- 4. Паршев С.Н., Полозенко Н.Ю. Микротвердость материалов: Методические указания к лабораторной работе. Волгоград: Волг ГТУ, 2004. 15 с.
- 5. Мощенок В.И. Наноиндентирование и нанотвердость материалов // Автомобильный транспорт. 2008. Т. 22. С. 151–154.

ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ КЕРАМИКИ НА ОСНОВЕ КАРБОНИТРИДОВ ТИТАНА ЦИРКОНИЯ

<u>ЛИ ЦЗЕ^{1,2}</u>, С.В. МАТРЕНИН¹ ¹Томский политехнический университет ²Шеньянский политехнический университет¹, г.Шеньян, Китай E-mail: cze2@tpu.ru

Современная техника требует материалов с высоким уровнем эксплуатационных характеристик, в том числе стойкостью к агрессивным средам и износу, а также широким диапазоном рабочих температур. Армирующие компоненты керамики в виде волокон, тканей и вискеров позволили перейти к новому классу материалов — керамическим композитам (ККМ). Большим преимуществом керамических композитов является то, что механизмы их разрушения под нагрузкой отличаются от механизмов разрушения монолитных материалов, что привело к их растущему интересу и широкому спектру применения [1]. В матрицу добавляют армирующие ингредиенты для улучшения прочностных свойств материала и снижения хрупкости керамики. Работа посвящена исследованию свойств композиционной керамики на основе карбонитридов титана и циркония.

Целью работы является разработка полифункциональных керамических материалов нового поколения. В результате выполнения работы будут получены многокомпонентные керамические материалы и исследованы их физико-механические свойства.

В ходе выполнения работы методом горячего прессования было изготовлено 6 образцов композитной керамики различного состава, которые показаны на рисунке 1.

Рисунок 1 – Керамические образцы, полученные методомгорячего прессования: 1 – 100% TiN, 2 – 100% TiC, 3 – 20% TiN - 80% TiC, 4 –50% TiN - 50% TiC, 5 –80% TiN - 20% TiC, 6 –50% ZrN - 50% ZrC Затем изготавливали микрошлифы поверхности керамических образцов с использованием алмазных паст с различной дисперсностью алмазных частиц.

Далее проводили индентирование полированных поверхностей в соответствии со стандартом ISO 14577 с применением прибора Nano Indenter G200, в качестве индентора использовали пирамиду Берковича. Усилие индентирования составляло 500 мH (50 г). Конструкция прибора позволяет отображать кривые нагружения на мониторе в режиме реального времени и автоматически рассчитывать модуль упругости $E_{\rm IT}$, твердость индентирования $H_{\rm IT}$ и твердость по Мартенсу *HM* [2]. Полученные результаты представлены в таблице 1 и на рисунке 2.

Nº	Состав, мас. %	Нагрузка, Fmax	Глубина отпечатка hmax	Модуль упругости, EIT	Твердость индентирова ния, НІТ	Твердость по Мартенсу, НМ
		мН	НМ	МПа	МПа	МПа
1	100% TiN	500.6	1360.3	416142	14623	10180
2	100% TiC	500.2	879.2	684669	49220	24297
3	80% TiC - 20% TiN	500.1	1010.1	604912	31269	18419
4	50% TiC - 50% TiN	500.6	818.7	961668	53617	28031
5	20% TiC 80% TiN	500.6	929.5	759598	37612	21762
6	50% ZrC - 50% ZrN	500.5	1575.1	304452	10769	18264

Таблица 1 – Данные индентирования для керамических образцов

Рисунок 2 – Сравнение E_{IT}, H_{IT}, HM различных керамических образцов

По результатам экспериментов можно сформулировать следующие выводы:

1. В ходе эксперимента изучались физические и технологические свойства порошков карбидов и нитридов титана и циркония.

2. Исследованы физико-механические свойства керамических образцов после горячего прессования: плотность, модуль упругости, твердость индентирования, твердость по Мартенсу.

3. Среди всех образцов горячепрессованной керамики образец керамики состава 50% TiC - 50% TiN имеет самые высокие значения $E_{\rm IT}$, $H_{\rm IT}$ и *HM*.

Список литературы

1. Alymov M.I. Poroshkovaya metallurgiya nanokristallicheskikh materialov [Powder metallurgy of nanocrystalline materials]. Moscow, Nauka Publ., 2007. 169 p.

2. Головин Ю. И. Наноиндентирование и механические свойства твердых тел в субмикрообъемах, тонких приповерхностных слоях и пленках (обзор) //Физика твердого тела – 2008 – том 50 – вып. 12.

ЛЮМИНЕСЦЕНТНАЯ КЕРАМИКА НА ОСНОВЕ MgAl₂O₄, АКТИВИРОВАННАЯ ИОНАМИ ДИСПРОЗИЯ ПЕРЕМЕННОЙ КОНЦЕНТРАЦИИ

<u>ЛИНЬ ЧАОЛУ¹</u>, Д. Т. ВАЛИЕВ²

Шеньянский политехнический университет¹, г.Шеньян, Китай; Национальный исследовательский Томский политехнический университет², г.Томск E-mail: <u>chaolu1@tpu.ru</u>

Алюмомагниевая шпинель (MgAl₂O₄) представляет собой кубическую кристаллическую структуру, в которой ионы Mg^{2+} занимают 8 тетраэдрических (T_d) позиций, а ионы Al^{3+} занимают 16 октаэдрических (D_{3d}) позиций в кристаллической ячейке [1]. Dy^{3+} является отличной легирующей добавкой для люминесцентных материалов для получения длительного свечения [2]. Однако до сих пор очень мало исследований по керамике алюмомагниевой шпинели, легированной Dy^{3+} . Цель работы заключается в исследовании влияния ионов диспрозия переменной концентрации на структурные и люминесцентные свойства керамических образцов $MgAl_2O_4$: Dy^{3+} .

Порошок шпинели, используемый в данной работе, представляет собой коммерчески доступный нанопорошок шпинели MgAl₂O₄(Baikowski Malakoff Inc., США, чистота выше 99,999%, средний размер частиц 200 нм). Порошок оксида диспрозия для легирования (чистота 99,999 %, средний размер частиц 50 нм, Неваторг, Россия). Порошок образцов был приготовлен путем смешивания порошка оксида диспрозия с порошком шпинели. Затем порошок был спечен методом спарк-плазменного спекания (СПС) на установке спекания SPS 515S (Syntex Inc., Япония) с получением керамических образцов. Условия СПС были следующими: температура спекания T=1400°C, вакуум P=10⁻³ Па, давление 72 МПа, скорость нагрева 5°C/мин. В данной работе было приготовлено пять образцов с концентрацией легирования 0,1, 0,5, 1, 2,5, 7,5 и 10 вес. %. Рентгенофазовый анализ (РФА) образцов проводился с использованием дифрактометра XRD-7000S Shimadzu (Японии). Для возбуждения импульсной катодолюминесценции образцов использовался сильноточный ускоритель электронов ГИН-600 ($t_{1/2-10}$ нс, средняя энергия электронов 250 кэВ, плотность энергии возбуждения ~23 мДж/см²) и записали спектр излучения образцов.

На рисунке 1 представлены рентгенограммы керамических образцов, с переменным содержанием диспрозии. Все положения рефлексов соответствуют стандартным данным согласно PDF № 04-007-2712, PDF № 04-007-8739 и PDF № 04-010-3648 (PDF4-2009). Основной фазой керамики образца является фаза шпинели, другие фазы (DyAlO₃ и Dy₄Al₂O₉) появляются при концентрации легирования 1 вес. %. Образование фаза DyAlO₃ и Dy₄Al₂O₉ свидетельствует о том, что ионы Dy³⁺ занимают преимущественно узлы Mg решетки шпинели. По мере увеличения концентрации легирования все большее количество Dy замещает места Mg, и решетка шпинели разрушается, образуя новую фазу.

На рисунке 2а показан спектр излучения образца керамики MgAl₂O₄: 0,1 – 7,5 вес. % Dy₂O₃. В спектре излучения можно выделить четыре полосы излучения, расположенных на