelligent sensing. 143

• Challenges and future research directions - We highlight and discuss research chal- 144

lenges that need serious attention, along with possible future directions for the suc- 145

cessful merging of AI and intelligent sensing technologies. 146

147

Tables 2 and 3 show the research and reviews in the area of intelligent sensing with the 148

novelty components presented in this work. It is observed that most of the work available 149

in this domain is application-specific. The work presented in this paper covers an in-depth 150

review of various components such as the essential elements of intelligent sensing, machine 151

learning models, influential projects, datasets, and current technology trends such as future 152

citizenship, explainable AI, 6G and beyond, healthcare, and usefulness of intelligent sensing 153

in the pandemic. 154

The paper is structured as follows. In Section II, an overview of recent learning models 155

based on AI and used for intelligent sensing applications is presented. Key parameters that 156

affect the performance of intelligent sensing are also discussed. Section III describes the 157

datasets used for intelligent sensing. Section IV focuses on the numerous applications of 158

intelligent sensing and also presents lessons learned in relation to AI techniques. The key 159

challenges and future research opportunities are presented in Section V. Several ongoing 160

research projects based on AI technologies and intelligent sensing are summarized in 161
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Figure 1. Structure of the paper.
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Table 2. Comparative analysis of work available in the area of Intelligent sensing and contributions
presented in this paper.

Ref Title Areas addressed Areas not
addressed

Novel
contributions
of this work

[43] Bioinspired Embodi-
ment for Intelligent
Sensing and Dexterity
in Fine Manipulation:
A Survey

The operating mechanism,
categorization,
implications issues, and
methods for the industrial
embodiment of intelligent
sensing based on
bioinspired mechanism.

Communication
technology
Dark data handling
Performance analysis

Implementation of digital twins,
communication features, and detailed
discussion of AI approaches used in
intelligent sensing are presented in
this work

[44] Intelligent Sensing for
Citizen Science

Well presented work on
mobile devices with
embedded sensors using
existing communication
protocols

5G and 6G
communication
protocols
AI−inspired
communication
protocols
Projects and Database
in the area of intelligent
sensing

Future−generation communication
technology
AI−based algorithms and models
Future Citizenship are reviewed in
detail

[45] Toward Intelligent
Sensing: Interme-
diate Deep Feature
Compression

Well explained work
related to compactly
represented and
layer−wise deep learning
approach
Result−based analysis of
deep feature compression
Major emphasis on Visual
data

Nonvisual data
Machine learning
approaches
Industrial
Communication
protocols and ISM band
based communication
protocol for intelligent
sensing

Visual and nonvisual data
Smart assistive technology
Data security and privacy
Intelligent sensing in healthcare data
Both machine learning and deep
learning approaches are reviewed for
intelligent sensing algorithm

[46] Intelligent Sensing
Matrix Setting in
Cognitive Radio
Networks

Spectrum sensing
Cognitive radio
Sensing sequence
Well drafted work on
matrix setting for
cognitive radio includes
timing analysis

Intelligent sensing
related future
challenges
Application areas for
intelligent sensing
5 G and 6G
communication for
intelligent sensing

Learning models
Analysis of their advantages and
limitations
Detailed review on influential
parameters in intelligent sensing

[47] Industrial Internet:
A Survey on the En-
abling Technologies,
Applications, and
Challenges

Industrial Internet
Functional Safety
E−government
5C architecture

General public utilities,
beyond 5G
communication
Artificial intelligence in
future challenges

Industry 4.0
Communication applications in
intelligent sensing
Project and data set available for
intelligent sensing

[48] Blockchain−based Se-
cure and Intelligent
Sensing Scheme for
Autonomous Vehicles
Activity Tracking Be-
yond 5G Networks

Intelligent sensing and
tracking based on
blockchain using 5G and
beyond communication
The application area is
Autonomous Vehicle

Other application area
such as assistive
technology, health care
Smart cities, etc

Smart city environment, healthcare,
assistive technology are reviewed with
respect to intelligent sensing

[49] Intelligent Sensing in
Multiagent−Based
Wireless Sensor
Network for Bridge
Condition Monitoring
System

Wireless Sensor Networks
Multi−agent system
Artificial intelligence
Performance analysis
using case study

Review of practical
applications of
intelligent sensing
The data set in
intelligent sensing
More emphasis on
communication
technology

Reviews of projects and survey work
in the area of intelligent sensing
Covers all the aspects of intelligent
sensing such as future direction
challenges, learning models

[50] Intelligent sensing
and decision making
in smart technologies

Editorial on various works
such as beamforming
Path selection
Data compression
Intelligent sensing in
health care

Comparative analysis
of machine learning
algorithms and models
Influential parameters
in Intelligent sensing

Communication network for
intelligent sensing
Smart communication network
Latency and Q−learning
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Table 3. Comparative analysis of work available in the area of Intelligent sensing and contributions
presented in this paper (cont’d).

Ref Title Areas addressed Areas not
addressed

Novel
contributions
of this work

[51] Smart city−oriented
Ecological Sensitivity
Assessment and Ser-
vice Value Computing
based on Intelligent
sensing data process-
ing

Sensing in Sustainable
rural development
Smart sensing and
Computational algorithms
in territorial rural
planning

Smart city planning
Communication
technologies
Application−oriented
Health care

Convergence of AI and 6G
Data security and Planning
Intelligent sensing in pandemic
monitoring

[52] CRUISE research ac-
tivities toward ubiqui-
tous intelligent sens-
ing environments

Ubiquitous Intelligent
sensing environment
Wireless Sensor Networks
Research orientation and
challenge

Hardware deployment
Explainable AI for
Intelligent sensing
Next−generation
communication
protocols

Extended reality and AI
Channel coding
Software platforms in Intelligent
sensing
Lesson learned

Section VI. Finally, Section VII concludes the paper. Fig. 1 illustrates the structure of the 162

paper. 163

2. AI Methods FOR INTELLIGENT SENSING 164

In this section, an overview of ML and DL algorithms from an intelligent sensing 165

perspective is presented. The aim of this section is to highlight learning algorithms that 166

are widely used in many real-time applications. Furthermore, parameters affecting the 167

performance of intelligent sensing are also discussed. This section concludes with lessons 168

learned. 169

2.1. AI-Based Algorithms/Models in Intelligent Sensing 170

A machine that is able to make decisions on its own is said to possess AI. There is 171

a broad spectrum of applications for AI, ranging from machine learning to robotics. By 172

combining the current advancements in machine and deep learning, huge amounts of data 173

from various sources are analyzed by utilizing AI to identify patterns and make intelligent 174

predictions [53]. However, recent advances in artificial intelligence systems and robotics 175

still need more research to solve complex problems. The tremendous growth in AI has 176

ushered in a wave of applications using sensors. As a result, the demand for intelligent 177

sensing increases in the market. Using sensor signals, the analysis of sensor data based on 178

AI provides robust predictions and classifications. Hence, intelligent sensing will be the 179

bright future of AI, where human behavior and emotions can be recognized by AI machines. 180

Although some prior works have provided an in-depth summary of AI and ML techniques 181

in particular areas of applications, this survey shows AI and ML-based intelligent sensing 182

which has not been explored in other works. We also identify current problems that have 183

limited real-world implementations. This will provide helpful guidelines to researchers 184

and practitioners interested in intelligent sensing. 185

186

2.2. Machine Learning Algorithms/Models in Intelligent Sensing 187

In the last few years, the tremendous growth of ML-based approaches has expanded 188

the research area of intelligent sensing. Generally, ML can be considered to be a subset of 189

AI which handles complexities to solve a specific task. In this subsection, a brief overview 190

of existing ML algorithms that improve the functioning of sensing systems is presented 191

together with their advantages and disadvantages. Various scenarios portraying how 192

machine learning methods are applied in intelligent sensing is depicted in Fig. 2. ML 193
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algorithms are divided into supervised, semi-supervised, unsupervised, and reinforcement 194

learning. 195

1. Supervised learning-based intelligent sensing - Supervised learning deals with the 196

known and labeled data and is divided into two types - classification and regression. 197

This approach has been successfully implemented for many years in the fields of 198

image classification, fraud detection, medical diagnosis, weather forecasting, mar- 199

ket forecasting, and life expectancy estimation. In [62], ECG data are collected via 200

wearable sensors, which detect heartbeats automatically, and a supervised learning 201

approach is used for arrhythmia classification. An artificial haptic neuron system is 202

fabricated in [63]. The system comprises a Nafion-based memristor and a piezoelectric 203

sensor. The sensory receptor converts external stimulus into an electric signal, and 204

the memristor is used for further processing of the data collected from the sensor. A 205

supervised learning method is implemented for the recognition of English letters by 206

placing the sensor on the joint of a finger. A novel methodology proposed in [64] 207

using supervised learning for resolving the collision of cash tags yields high classifica- 208

tion accuracy of listed companies in London Stock Exchange. A hybrid model that 209

combines ML and game theory is proposed in [65] to solve issues related to network 210

selection in ultra-dense heterogeneous networks. 211

• K-Nearest Neighbors (K-NN) is an effective classification algorithm used for 212

large datasets. Here, K represents the number of training samples that are near 213

the test sample in the feature space [66]. In [67], a machine learning-based K-NN 214

approach is used for load classification by collecting data from various smart 215

plug sensors and other devices. 216

• Support Vector Machine (SVM) is mainly used to categorize data attributes be- 217

tween classes by creating two-dimensional planes to minimize the classification 218

error [68]. For example, [69] introduces a danger-pose detection system based on 219

Wi-Fi devices that is used to monitor a bathroom while ensuring privacy. A ma- 220

chine learning-based detection approach usually requires large amount of data 221

collected in target scenarios, which is challenging to detect danger situations. 222

However, this work employed a machine learning-based anomaly-detection 223

technique which requires a small amount of data in anomalous conditions. In 224

this work, researchers first extracted the amplitude and phase shift from Wi-Fi 225

Channel State Information (CSI) in order to detect low-frequency components 226

associated with human activities. The static and dynamic features were then 227

derived from the CSI changes over time. Finally, the static and dynamic character- 228

istics are input into a one-class SVM which is employed as an anomaly-detection 229

method to determine if a person is not in the bathtub, is bathing safely or in 230

unsafe situations. 231

• Decision Tree (DT) model consists of branches and nodes, wherein every node 232

represents a test on every feature, and each branch has a value that the associated 233

node can use to classify a sample [70]. A decision tree-based approach was 234

presented in [71] for an intelligent transportation system (ITS). LIDAR sensors 235

obtain point cloud data, which are then projected onto the XOY plane. After that, 236

the images are classified into road and background grids for monitoring road 237

traffic. 238

• Ensemble Learning (EL) is a method based on combining the outputs of basic 239

classification algorithms to boost the performance of classification. It is robust to 240

data overfitting problem and is better than a single classifier [72]. This method 241

is proposed in [73], where soft sensors are used to collect data to predict the 242

composition, flow rate, and other features of the product, e.g., fatty acid methyl 243

esters (FAME), in the procedure of production of biodiesel from vegetable oil. 244

• Random Forest (RF) is made of a combination of several DTs and constructed 245

randomly to form a model for improving the overall results [74]. A random 246

forest-based classifier is proposed in [75] for estimating the content of bulky 247
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Table 4. Comparison of machine learning algorithms/models in Intelligent Sensing.

Reference
Number

Machine
Learning

Algorithm /
Model

Dataset
Used Description

Parameters
influencing
the perfor-

mance

Advantages Limitations

[54]

epsilon-SVR
(eSVR), Linear
regression
(LR), Convolu-
tional Neural
Network
(CNN), STSVR,
T-SVR.

DEAP
Dataset
[55].

A Framework is proposed for
stress recognition in real-time
using peripheral physiological
signals.

BVP and
GSR.

1. Less Prediction
error; 2. Convenient
for real-world appli-
cations.

The model is lim-
ited to the slight
movement of physi-
ological signals.

[56]

Linear re-
gression (LR)
and neural
network (NN).

Chronic
Kidney
Disease
(CKD)
from
patients.

A hybrid intelligent model is
proposed to guess chronic kid-
ney disease from a patient’s
data on the cloud environ-
ment to improve services in
healthcare in smart cities.

Feature
weights
(FW).

The proposed
model significantly
improves accuracy
compared to other
models.

The hybrid model is
limited to a small
amount of data of a
patient’s record.

[57]
R.A.L.E
lung sound
Database [58].

DEAP
Dataset
[55].

Performance of K-NN and
SVM classifiers are compared
using the pulmonary acoustic
signal from RALE database
for diagnosing respiratory
pathologies.

Mel-
frequency
cepstral
coeffcients
(MFCC).

Analysis of fea-
ture vectors is
via ANOVA and
separately fed into
SVM and K-NN
classifiers.

1.The amount of
data used to train
and test the classi-
fier is very small.
2. Collection of
data was carried
out in a controlled
environment.

[9] Ranking SVM.

NUS-
WIDE
dataset
[59].

The interaction between social
images and online users is an-
alyzed.

Color, tex-
ture, and
GIST fea-
tures.

Powerful learning
method and hetero-
geneous social sen-
sory data improve
performance.

External factors
such as images
based on cultural
and geographical
locations are not
considered for
prediction.

[60]

K-NN, Ad-
aBoost, SVM,
RF and Logis-
tic regression
(LR).

Non-
contact
sensor
data.

The non-contact sensor the de-
vice is designed to predict the
signs of HR, RR, HRV param-
eters from a patient’s records
during a period of 23 weeks of
HD sessions.

Age and
BMI (body
mass index)
of patients.

Using machine
learning-based
predictive models,
high accuracy is
obtained.

The main limitation
is the prediction of
clinical events in ad-
vance and the other
parameters like BP
and the patient’s
medical history us-
ing a multi-class pre-
diction model.

[61]
Support Vec-
tor Machine
(SVM).

CRCNS-
ORIG and
DIEM.

A model is proposed to detect
mental weakness of older and
younger people by collecting
their eye-tracking data while
watching a video.

Pupil di-
ameters,
eye blink-
ing, gaze
allocation,
and saccade
mean veloc-
ity.

Improves detection
accuracy using an
automated feature
selection method.

1. Limited no. of
participants. 2.
Eye-tracking data
are collected in a
controlled environ-
ment.
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metals in agricultural soil using hyperspectral sensor data and is shown to 248

reduce computational cost and time. 249

2. Unsupervised learning-based intelligent sensing - Due to the large amount of un- 250

labeled data in our everyday life, researchers have emphasized the unsupervised 251

learning-based algorithms for intelligent sensing applications. This method consists 252

of dimensionality reduction, generative networks, and clustering. Unsupervised 253

learning-based intelligent sensing is proposed in [76], which is applied for real-time 254

environment sensing to detect rare event instances intelligently. An unsupervised 255

clustering-based method is introduced in [77] to describe an individual’s behavioral 256

pattern by analyzing 100 days of unlabeled sensor data of 17 older adults from their 257

homes and extract information of their day-to-day activities at different times. To 258

detect the change in Landsat images, unsupervised learning is used in [78] with mean- 259

shift clustering and hybrid wavelet transform under the Multi-Objective Particle 260

Swarm optimization (MO-PSO) framework. 261

3. Semi-Supervised intelligent sensing - This method deals with the combination 262

of labeled and unlabeled data. To reduce the complexity of labeling all data for 263

large datasets, semi-supervised methods are used. A robust model based on a semi- 264

supervised approach is proposed in [79] to warn about the aircraft fault during the 265

flight of a UAV by sensing real-time data such as angular velocity and pitch angle from 266

flight sensors, and dramatically reduces the manual work. To detect faults in Additive 267

Manufacturing (AM) products, a semi-supervised method with a few labeled data 268

and a large number of unlabeled data is explored in [80]. 269

4. Reinforcement learning-based intelligent sensing - In the context of AI, reinforce- 270

ment learning learns to make a sequence of decisions by interacting with its environ- 271

ment. One of the successful applications of this approach is to control autonomous 272

cars by training the model. A deep reinforcement learning-based multi-sensor track- 273

ing fusion is proposed in [81] for vehicle tracking by learning on fused data from 274

different sensors (camera and LIDAR). An intelligent sensing-based approach is in- 275

troduced in [49] to autonomously monitor bridge conditions by collecting data from 276

sensor nodes and make decisions using the reinforcement learning method. A novel 277

approach based on YOLO V3 is proposed in [82] for multi-object tracking based on 278

multi-agent deep reinforcement learning. This approach performs better in terms 279

of precision, accuracy, and robustness. A routing protocol built on reinforcement 280

learning is developed in [83] to find an optimal routing path for data transmission in 281

a wireless network. 282

283

Table 4 shows the comparison of several ML and DL algorithms used in different areas 284

of intelligent sensing. ML is a branch of AI that advocates the idea of acquiring the right 285

data so that a machine can learn how to solve a particular problem by itself. The rise of 286

ML is due to the availability of large datasets, and the adoption of ML algorithms in the 287

field of intelligent sensing is to create smart devices that can take actions based on what 288

they sense from the environment. With the implementation of ML in sensors, the efficiency 289

and robustness of the system will reach the next level in smart sensing applications. Using 290

sensor data, ML algorithms enable more robust predictions and classifications as compared 291

to other physics-based models that envisage AI being added eventually to devices to adapt 292

to the new circumstances. Therefore, the use of machine learning, including deep learning 293

algorithms, is appropriate for performing challenging tasks in intelligent sensing, as shown 294

in Fig. 2. 295

The availability of datasets and the invention of new algorithms have increased the 296

usage of ML and DL in the last few years. The supervised learning method has been used in 297

numerous applications, such as object recognition, speech recognition, and spam detection. 298

It predicts the value of one or more output variables (in the form of continuous or discrete) 299

by observing input variables. The unsupervised learning method is generally used for gene 300

clustering, social media analysis, and market research. The main focus of this method is to 301
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Figure 2. Various scenarios portraying ML and DL-based Intelligent Sensing

analyze unlabeled data. Semi-supervised learning is the hybrid model of supervised and 302

unsupervised learning methods, which is used to solve problems with a few data points 303

labeled and most of the data unlabeled. Reinforcement learning (RL) is used in applications 304

such as finance, inventory management, and robotics, where the purpose is to learn a policy, 305

i.e., to map situations between states of the environment to perform actions appropriately. 306

307

2.3. Deep Learning Algorithms/Models in Intelligent Sensing 308

Deep Learning is now dominating the industry and research spheres for the growth of 309

a range of smart-world systems for good reasons. DL has shown considerable potential in 310

approximating and reducing huge datasets into accurate predictive and transformational 311

output, greatly facilitating human-centered smart systems. This section discusses deep 312

learning models based on intelligent sensing. 313

• Convolutional Neural Network - CNN is a robust supervised DL algorithm with bet- 314

ter performance than other DL algorithms. IoT security is one of CNN’s applications 315

where the features of the security data can be automatically learned by the sensors [84]. 316

Deep CNN-based learning is proposed in [85] to recognize human emotions using 317

electrodermal activity sensors (EDA). These devices capture emotional patterns from a 318

group of persons. The paper [86] proposed a system that detects the physical activity 319

of older people from wearable sensors. For rotation-invariant features, each feature 320

triplet is extracted from the X, Y, and Z axes and reduced to one feature represented 321

by a 3D vector. Other works similar to this also achieve high accuracy in the study of 322

younger people. 323

• Recurrent Neural Network - RNN is an important algorithm of DL in which present 324

and past inputs depend on the output of the neural network. It is used to handle 325

sequential inputs, which can be speech, text, or sensor data [87]. An RNN-based 326

approach is discussed in [88], which is meant to interpolate sparse geomagnetic data 327

from lost traces to reduce the time taken by linear interpolation approaches. The study 328
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in [89] discussed a mobile positioning method using RNN to analyze the strength of 329

received signals. The authors experiment with the training of two RNNs separately 330

for estimating latitude and longitude, which results in overfitting. An RNN-based 331

learning model is proposed in [90] to monitor underwater sensor networks in real 332

time, which improves the delay and reduces the cost of packet transmission. 333

• Generative Adversarial Network - GAN comprises two models; one is the generator, 334

and the other is the discriminator. The two are trained in tandem via an adversarial 335

process. These networks have been implemented for the security of IoT systems [91]. 336

A conditional GAN-based DL method is presented for the reconstruction of CS-MRI 337

that is compressed sensing magnetic resource imaging using compressed MR data 338

[92]. In [93], the authors proposed a GAN-based method to generate X-ray prohibited 339

images with different item poses. According to the paper, the quality of the images is 340

good as compared to DC-GAN and WGAN-GP. After the images are generated, they 341

are added to the real images and FID (Frechet Inception distance) is used to evaluate 342

the performance of GANs. 343

• Long Short-Term Memory - LSTM is a type of recurrent neural network that is 344

intended to model temporal sequences and their long-range dependencies more 345

accurately than conventional RNNs [94]. The LSTM comprises units called memory 346

blocks in the recurrent hidden layers. The memory blocks contain memory cells with 347

self-connections that store the temporal state of the network in addition to special 348

multiplicative units called gates to control the flow of information. A DL-based 349

approach is used in [95] for emotion classification, dealing with a large number of 350

sensor signals from different modalities. From the results presented in the paper, it 351

came to be known that ad-hoc feature extraction may not be compulsory as DL models 352

extract the high-level features automatically. 353

2.4. Parameters Affecting the Performance of Intelligent Sensing 354

This subsection presents a review of some of the parameters that affect the performance 355

of intelligent sensing. Intelligent sensing methods have been promising with state-of-the-art 356

results in several areas, such as healthcare, image segmentation, agriculture, soft sensors, etc. 357

The use of sensor systems in industrial, scientific, and consumer equipment is extensive and 358

is continuously increasing in domains like automation. Essentially, industrial information 359

revolutions need more sensors of every kind. The focus of the sensor system is to provide 360

reliable signals and evaluate information. The smart sensing units include a sensing element 361

and proper signal processing function within the same package. 362

Tables 5 and 6 give a list of parameters that affect the performance of intelligent 363

sensing based on the results reported in literature. Key information includes the title and 364

year of publication of each paper, and parameters that influence the performance of the 365

various intelligent sensing approaches, such as temperature, accuracy, cost, time, occupancy, 366

dependency, etc. One of the parameters is feature extraction in image recognition. Several 367

techniques of pre-processing are used for enhancing certain features and removing unnec- 368

essary data. These techniques include digital spatial filtering, contrast enhancement, gray 369

level distribution linearization, and image subtraction [102]. Measurement of redundancy 370

in test samples is attempted to achieve test loss minimization, which can lead to a reduction 371

of test maintenance costs and also ensure the integrity of test samples [103]. Evaluating ML 372

algorithms is an important part of any project. Accuracy is one of the essential parameters 373

to judge the performance of the trained model. Classification accuracy is defined as the 374

fraction of correct predictions relative to the total number of input samples. 375

The most crucial aspect of this matter is the collection of data from multiple sources. 376

The data usually goes through several stages of pre-processing to make it in presentable 377

form. Intelligent sensing approaches are in general associated with technological appli- 378

cations where they are applied. For example, in cognitive radio, the sensing approach 379

will be different from applications in a smart grid. The work in [104] presented an arti- 380

ficial intelligence-based approach for high-speed data delivery with latency regulation. 381
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Table 5. Parameters Influencing the Performance of Intelligent Sensing

Ref.
Num-
ber

Year Title of Paper Parameter
1

Parameter
2

Parameter
3

Parameter
4

Parameter
5

Parameter
6 Description

[96] 2019

A review on EMG
based motor in-
tention prediction
of continuous
human upper
limb motion for
human-robot
collaboration.

EMG sig-
nal acqui-
sition

Pre-
processing

Feature
extrac-
tion

Accuracy
of con-
tinuous
motion

Dependency
on auton-
omy

Redundancy

Researchers have
explored several
approaches and
models for motor
intention prediction
based on EMG
signals for estima-
tion of continuous
motion of the hu-
man upper limb
and also discussed
motion parameters
for measuring the
performance of the
system.

[97] 2019

Toward biother-
apeutic product
real time quality
monitoring.

Dynamic
nature

Adaptive
model
structure

High
levels of
noise

Complexity Heteroge-
neity

Real-time
monitor-
ing

Close monitoring
of Critical Quality
Attributes (CQAs)
of the product in
real time is criti-
cal to increasing
product quality and
improving process
control. A CQA
value is a physical,
chemical, biological,
or microbiolog-
ical property or
characteristic that
should be within an
appropriate limit,
range, or distribu-
tion to ensure the
desired product
quality. Various
monitoring tech-
niques are surveyed
to detect CQA value
uncertainty and
subsequent reduc-
tion in end-product
variability.

[98] 2019

A novel seg-
mentation based
depth map up-
sampling.

Depth
maps

Geodesic
distances

Super pix-
els

Initial no.
of pixels

Scale con-
stant

Splitting
threshold

Proposed color
image segmentation
according to the
guidance of the
depth. Hence, the
segmented regions
observe the depth
of the boundary
well.
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Table 6. Parameters Influencing the Performance of Intelligent Sensing (cont’d).

Ref.
Num-
ber

Year Title of Paper Parameter
1

Parameter
2

Parameter
3

Parameter
4

Parameter
5

Parameter
6 Description

[99] 2018

Design and appli-
cations of soft sen-
sors in polymer
processing: A re-
view.

Temperature Pressure Process
speed

Flow
index Viscosity

Product
dimen-
sions

Researchers have
done a comprehen-
sive survey on soft
sensing techniques
applied for polymer
processing and its
importance for the
growth of process
monitoring, process
control and fault
diagnostics. These
techniques have
replaced the use of
physical sensors for
practical process
measurements in
industries.

[100] 2019

Prediction of occu-
pancy level & en-
ergy consumption
in an office build-
ing using blind
system identifica-
tion & neural net-
works.

Occupancy Prediction
accuracy

Time fac-
tor

Historical
internal
load

Energy
consump-
tion

Structure
parame-
ters

A prediction model
based on the feed
forward network,
ensemble models
as well as extreme
learning machine
(ELM) is established
for measuring elec-
tricity consumption
of the AC system,
and based on the
approach of blind
system identifica-
tion (BSI) model,
the occupancy pro-
file is estimated in
an office building.

[101] 2019

Semi-supervised
deep learning for
hyperspectral im-
age classification.

Training
samples

Classification
accuracy

Bias pa-
rameters

Kappa co-
efficient

Weight
decay Momentum

A novel method
based on a semi-
supervised deep
feature fusion net-
work for classifying
hyperspectral im-
ages by integrating
the original training
set with pseudo
labeled samples to
reduce the prob-
lem of overfitting
during training of
DNN.
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Compared to CogMAC (Cognitive Medium Access Control) and AHP (Analytic Hierarchy 382

Process) protocols, the decentralized approach helps in creating opportunistic methods for 383

spectrum access and better design of channel selection mechanisms. The work presented in 384

[105] proposed a method for integrating intelligence close to the sensor, which will enable 385

decision making in local nodes before transferring the information to cloud or server. The 386

local intelligence will be helpful in producing smart data that can be used for analysis to 387

produce effective outcomes. Techniques such as normalization, linearization, and data 388

cleaning can be done at local nodes in a piconet. Such inclusion will be helpful in the 389

elimination of unnecessary steps, which needs to be done very frequently before data is 390

used in artificial intelligence algorithms. 391

It is very important to identify data anomalies as data sometimes are collected from 392

multiple platforms. In such cases, the source of data needs to be tracked for threat and 393

irregularity. The work presented in [106] proposed scheduling and anomaly handling 394

mechanisms in cross-platform IoT systems using cognitive tokens. The proposed methods 395

use intelligent sensing with fair play and exponential growth procedures. In contrast to 396

current technology trends in full-stack system development, a layered architecture-based 397

approach was proposed in [107]. The proposed method will help to collect data, extract 398

useful information, and transfer it for further processing. In the case of more sensitive data 399

sensing, such as clinical or eHealth, [108] presented the implementation of gateway and 400

scoring mechanisms to reduce the latency and to analyze the performance of systems. Such 401

implementations have shown good performance in fog computing environments, where 402

restricted resources are available at local nodes. The work presented in [109] shows the 403

importance and challenges of IoT-based healthcare information sensing. The work presents 404

challenges related to information acquisition, sensing, storage, processing, analytics, and 405

presentation. 406

The studies reviewed in this section reveal that, although the new generation intelli- 407

gence reduces the cost of devices and helps present the information more accurately for 408

decision making, design and implementation as well as communication technologies still 409

play important roles. 410

2.5. Lessons Learned 411

In this section, several approaches based on AI are reviewed that can analyze the 412

complex characteristics of sensor data for various applications. Most of the ML and DL- 413

based algorithms work with numerous types of sensory data that come from different 414

sources. However, algorithms of supervised learning for classification (i.e., SVM, DT, 415

and RF) are mainly recommended when data have complex feature space (for example, 416

hyperspectral sensor data). In particular, for data fusion from multiple devices, EL is more 417

favorable because the fused data can be fed to an ensemble classifier for better results. For 418

cases where the dataset size is small, K-NNs perform well as compared to other algorithms. 419

The task is more challenging when the sensor data are unlabelled, and hence, the desired 420

results can be obtained using unsupervised learning algorithms. Classification based on 421

semi-supervised algorithms requires a limited set of annotated sensor data and performs 422

well with time-series data. Another category is reinforcement learning that works well with 423

the high-dimensional stream of input data. Its integration with deep learning is applied in 424

new areas of research such as drone navigation. Furthermore, DL-based algorithms are also 425

discussed and several conclusions are drawn. The variations of CNN are preferred when 426

input sensor data is more than 1-D and are highly recommended due to their simultaneous 427

feature extraction and classification capabilities. Most of the recent architectures such as 428

RNN and LSTM perform well with sequential sensing data (i.e., sequence of words, images, 429

etc.), but more favorably, LSTM is used due to its long-term dependencies among input 430

data. For generating synthesized data that is different from actual sensor data, GAN is 431

considered and has been proven to be successful in handling data privacy. 432

A few attempts were made to examine the parameters that affect the performance 433

of intelligent sensing. Internal and external factors such as the collection of real-time 434
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environmental data from multiple sensors, the nature of datasets, the accuracy of the 435

training datasets, optimization parameters, etc., may hinder the overall performance of 436

intelligent sensing. Thus, to create an efficient and robust smart system, it is vital to identify 437

anomalies in data and take appropriate measures to remove them. 438

3. DATASETS IN INTELLIGENT SENSING 439

A dataset is an assemblage of information. Commonly, data are organized as a stream 440

of bytes into a partitioned dataset, which may comprise multiple members, each containing 441

a separate sub-dataset, similar to directories or folders. This organization is employed for 442

the application requirements and to optimize communications. Examples of classic datasets 443

include iris flower dataset [129], MNIST dataset [130], [131] etc. Tables 7 and 8 present 444

a variety of sources of data with comments on the merits and demerits of information. 445

Intelligent sensing algorithms with appropriate datasets foster sensible and more accurate 446

solutions. 447

Datasets can be categorized as 448

• File-based datasets: These are datasets that are entirely stored in a single file. 449

• Folder-based datasets: In this type of datasets, the dataset is a folder that holds the 450

data. 451

• Database datasets: This type of dataset is a set of data stored in a database, for example, 452

the Oracle database. 453

• Web datasets: Web datasets are the datasets that are stored on an internet site. An 454

example is the WFS format. 455

Individual datasets are sets of data values in an organized way intended for automated 456

analysis. The structure of a dataset can be as simple as a table of rows and columns or 457

can be as complicated as a multidimensional structure. This section comprises different 458

datasets that belong to the different fields of intelligent sensing. These datasets are used 459

in various applications like image classification, gender recognition, speech recognition, 460

obstacle detection, action detection, etc. Table 7 shows several publicly available datasets 461

in intelligent sensing. 462

Datasets have played a vital role in the development of sophisticated machine learning 463

and deep learning algorithms, as documented in [132]. The importance of datasets is that 464

they represent the relationship of the individual data items. Datasets vary in the types 465

of manipulations, feature analysis, and other functionality closely related to the domains. 466

In some areas, for example, astronomy and genetics, domain-specific software may be 467

supreme. Thus, the data can be incorporated into the cumulative knowledge base of the 468

respective disciplines. 469

In machine learning projects, there is a need for training datasets. The datasets are 470

used to train the model for performing a variety of actions. It is impossible for a machine 471

learning algorithm to learn without data. It is the most crucial aspect that makes algorithm 472

training possible. Completeness and accuracy are the two necessities for any dataset [133]. 473

In the absence of these characteristics, the final result is prone to wrong conclusions. Any 474

investigation relies on the availability and quality of suitable datasets. For this reason, 475

there is a need to verify the dependability of data before they are converted into valuable 476

information. AI development heavily relies on data, from training, testing and tuning. 477

Three different types of datasets are the training set, the validation set, and the testing 478

set. The training set is employed to train an algorithm to learn and produce results. The 479

validation set is used to tune the final ML model. The testing dataset is used to evaluate 480

how well the algorithm was trained on the training dataset. With the growing acceptance 481

of AI by companies across all industries around the world, developing a strategy for ML is 482

vital to gain a competitive edge. A significant component of this strategy is the data used 483

to train machine learning-based algorithms. 484

It is very important to remember that good performance on datasets does not necessar- 485

ily mean that a system with ML algorithms will perform well in real scenarios. Most people 486

in AI forget that the crucial part of building a new AI solution is not the AI or algorithms 487
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Table 7. Publicly Accessible Datasets for Intelligent Sensing.

Publicly
Available
Dataset

Sources of Data Format

Exemplar
Work

using the
Dataset

Elucidation and
Comments

Applications
Deployed

Advantages/
Limitations

LILA

Labeled informa-
tion Library of
Alexandria: Biology
and conservation

Images [110]

Based on Deep
Learning models,
CNN, ResNet-18
Architecture used.

Image Classifi-
cation.

Accuracy of images
in the night time is
less than images in
day time.

Fashion-
MNIST [111] Images [112]

More challenging as
compared to origi-
nal MNIST.

Image Classifi-
cation.

More challenging
Classification task
than MNIST.

DEAP [113]

xls, csv,
ods
spread-
sheet

[114]

In some cases, such
as the scales of
arousal, valence,
liking, single trial
classification is
performed.

Human affec-
tive states.

Individual physio-
logical difference
and noise make
single trial classifi-
cation challenging.

Movie Tweet-
ings

Dataset text col-
lected from Twitter
IMDb

Text [115]

Automatically
collects data from
structured social
media posts and
involves recent &
relevant movies.

Regression &
Classification
of Twitter &
Tweets.

Only well struc-
tured tweets are
considered.

Toronto Rehab
stoke Pose
Dataset

[116] Csv [117]

Dataset meant to de-
velop & evaluate an
algorithm for moni-
toring of post stroke,
upper body posture
& motion

Motion Track-
ing, Classifica-
tion.

Tracking of Kinect
posture is suscep-
tible to noise and
also unstable occa-
sionally while track-
ing.

DBpedia Neu-
ral Question
Answering
(DBNAQ)
dataset

Machines (NSpM)
templates extracted
from queries in
QALD-7training
(QALD-7-train) in
conjunction with
the LC-QuAD
dataset [118]

Question
query
pair.

[119]

A reusable and effi-
cient method to gen-
erate pairs of natu-
ral language ques-
tions.

Questions &
Answering.

Affecting the BLEU
accuracy over large
vocabularies.

The Zero Re-
search speech
Challenge 2015

[120] Sound [121]

Focused on two
levels of linguistic
structure subword
unit & word units.

Discovery
of speech
subword fea-
tures/word
units based on
the unsuper-
vised method.

NLP type & token
metrics are not very
good for a system
that does not at-
tempt to optimize a
lexicon.

CORe50 [122] RBG-D
images [123]

Complex setting
of acquisition in
Dataset makes the
problem harder to
solve when learning
is done on training
data.

Classification
object recogni-
tion.

Noticeable accuracy
decrease with re-
spect to the cumula-
tive approach.
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Table 8. Publicly Accessible Datasets for Intelligent Sensing (cont’d).

Publicly
Available
Dataset

Sources of Data Format
Exemplar

Work
using the
Dataset

Elucidation and
Comments

Applications
Deployed

Advantages/
Limitations

11k Hands

Biometric iden-
tification gender
recognition using
a huge hand data-
base [124]

Images
(.txt, .csv,
.mat)
label files

[125]

Gender recognition
based on binary
classification and
biometric identifica-
tion based on SVM
classifier.

Gender recog-
nition & bio-
metric identifi-
cation.

Can construct bio-
metric identification
& gender classifica-
tion system that de-
pends on images.

Field Safe
Computer vision &
bio system signal
processing group

Images &
3D point
clouds

[126]

Supports object
tracking, detection,
classification, sen-
sor fusion, and
mapping.

Object detect-
ion in agricul-
ture.

Projecting expla-
nations to local
sensors frames
inevitably causes
localization errors.

MSPAvatar

A motion capture
database of spon-
taneous improvisa-
tions [127]

Motion
captured
video,
audio.

[128]

Relationship be-
tween speech,
discourse functions,
and non-verbal
behavior.

Classification
action detec-
tion.

Cleaning of the
motion capture
data slower than
expected.

— it is the data collection and labeling. Training datasets represent the majority (around 488

60%) of the total data, whereas the validation and testing datasets each account for 20% 489

and 20% of the total data. Other ratios such as 70%:15%:15% among the three datasets are 490

also possible, depending on the application. 491

Overfitting takes place when a model learns too well about the training data. It learns 492

all the features of training data with noise to a level that it adversely affects the performance 493

of the model on fresh data [134]. If the training part takes too long on the dataset, the 494

performance may decline because of overfitting of the model [135]. At the same time, the 495

error for the test set begins to increase as the model’s ability to generalize decreases. Data 496

augmentation [136] is an approach that allows practitioners to significantly increase the 497

amount of data without actually collecting new data. It is a way of creating new ‘data’ with 498

different orientations. The benefit of data augmentation is that it generates ”more data” 499

from a limited amount of data and prevents overfitting. Data augmentation techniques 500

such as padding, cropping, and horizontal/vertical flipping are commonly used to train 501

huge neural networks. An underfitting machine learning model is not an appropriate 502

model [136] and will have poor performance on the testing data. The remedy is to try 503

alternative machine learning algorithms. 504

4. PRACTICAL APPLICATIONS OF INTELLIGENT SENSING 505

In this section, a plethora of applications based on intelligent sensing such as agricul- 506

ture, surveillance, traffic management, healthcare, and assistive services are summarized. 507

4.1. Applications of Intelligent Sensing 508

The amount of data that is available on the internet and in our daily life in differ- 509

ent forms is growing fast because of the rapid development of sensing and computing 510

technologies. 511

1. Smart Agriculture - Intelligent sensing applied to this domain, to fulfill the need of 512

farmers, faces lots of problems on a daily basis, like crop disease infestations, weed 513

management, pesticide control, etc. [137]. The gradient descent-based technique is 514

used in [138] to train the network on a real field dataset consisting of various tea 515

gardens. To identify tea pests, a radial basis function network is used for classification. 516

[139] combines expert system technology and ANN to predict the nutrition level in 517
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Figure 3. Intelligent Sensing in Agriculture.

the crop in order to help inexpert farmers. This system is developed as an application 518

of Android, which could be installed on a smartphone [139]. The basic methodology 519

is feed-forward and backpropagation. The neural process and recalling patterns are 520

done by the feed-forward algorithm, and the training is done by the backpropaga- 521

tion algorithm. A study carried out in [140] considers the use of ANN in various 522

techniques to estimate evapotranspiration (ET). The methods applied include the 523

Penman-Monteith method and Levenberg-Marquardt backpropagation. Because of 524

the increase in the number of hidden layers, an increase in the variability of the ET 525

estimation was observed. 526

Fig. 3 illustrates how smart sensors can be used in different areas of agriculture, i.e., 527

soil, crop growth, disease identification, supply control, environment sensing, and 528

bio-surveillance. Some key reasons for using sensors are real-time monitoring to 529

enable remedial measures, cost savings by reducing waste, remote sensing through 530

wireless and IoT platforms, and automated agricultural produce monitoring. 531

2. Intruder Detection and Surveillance - In IoT devices, attacks and threats have become 532

more dominant as intrusion detection methodologies are hard to deploy. The most 533

effective intrusion detection systems apply signature-matching methods for detecting 534

vicious activities [141]. These systems have low false alarm rates and perform well in 535

the various attacks. Another is anomaly detection; it maps ordinary behaviors to a 536

certain baseline and detects eccentricities. For creating a baseline profile, a supervised 537

learning algorithm is used, which uses previous data samples to train a model. In 538

[142], the knowledge discovery in databases (KDD) is saved to the Oracle database 539

server to extract the proper dataset for a set of classifiers. After preparing the dataset 540

by removing the attacks, the most common experimental techniques are multilayer 541

perception, Bayesian algorithm, and J48 trees for classification. In [143], the dataset 542

from the 1998 DARPA intrusion detection program is pre-processed in binary TCP 543

dump format readable by the neural network. Backpropagation is the supervised 544

learning method used to accomplish this task. 545

546

An intelligent video surveillance system (IVSS) composed of an IP camera and a 547

human-computer interface is presented in [144]. IVSS has modules for image analysis, 548

image understanding, video capture, and event generation. In the video capture 549

module, input data can be accessed from different IP addresses of cameras over 550

a LAN. Image analysis comprises image processing tasks, for example, extracting 551

relevant information, including tracking, motion detection, etc. Image understanding 552

includes AI techniques to understand the significance of the scene captured by a 553

camera. The abnormal behavior is then forwarded to an event generation module, 554

which helps the user by generating an alarm. The use of intelligent sensing in intrusion 555

detection and remote surveillance for monitoring applications is shown in Fig. 4. The 556
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use of smart sensors will greatly help improve the existing systems in terms of cost, 557

energy, and performance. 558

Figure 4. Intelligent Sensing in Intruder Detection and Surveillance.

3. Intelligent Traffic Management- AI-based techniques have been applied in this field to 559

control road traffic. To optimize the traffic light cycles, a technique based on genetic 560

algorithm (GA) is used to improve the traffic light configuration [145]. [146] discusses 561

the design of a traffic light controller that varies the cycle time according to the 562

number of vehicles behind the red and green traffic lights. Another technique based 563

on extension neural network (ENN) is used in outdoor environments to recognize 564

the objects. A traffic light can be monitored by gathering data from the number 565

of vehicles passing and then processing that data. Here, how intelligent sensing is 566

used in traffic management is shown in Fig. 5. With the emergence of smart sensors, 567

various challenges faced by traffic management authorities such as traffic congestion, 568

optimum route, travel cost, average waiting time, etc. can be solved. 569

4. Smart Healthcare - Unsupervised learning algorithms like clustering and principal 570

component analysis (PCA) are used in [147]. In this technique, by maximizing and 571

minimizing the resemblance of patients, the clustering algorithm outputs the labels 572

within the clusters. PCA mainly focuses on reducing the dimension, especially when 573

the features are achieved in a considerable number of dimensions. In [148], SVM is 574

applied to classify imaging biomarkers of nervous and psychiatric diseases. Recently, 575

CNN has been successfully implemented in the healthcare domain through knowledge 576

from ocular images to assist in diagnosing congenital cataract disease [149]. Natural 577

language processing (NLP) aims at better clinical decision making from the narrative 578

text [150]. In [151], NLP is used to read chest X-ray reports to alert physicians to the 579

possible requirement for anti-infective therapy. 580

In healthcare organizations like insurance companies, the use of sensors is to provide 581

accurate and reliable diagnostic results, which can be monitored remotely irrespective 582

of whether the patient is at a clinic, hospital, or home, thereby improving healthcare 583

efficiency. Healthcare management uses intelligent sensing for different purposes, as 584

shown in Fig. 6. 585
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Figure 5. Intelligent Sensing in Traffic Management

Figure 6. Intelligent Sensing in Healthcare Management
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Figure 7. Intelligent Sensing in Pandemic Monitoring.

Mass spreading diseases are not rare nowadays; in such cases, fast and reliable infor- 586

mation helps to stop the infection to the general public. The mitigation is facilitated 587

by early detection, identification of the cause, and finding a cure. In healthcare, DL 588

and AI have been implemented to control such diseases. Intelligent sensing is also 589

implemented for vaccine detection. In the case of COVID-19, WHO has recommended 590

a swab-based SARS-CoV-2 test. From the swabbed samples, the information related to 591

E-gene from SARS-CoV-2 and gene from enzyme RNA-dependent polymerase, which 592

is in charge of the copying of a DNA sequence into an RNA sequence during the tran- 593

scription process, plays a key role in the identification of symptoms. Many researchers 594

have observed that real-time PCR methods are also effective for diagnosing the test 595

results [152][153][154]. In these approaches, the protein related to immunological 596

defense is tagged to identify the potential targets using fluorescent tubes. A CRISPR 597

(Clustered Regularly Interspaced Short Palindromic Repeats)-Cas13-based strategy 598

for viral inhibition has been found to be effective for dealing with SARS-CoV-2, which 599

caused COVID-19, and emerging pan-coronavirus pandemic strains [155]. 600

601

Intelligent sensing techniques can be employed to determine the diseases that cause 602

the epidemic and pandemic. In [156], Santosh suggested active learning algorithms 603

with cross-population datasets to test and train models that can compute the data 604

with multiple mini-batches of information to help in detection and decision mak- 605

ing. The work presented in [157] proposed an AI-based framework with the use of 606

sensors already mounted on palmtop devices, like smartphones, cameras, inertial, 607

microphone, temperature, and fingerprint sensors to collect information from patients. 608

Deep Learning algorithms are implemented to do the multimodal analysis to detect 609

the presence of COVID-19 symptoms. 610

611

The use of intelligent sensing with edge computing and cloud services are also en- 612

couraging several corporations and startups to work in the area. UNet++ [158] was 613
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proposed for medical image segmentation and has been successfully implemented on 614

computed tomography scan, microscopy, and RGB video data. The UNet++ architec- 615

ture is the new version in the series of U-Net and wide U-Net architecture. It has been 616

observed that with deep supervision, UNet++ has demonstrated better performance 617

than its predecessors. The common issue in implementing the intelligence for disease 618

detection using sensors is that the raw data need to be segmented and labeled for fur- 619

ther analysis. In case urgent or fast results are required, a manual method is preferred 620

as in incorporating intelligence to algorithms, training needs to be done by feeding 621

information in significant amounts. If the system is not trained, the accuracy of such a 622

model will be degraded, which will affect the end result, i.e., successful prediction of 623

true positive cases. 624

The nucleic acid test is a method used to identify the cases related to the diagnosis 625

of Gonococcal and other Neisserial infections, HIV RNA, Severe Acute Respiratory 626

Syndrome (SARS), coronaviruses, etc. A recent study shows that it is also being con- 627

sidered for the diagnosis of COVID-19 patients. This test helps detect specific nucleic 628

acid sequences and organisms in blood, tissue, urine, or stool. The work in [159] 629

proposed nucleic acid amplification tests (NAATs) using stacked denoising autoen- 630

coders (SDAE) for feature extraction. It is also observed that DeepGene, a cancer type 631

classifier, can be essential [160]. In another work [161], Wang et al. have implemented 632

CNN to recognize the behavior of pulmonary nodules and also to extract features for 633

machine-generated endoscopy images in low light. As observed, artificial intelligence 634

algorithms are increasingly implemented in pathology devices with assistive methods 635

to achieve high accuracy results. In the monitoring of pandemic and epidemic also, 636

such intelligent sensing plays a vital role. Thermography devices can be easily found 637

in public places, especially in the case of mass spreading diseases. Thermal scanner is 638

a commonly known device to identify the fever by interpreting the data (heat map) in 639

human-readable forms. 640

641

Fig. 7 is a case study on the importance of intelligent sensing in epidemic and pan- 642

demic. To detect the symptoms related to the infection, multiple tests are proposed, 643

and in most of the cases, a combination of such tests needs to be performed. WHO 644

suggests swab test, which requires the sample collection from nose and throat. On the 645

other hand, in CT scan images are used, and test data need to be further analyzed in 646

thermography to sort out potential patients based on the heat analysis. The tissues 647

collected by biopsy and bronchoscopy are examined to understand the symptoms. 648

Urine and stool tests have also shown the presence of infection in patients. In the case 649

of COVID-19, urine samples are not adequate, and stool analysis has helped detect 650

the presence of infection, similar to SARS and MERS. Blood tests will help analyze 651

cell culture, and multiple serology assays will help identify the virus growth and 652

immune system status. Tests such as RDT, ELISA, and Neutralization assay indicate 653

the presence of antibodies with the possibility of protection against infection. Data 654

from multiple test sources shown in Figure 9 are helpful for training and testing 655

algorithms. Deep learning and artificial intelligence algorithms trained with such data 656

will further help in symptom identification. 657

658

5. Smart Assistive technology - In [162], a navigation system for visually impaired 659

people is developed. This project focuses on how place cells, grid cells, and track 660

integration along with AI can be helpful. Artificial intelligence with grid cells uses 661

deep Q learning with an RNN-based ANN architecture. In [163], cash recognition for 662

blind people is designed to allow those people to identify the notes correctly. In this 663

project, an AI-powered application uses a smartphone to capture the image of a cash 664

note. After recognizing the value of that particular note, an audio sequence signifies 665

the value of the note. In order to work on realistic images taken from a smartphone, a 666

transfer learning-based pre-trained model on ImageNet of VGG-16 is used for training 667
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deep neural networks and for verifying the approach. Recently, ML algorithms have 668

improved the intelligibility of speech in both hearing-impaired and normal-hearing 669

listeners. In [164], speech separation is considered as a binary classification problem 670

in which each true or false unit needs to classify noise dominant as 0 and speech 671

dominant as 1. In speech recognition for normal-hearing persons, Gaussian mixture 672

models have been used. 673

Figure 8. Intelligent Sensing for Visually Impaired.

Fig. 8 shows how AI, ML, and DL techniques are used for the visually impaired by 674

taking gestures as input and converting text to speech using algorithms. These tech- 675

nologies improve the way of communication between ordinary people and visually 676

impaired people. 677

678

6. Smart Communication Networks - As a recent trend in communication technologies, 679

it is observed through 4G, 5G, and ongoing research in 6G networks, that ubiquitous 680

sensor network is going to be a feature of intelligence sensing, which means that in- 681

formation of sensor nodes could be easily retrieved remotely and processed. This also 682

requires adopting new techniques related to nondestructive data transfer mechanism, 683

fast and lightweight computational nodes for signal and communication requirements, 684

multichannel modulation schemes, and opportunistic channel sensing schemes. To 685

control, transfer, and supervise sensor information, intelligent sensing can be observed 686

in Internet of Things, Industry 4.0, etc. [165] presents the behavior analysis using 687

the Latent Dirichlet Allocation (LDA), the Non-negative Matrix Factorization (NMF) 688

and the Probabilistic Latent Semantic Analysis (PLSA) for a comparative study using 689

three different datasets from ubiquitous sensors. LDA, NMF, and PLSA have all been 690

successfully used in text analysis tasks such as document clustering and are closely 691

related to each other. In particular, [166] has formally shown the equivalence between 692

NLM and PLSA. The PLSA, also known as the probabilistic latent semantic indexing 693

(PLSI), is a statistical approach used to analyze two-mode and co-occurrence data. 694

Further, PLSA can be treated as LDA with a uniform Dirichlet prior distribution. The 695

semi-supervised learning approach was implemented in [167] for gait recognition for 696
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person identification using ubiquitous sensor data. Sparse labels and low modality 697

factors were analyzed in [168]. 698

For intelligent sensing in communication, the steps illustrated in Fig. 9 can be used. 699

The initial steps include basic signal processing with sensing, filtering, amplification, 700

sampling, quantization, data acquisition, and conversion. After that, information 701

processing and digital communication procedures need to be adopted, where edge 702

computing plays an important role. The edge computing system includes a low- 703

power compute unit specifically tailored to the requirements. In such scenarios, it is 704

important to notice that hardware restrictions exist. Because of this, the algorithm de- 705

velopment should take all such limitations into account. The gateway is an important 706

medium to transfer data from local nodes to the main computational platform, i.e., 707

the server node. Communication protocols such as 4G, 5G, UWB, WiMax, etc. can be 708

implemented as per the design requirements. 709

Figure 9. Intelligent Sensing in Communication Networks.

4.2. Lessons Learned 710

In this section, we have identified a few ML-based foundational services in a broad 711

range of intelligent sensing applications. We discussed how ML has been used to facilitate 712

these services. The major contributions of this section are the coverage of the applications 713

of intelligent sensing, which are gaining tremendous attention. 714

ML is a revolutionary technology which attracts every other technology through 715

its algorithms and impressive results. Agriculture represents one sector of the future of 716

computing and communications. Intelligent sensing applied to this domain fulfills the 717

needs of the farmers and the population by efficiently utilizing limited resources. Smart 718

agriculture involves the incorporation of information technology into the traditional meth- 719

ods of farming. When dealing with smart farming or agriculture, factors like population 720

movement, weather conditions, and demographics play a significant role. There are other 721

parameters that are important in the field of agriculture. These may include surveillance in 722

agriculture, supply control, environment sensing, length analysis of crop growth, disease 723
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identification, soil parameters, etc. Intruder detection and surveillance are very important 724

and have attracted a great deal of attention. Nowadays, nearly every shop, home, or office 725

needs a surveillance system for intrusion detection. Signature matching algorithms are 726

the most effective method in intrusion detection systems for detecting malicious activities. 727

Multilayer perceptron, Bayesian and J48 algorithms are common experimental techniques 728

in anomaly detection. Image and video recognition plays a vital role in adapting IVSS 729

(intelligent video surveillance system). The authors observed that sensors would greatly 730

help in improving existing systems. 731

Healthcare has become a high priority after the pandemic became rampant globally in 732

2020. AI and ML are widely used in smartizing healthcare systems. As mass spreading 733

disease is not rare nowadays but instead has become normal, fast and reliable information 734

helps to stop the infection to general public. Recently, CNN has been successfully adapted 735

for healthcare and is used to classify X-ray images to diagnose heart diseases and ocular 736

images, thereby helping in the diagnosis of cataract disease. Intelligent sensing is widely 737

used to monitor the various parameters of the patients remotely, like pulse analysis, routine 738

checkups, etc. Real-time PCR for diagnosing test results is also a CRISPR-based strategy 739

and is effective for dealing with COVID-19. Hybrid approaches such as IS with ML, edge 740

computing, and cloud services are also gaining attention of several corporations in this area. 741

AI has been applied to road traffic control. But intelligent sensing has been so improved in 742

this domain that most of the work is done by sensors. For example, a vehicle may have an 743

intelligent system installed inside it to help avoid accidents and recognize traffic. Some 744

vehicles have installed cameras to monitor the surrounding. For the infrastructure part, 745

there are speed monitoring systems with video surveillance installed at traffic signal poles 746

or toll stations on highways to avoid road accidents. AI and ML combined proved to be 747

successful in assistive technology. ML algorithms have improved speech intelligibility for 748

both speech and hearing impaired people. Intelligent sensing also affects communication 749

networks positively to make them smarter and more reliable. The omnipresent sensor 750

network will play a very important role as one of the features of Intelligence sensing. The 751

sensor nodes will be easily traced remotely. Intelligent sensing with ML algorithms has 752

been widely used to improve the intelligence of sensors. 753

5. CHALLENGES AND FUTURE RESEARCH DIRECTIONS 754

With the advancement of sensor technology, research has been carried out to extract 755

useful information in various domains [169]. The adoption of AI in smart sensing has 756

advantages associated with forecast based maintenance, adaptable manufacturing, and 757

improvised productivity [170]. In this section, we review numerous challenges associated 758

with particular applications and AI approaches and also briefly discuss possible future 759

research directions. 760

5.1. Challenges 761

1. Data Security and Privacy: Despite the success of AI and ML models, they face the 762

major challenging issue of data security. ML models extract features by learning 763

patterns that contain information, which can be vulnerable to real-world attacks[171]. 764

One of the legitimate concerns in any real-time environment is data integrity and also 765

it affects the quality of datasets and overall performance of the system. For example, 766

the UAV-enabled intelligent transport system in a smart city where information about 767

vehicle location and speed can be leaked by malicious entities [172][173]. The sensors 768

must gather and share only essential information that is required to execute any 769

operation. Standard rules and procedures must be applied to maintain data integrity. 770

771

The presentation of information has to go through several stages in machines. Most 772

of the machines are connected, resource-constrained devices and also available as 773

standalone computational units. The first step in intelligent sensing is to gather the 774

collected data from the sensors, which are then merged with information sources to 775
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identify and process accordingly. If information can be analyzed locally, further steps 776

need to be taken. However, in most of the devices, the next step is to transfer the 777

information to database storage or cloud services. Such a collection of information 778

is then processed for data analysis and presentation through queries specific to user 779

requirements. In the process from data collection to presentation, several types of 780

security threats need to be taken care of. As illustrated in Fig. 10, the process of intel- 781

ligent sensing consists of multiple stages from sensing to data analysis and security 782

needs to be handled in each of the stages. 783

784

Figure 10. Layer-wise Security Challenges

2. Data Storage and Management: The storage of an enormous amount of data in the form 785

of audio, video, images, smart device data, and social media has become the main 786

hurdle for several applications that need to be addressed. Mismanagement of data 787

will make it difficult to analyze the quality of data collected by sensors and further 788

affect the decision-making process [174]. The availability of a large amount of data 789

motivates us to accept the ML and AI methods to enhance the overall performance of 790

the sensor-based system. Therefore, to avoid redundancy, more advanced AI algo- 791

rithms will be needed to extract meaningful data. 792

793

3. Power Consumption: Nowadays, the use of wearable flexible sensors has gained sig- 794

nificant attention in medical applications [175][176][177]. These sensors are placed in 795

contact with the clothes worn by a person to measure physiological parameters like 796

temperature, ECG, EMG, muscle activity, and cardiovascular problems. The power 797

consumption of these devices is an important issue that needs attention. In addition to 798

this, the production cost of a flexible sensor is also a challenging issue that needs to be 799

addressed [178]. Low power consumption sensors such as Shimmer and Telos should 800

be used for monitoring the health to reduce the power consumption of wearable 801

flexible sensors. 802

803

4. Hardware Deployment: Despite the benefits of AI, designing algorithms on hardware 804

requires sufficient computing resources, power consumption, high computational 805

complexity, which is a very challenging task [179]. Hence, the collaboration between 806

AI and hardware components needs serious efforts to enhance intelligent communi- 807

cation. The large memory footprint of the trained model and the enormous amount 808

of sensor data affect the training accuracy and computational speed on hardware. 809

Moreover, due to lack of specific libraries for hardware, the trained model is not 810
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properly deployed from a specific framework to low-power devices (i.e., edge or 811

mobile) and FPGAs. These may delay the product delivery for a couple of weeks. 812

Many researchers are focusing on reducing the complexity of AI and ML algorithms 813

from hardware perspective and thus enhance the overall performance of the real-time 814

inference model to make it memory-efficient [180][181]. 815

816

5.2. Future Directions 817

1. Data Fusion: Recently, data fusion techniques are gaining a lot of attention in different 818

aspects. Data fusion with big data is an area that ensures the aggregation of data 819

that are generated either independently or collectively. It facilitates improvement in 820

decision making through value extraction. The result of this data fusion can be further 821

manipulated, analyzed, and stored. Data fusion in IoT [18] is more efficient in integrat- 822

ing, managing, storing, and manipulating the large amount of data. Data processing 823

in IoT leads to the addition of more data by extracting meaningful information. Thus, 824

data fusion can help to reduce the volume of that data. Emerging technologies like 825

M2MC (machine to machine communication) allow data fusion to be performed at 826

the edge [182]. M2MC has the ability to communicate over a dedicated medium, for 827

example, the internet, to enable information flow in an intelligent way through smart 828

devices for smart homes, cities, and businesses. 829

830

2. Industry 4.0: Smartization of manufacturing industries has been perceived as Industry 831

4.0 (fourth industrial revolution), a paradigm shift made possible by the development 832

of new information and communication technologies (ICT) [183]. Industry 4.0 is a 833

new industrial model that displays how production trails and deviates over time. 834

The emerging technology means the digital factory in which intelligent devices are 835

inter-networked with semi-finished products, raw materials, robots, machines, and 836

workers. Industry 4.0 is characterized by the use of resources and the incorporation of 837

customers and business partners in the business process [184]. The technologies of the 838

future will be founded on the availability of data. Moreover, those data are becoming 839

available in profusion thanks to Industry 4.0 that is transforming the industry digitally. 840

Digital resources like Siemens’ Digital Enterprise portfolio are affecting every phase of 841

industrial production, from the design of a product to its production to its use. Future 842

technologies make it possible to analyze and exploit these data pools in completely 843

new ways. This development will necessitate the use of technology and knowledge 844

developed in numerous other domains. Autonomous systems need to gain trust 845

between humans and machines [185]. The IoT vision is rooted in the belief that the 846

advancement in communications, information technology and microelectronics we 847

have observed in recent years will be continued into the future. Due to their small 848

sizes, decreasing energy consumption, and falling prices, communications modules, 849

processors, and other electronic equipment are being progressively integrated into 850

everyday objects. At present, cities are remotely monitored and data are collected intel- 851

ligently through multiple sensors embedded in surveillance systems. Fifth-generation 852

(5G) cellular wireless can connect numerous smart objects at the same time thanks to 853

its capacity and high speed [186]. 854

855

856

3. Industry 5.0: After Industry 4.0, intelligent sensing is discovering new heights with 857

more strategic growth in industrial automation and control. The origin of Industry 5.0 858

was presented in [187]. The inclusion of ecosystem for safe operation and accelerating 859

innovation are core features of Industry 5.0. The communication technology used 860

in Industry 5.0 is similar to Industry 4.0, but the emphasis is on collecting more 861

dark data from the core components of the plant or manufacturing units to enable 862

intelligence on it. Society 5.0 is an outcome of industrial advancements which assist 863
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human and machines in making intelligent decisions [188]. Industry 5.0 includes the 864

implementation of IoT, Big data, Artificial Intelligence, and communication technology 865

for the digitalization of work environments. The work presented in [189] shares 866

details about the infrastructure involved in the development of Industry 5.0 work 867

environment and its effects on business and industries with the involvement of 868

information technology. The work presented in [190] shows the performance of 869

Byzantine-tolerant machine learning algorithms in Industry 5.0 with the involvement 870

of edge computing technology. The goal of Industry 5.0 is to empower rather than 871

replace workers. Moreover, applications of Industry 5.0 extend well beyond industrial 872

production. For instance, Industry 5.0 can provide customized therapy and treatment 873

to COVID-19 patients if detailed information about the patient is available [191]. 874

Industry 5.0-based UAV secure communication using AI was presented in [192]. The 875

work suggests mass customization and inclusion of cyber-physical systems in this 876

area. In view of the development, Industry 5.0 will open up ample opportunities for 877

future research. 878

4. Explainable AI (XAI): One of the prominent future advancements is explainable AI 879

that resolves the complexity issues of the models and enables users to understand 880

how the models reach specific decisions and recommendations [193]. Also, users will 881

know how the workflow of AI models leads to different conclusions for different 882

cases and the strengths/weaknesses of the models. Black box models like ANN and 883

RF are difficult to understand and implement due to their complexity. Therefore, 884

an explanation interface such as data visualization and scenario analysis has been 885

built which presents more explanation towards models and helps humans to easily 886

understand the relationship between input and predictions. Companies providing 887

XAI which presents different interfaces for the explanation of complicated AI models 888

include Google Cloud Platform, Flowcast, and Fiddler Labs [194]. 889

890

5. Extended Reality and AI: One of the AI-enabled future technology is the extended reality 891

(XR) combined with all forms of real and virtual environments including augmented 892

reality (AR), virtual reality (VR), and mixed reality (MR). XR is an immersive tech- 893

nology that creates training data synthetically for DNN. Moreover, it creates virtual 894

environments [195]. XR environments include cameras, virtual machinery, sensors, 895

human avatars, and control software, and provide much richer contents compared to 896

virtual reality. XR and AI unlock many opportunities in various domains [196], such 897

as mobile XR, which uses a combination of smartphones, AR glasses, and mobile VR 898

headsets. XR solutions are also used in industries and educational institutions to offer 899

innovative and safe training to employees based on the data collected by tracking 900

the movement of humans and machines [197]. The healthcare industry leverages XR 901

in medical procedures to improve surgical imaging [198]. Areas where XR solutions 902

can be applied still need to be explored. These include 5G communication networks, 903

public services, real estate, defense, and military applications. 904

905

6. Convergence of AI and 6G: The future 6G with AI and ML methods will optimize net- 906

work performance, support diverse services, and build seamless connectivity. Many 907

researchers have started focusing on 6G with the vision of transmission over THz 908

and mmWave and integrating communication, sensing, and control functionalities 909

toward building a sustainable ecosystem. Studies have shown that 6G integrated 910

with UAV-enabled networks leads to frequent handovers [24]. One of the powerful 911

AI techniques named DRL, which is a combination of DL and RL, is capable of taking 912

on the decision-making tasks [199] and can be adapted to provide efficient handovers, 913

intelligent mobility, and reliable wireless connectivity. Moreover, in some complex 914

networks, fuzzy Q-learning and LSTM-based AI techniques can be used to avoid 915

connectivity or handover failures and enable mobility management [200]. 916

917
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Figure 11. Future Directions.
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7. Channel Coding: Intelligent communication techniques extract the meaning of the 918

information [201]. This can fulfill two purposes. One is to reduce the amount of 919

data transmitted, and the other is to protect the information from channel distortion 920

and noise using error control coding. Network Coding (NC) has been suggested 921

as a promising technique for improving vehicular wireless network throughput by 922

reducing packet loss in transmission. In [202], an adaptive network coding method is 923

proposed with the use of the Hidden Markov Model (HMM) in the network coding 924

scheme to regulate the rate of coding according to the estimated packet loss rate (PLR). 925

In the near future, research work combining multipath transmission with hierarchical 926

edge computing in the high-speed cellular-based vehicular network will be a more 927

focused field. 928

Recently, Q-learning (QL), which is an ML algorithm, has shown very promising re- 929

sults in learning problems in energy and computation-constrained sensor devices. The 930

intelligent collision probability inference algorithm based on Q-Learning model was 931

proposed in [203]. It is used to optimize the performance of sensor nodes by utilizing 932

channel collision probability and network layer ranking states with the help of an 933

accumulated reward function. Future IoT networks will have an assortment of stimu- 934

lating features that optimize network performance and communication efficiency. ML 935

techniques allowing machine intelligence to be incorporated in IoT communication 936

technologies are attracting much attention [204]. The MAC layer and network layer 937

capabilities of future IoT networks can be enhanced with ML-based algorithms [203]. 938

939

8. Latency Minimization: Latency minimization is a crucial factor in the deployment of 940

real-time applications on energy-constrained platforms such as mobile devices. In 941

the design of AI and computer vision algorithms, latency is considered the primary 942

requirement for resource-intensive tasks. Researchers are exploring ways based on 943

ML and DL methods for reducing latency and energy consumption for future 5G 944

networks [205][206]. Some of the critical issues in intelligent 5G communication tech- 945

nologies include scheduling medium access control (MAC) layer resources among 946

sensor devices, storing a large amount of data generated at the network edges, and 947

assigning virtual network functions (vNFs) to the hosting devices. These issues can be 948

resolved by reducing the demand on network bandwidth, latency and improving QoS. 949

These 5G networks are capable of implementing critical tasks such as autonomous 950

driving, remote drone control, and real-time AI on handheld devices according to 951

their latency requirements[207] 952

953

9. Future Citizenship: Due to the government initiative around the world on digitization 954

of identity and social information documents, the resources are accessible to their 955

citizens through various secure online portals. The citizens no longer need to stand 956

in queues to access the resources as all information is available online. In daily life, 957

technology is also involved in the form of smart clothing, smart homes, disease pre- 958

vention, medicine, etc. It can be said that smart citizenship is the demand of the smart 959

world. Intelligent sensing is all around the technology used by smart citizens. Work 960

presented in [44] discusses contributions of information provided by the local commu- 961

nity. One major benefit of such information is to strengthen the quality of government 962

decision making. In the future, citizens will generate valuable data through intelligent 963

sensing on mobile platforms. Thus, the challenges related to theft prevention, forgery, 964

and right to access the information are even more critical for future citizens. 965

966

10. Software Platforms in Intelligent Sensing: The platform on which algorithms can be 967

executed in an intelligent sensing environment requires multiple software applica- 968

tions. The three key steps in the development of such systems are a) hardware level 969

integration, b) middleware for feature enhancement, and c) front end development. 970

For all the three steps, multiple types of software are available which can be integrated 971
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with each other to create a single framework. The challenge in this domain is to find 972

one single platform to perform all three steps. Usually the selection of intelligent 973

sensing platforms is based on the familiarity of the developer with the development 974

platform. It has been observed that manufacturers provide the development platforms 975

but limit the use to certain levels. For example, the integration of middleware in a spe- 976

cific development environment depends on the compatibility of dependent libraries 977

and the programming language. Due to such constraints, developers face challenges 978

related to software integration and debugging. Fig. 11 shows a brief overview of how 979

intelligent sensing is applied in various domains and also lists several future research 980

directions in intelligent sensing. 981

6. NOTEWORTHY PROJECTS BASED ON INTELLIGENT SENSING 982

This section presents some noteworthy research projects and initiatives around the 983

world that are contributing to the field of intelligent sensing. We attempt to cover recent 984

technologies that can also be helpful in the future. The projects and their technical details 985

are presented in Tables 9 and 10. These projects belong to a variety of fields, including 986

autonomous underwater vehicles (AUV), 6G, Industry 4.0, smart irrigation, smart farming, 987

smart cities, smart healthcare, and smart home. The technologies used in these projects are 988

the most recent ones such as ML, computer vision, DL, MIMO, mmWave, ultra massive 989

MIMO, fog computing, cloud computing, artificial intelligence, IoT, wireless communi- 990

cation, etc. The projects spread across the world and touch on many facets of intelligent 991

sensing. Some of the projects are supported by government agencies, some are sponsored 992

by enterprises, and others are pursued by academic institutions. These projects attest to the 993

vigorous development in intelligent sensing. 994

7. Conclusion 995

The continuous growth in intelligent sensing raises challenges related to the inte- 996

gration, communication, safety, and adaptation of algorithms in different stages and 997

applications. This paper has presented a survey of AI-enabled intelligent sensing and 998

its technology requirements, opportunities, and future directions. In the beginning, we 999

pointed out the AI technology in intelligent sensing. Then we summarized the contribu- 1000

tions of the work, highlighting key areas in intelligent sensing. We have reviewed various 1001

learning models with comparative analysis. Parameters that affect the performance of 1002

intelligent sensing are discussed based on the results of recent research. Then available 1003

datasets for use in intelligent sensing are presented to help the research community explore 1004

further. They represent a broad spectrum of datasets that have been used fruitfully in AI 1005

and intelligent sensing research. Advantages and limitations, format of information, and 1006

elucidations are provided. Next, we have presented the review of practical applications, 1007

including intelligent sensing in healthcare, pandemic monitoring, assistive technology, 1008

smart sensor networks, among others. The list is by no means exhaustive but instead 1009

serves to exemplify the ample applications of intelligent sensing. In addition, we have 1010

elaborated on the challenges and future research directions in intelligent sensing, pointing 1011

out challenges related to data security and privacy, data storage, power consumption, 1012

and hardware deployment. It is observed that intelligent sensing will grow more rapidly 1013

with communication technology and edge computing. Therefore, its involvement in data 1014

fusion, Industry 4.0, Industry 5.0, explainable AI, latency minimization, future citizenship, 1015

extended reality, convergence of AI and 6G, and software platforms in intelligent sensing 1016

is discussed in future research directions. Finally, we have presented noteworthy projects 1017

in intelligent sensing, mentioning project names, sources, technology used, and aims of 1018

the projects. These projects are dispersed in many countries and represent the use of 1019

intelligent sensing in diverse areas globally. We believe this work will help researchers get 1020

a deeper understanding of the different aspects of AI-enabled intelligent sensing. For the 1021

convenience of reference, a list of acronyms that appear in the article is shown in Tables 11 1022

and 12. 1023
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Table 9. Some noteworthy projects on intelligent sensing.

Projects Funding firms / agencies Technology used in the
project Aim of the project

MELOA [208]
The European Union’s Hori-
zon 2020 Research and Inno-
vation Programme

Autonomous underwater
technology, GPRS, satellite
communications, and solar
panels.

This project design the WAVY drifter
units for ocean observing and monitor-
ing systems.

AMOGH [209]
National Institute of Ocean
Technology & IIT Madras, In-
dia

Artificial intelligence, under-
water navigation and imag-
ing.

It possesses intelligence for picking
/placing underwater objects & process-
ing audio signals.

Autonomous Un-
der water Vehicle
(AUV)

CSIR-CMRI, India Autonomous underwater
technology.

The vehicle is used for underwater op-
erations like deep-sea mining, explo-
ration, collection of various scientific
data like habitat information of under-
water biomass to oceanographic and
bathymetric data.

SSB PANEL (Sonar
Signal Behavior
Panel) [210]

Defense Research Develop-
ment, Organization (DRDO),
India

Deep Learning, machine learn-
ing, and computer vision.

Classification of sonar signals using
deep convolutional neural networks.

Beamforming using
AI for 6G Networks
[211]

Viavi Solutions, London
Brunel University, London,
UK

Artificial intelligence, massive
MIMO and mmWave systems.

Intelligent beamforming (IB) scheme is
proposed to drive 6G.

Intelligent Environ-
ments for Wireless
Communication for
6G. [212]

Broadband Wireless Network-
ing Lab, Georgia Institute of
Technology

Millimeter-wave, terahertz -
band communications, ultra-
massive MIMO.

This project deals with the 6G wireless
communications as intelligent communi-
cation environment to improve the com-
munication distance and data rates in
mmWave and THz frequency band.

6Genesis – the 6G-
Enabled Wireless
Smart Society &
Ecosystem. [213]

University of Oulu, Finland

Artificial intelligence, wireless
connectivity and distributed
intelligent computing, 5G/6G
radio access network (RAN).

The goal of this project is to explore the
development of 6G standard and the im-
plementation of the 5G mobile commu-
nication technology.

SME 4.0, Industry
4.0 for SMEs(Smart
Manufacturing) and
Logistics for SMEs
in an X-to-order and
Mass Customiza-
tion Environment
[214]

European Union’s Horizon
2020 R&I Programme under
the Marie Skłodowska-Curie

Smart logistics, smart manu-
facturing in Industry 4.0.

This project focuses on identifying the
need and enablers for Industry 4.0 appli-
cations and implementation, also foster-
ing SME -specific concepts and strategies
in SME manufacturing and Logistics.

SmartFactory: Cold
4.0 project. [215] Gestamp, France

Smart factory, Industry 4.0
data analytics, Chassis quality
Project.

This project envisions creating more effi-
cient and flexible manufacturing plants
and more consistent processes through
the analysis of data, by adding intelli-
gence to the processes.

MF2C Project [216]
European Union’s Horizon
2020 research and innovation
programme

Fog computing, cloud comput-
ing.

The main goal of this project is to ad-
dress the need for an open and coordi-
nated managing of fog and cloud com-
puting systems.

WATERBEE DA
(WaterBee Smart
Irrigation Systems
Demonstration
Action) [217]

European Union’s Horizon
2020 research and innovation
programme

Smart irrigation, intelligent ir-
rigation modeling, soil sensor
technology, Web and smart-
phone user inter- face, opera-
tional sensors.

Project targeted at demonstrating and
evaluating a smart irrigation and water
management system. It exploits recent
advances in wireless networking and en-
vironmental sensors.

KisanRaja-Smart
Irrigation Device
[218]

Ministry of Micro, Small &
Medium Enterprises (MSME),
Government of India

IoT, data analytics, AI, ML,
mobile pump cont- rollers,
wireless valve cont- rollers,
wireless sensors, and satellite
data.

It is designed to transform the technique,
used by a farmer to interact with mo-
tors. This project allows a farmer to man-
age the agricultural motor using his mo-
bile or landline from the comforts of his
home. [219].
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Table 10. Some noteworthy projects on on intelligent sensing (cont’d).

Projects Funding firms / agencies Technology used in the
project Aim of the project

Smart Cities Mis-
sion Building a
Smart India [220]

Indian Government, India

Internet of Things (IoT), Infor-
mation and Communication
Technology (ICT), Big data,
5G Connectivity, sensor tech-
nology, Geospatial technology,
Robotics.

Government of India has started this
project for such urban areas that must
have all core infrastructure required for
citizens to have a civilized life and a sus-
tainable environment. These features
comprise guaranteed water and electric-
ity supplies, proper sanitation, public
transport, sufficient healthcare, educa-
tion facilities and affordable housing for
economically weak sections of society.
Beyond these, such cities must also offer
robust information technology connec-
tivity, which improves local governance.

Ambulatory Sens-
ing & Point-Of-Care
Recommenda-
tion for IoT-based
Healthcare [221]

Kalam Technology National
Fellowship (INAE), India

Cloud computing, fog com-
puting.

This project focuses on the efficient de-
cision delivery based on the real-time
monitoring of the conditions such as pa-
tient health, road condition. Based on
these decisions, the system finds a near-
est hospital through a safer route.

Safe: Secure And
Usable IoT Ecosys-
tem [221]

UGC-UKIERI, India IoT, Raspberry Pi, sensor tech-
nology.

This project explores the impact of IoT
in intelligent ecosystem from a percep-
tion of end-to-end security and context-
aware intelligent data access.

i-Plug Control [222] DoQuick services pvt.ltd, In-
dia

Based on Smart home tech-
nologies, intelligent sensors,
automatic speech recognition,
mobile development, artificial
intelligence machine learning.

This project focuses on the smart home
technology, which helps you to control
everything at your fingertips. From
turn on/off lights, play music to adjust
the room temperature from the tap of a
Smartphone.

Hyperspectral Mi-
croscopy [223]

National Institute of Stan-
dards and Technology, USA

Optical technology, photome-
try, laser metrology.

This project aims at measuring the opti-
cal properties of materials through the
use of commercial and custom hyper
spectral images.

Ocean Color [224] The National Institute of Stan-
dards and Technology, USA

Marine science, Optical
physics and Calibration ser-
vices.

Ocean color radiometry provides es-
sential data of phyto-plankton concen-
tration and dissolved organic matters,
which allows analysis of primary pro-
ductivity, global carbon cycling, and the
influence of both on the global climate.

Advanced Dimen-
sional Measurement
Systems [225]

The National Institute of Stan-
dards and Technology, USA

Dimensional metrology, Cal-
ibration services and Docu-
mentary standards.

ADMS furnishes the infrastructure
needed for the adoption of new measure-
ment technology.

Project N [226] Shanghai-based Pateo Group
Co., Shanghai, China

Wireless communication, Ar-
tificial intelligence, Automa-
tion.

Smart Cars: It is a project of electric ve-
hicles that have range extender a tiny
gasoline motor that charges the battery.
The car offers traffic forecasts, and syncs
to the driver’s social networks.

Smart Cities, Aus-
tralia [227]

Australian Government, Aus-
tralia

IoT Technologies, Artificial in-
telligence, sensor technology,
intelligent asset management.

Smart cities leverage innovative tech-
nologies to enhance quality and perfor-
mance of services, reduce cost and con-
sumption of resources, and engage in-
habitants more effectively and actively.
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Table 11. List of Acronyms

Acronym Definition

AD Additive Manufacturing
ADMS Advanced Dimensional Measurement System
AI Artificial Intelligence
ANN Artificial Neural Network
AR Augmented Reality
AUV Autonomous Underwater Vehicle
BMI Body Mass Index
CoAP Constrained Application Protocol
CNN Convolutional Neural Networks
COVID-19 Coronavirus Diseases-2019
CC Common Criteria
CRISPR Clustered Regularly Interspaced Short & Palindromic Repeats
CKD Chronic Kidney Disease
DL Deep Learning
DNP3 Distributed Network Protocol 3
ECG Electrocardiogram
EL Ensemble Learning
ENN Ensemble Neural Network
GA Genetic Algorithm
GAN Generative Adversarial Network
GMM Gaussian Mixture Model
GPRS General Packet Radio Service
EDA Electrodermal Activity Sensors
EMG Electromyography
ET Evapotranspiration
FAME Fatty Acid Methyl Esters
FW Feature Weights
IB Intelligent Beamforming
ICT Information & Communication Technology
IoT Internet of Things
ITS Intelligent Transport System
IVSS Intelligent Video Surveillance System
KDD Knowledge Discovery and Data Mining
K-NN K-Nearest Neighbors
LAN Local Area Network
LIDAR Light Detection and Ranging
LR Linear Regression
LSTM Long Short Term Memory
MAS Multi-Agent System
M2MC Machine to Machine Communication
MIMO Multiple Input Multiple Output
MO-PSO Multi-Objective Particle Swarm Optimization
ML Machine Learning
MFCC Mel-Frequency Cepstral Coefficients
MQTT Message Queuing Telemetry Transport
NFV Network Function Virtualization
NLP Natural Language Processing
NN Neural Network
PCA Principal Component Analysis
RF Random Forest
RAN Radio Access Network
RFID Radio Frequency Identification
RL Reinforcement Learning
RNN Recurrent Neural Network
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SDAE Stacked Denoising Auto Encoders
SME Small to Mid-size Enterprise
SVM Support Vector Machine
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Table 12. List of Acronyms (cont’d)

Acronym Definition

SCADA Supervisory Control & Data Acquisition
SDN Software Defined Networking
UUV Unmanned Underwater Vehicle
VR Virtual Reality
5G Fifth-Generation (Mobile Telecommunications Technology)
6G Sixth-Generation (Mobile Telecommunications Technology)
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