СПИСОК ЛИТЕРАТУРЫ

- Соколова Т.В., Смычник Т.П., Дударчик В.М. и др. Сорбционные свойства продуктов модификации торфа // Гуминовые вещества в биосфере: Тез. докл. II Междунар. конф. – М., 2003. – С. 126.
- Любченко В.И., Думбай И.Н., Губанова Е.Н. и др. Гранулированные сорбционные материалы на основе гуматов бурого угля // Химия твердого топлива. – 1999. – № 2. – С. 32–35.
- Тарновская Л.И., Маслов С.Г. Изменение химического состава гуминовых кислот в процессе термолиза торфа // Химия твердого топлива. – 1994. – № 4–5. – С. 33–39.
- Тарновская Л.И. Закономерности изменения группового состава торфа в процессе термолиза: Автореф. дис. ... канд. техн. наук. – Томск, 1985. – 199 с.
- Лиштван И.И., Король Н.Т. Основные свойства торфа и методы их определения. – Минск: Наука и техника, 1975. – 320 с.
- Климов В.А. Основные микрометоды анализа органических соединений. – М.: Химия, 1967. – 208 с.
- Чухарева Н.В., Шишмина Л.В., Новиков А.А. Влияние термической обработки торфов на состав и свойства гуминовых кислот // Химия твердого топлива. 2003. № 4. С. 37–43.

- Белькевич П.И., Гайдук К.А., Стригуцкий В.П. Исследование процесса термолиза гуматов кальция методом ЭПР / Доклады АН БССР. – 1976. – Т. 20. – № 3. – С. 237–239.
- Чухарева Н.В., Шишмина Л.В., Маслов С.Г., Стригуцкий В.П. Термическая устойчивость торфяных гуминовых кислот // Химия растительного сырья. – 2003. – № 2. – С. 49–54.
- Долгих С.М. Закономерности образования пирогенетической воды и диоксида углерода при термической деструкции гуммитов и их модельных соединений: Автореф. дис. ... канд. хим. наук. – Томск, 1992. – 18 с.
- Belikhmaer Ya.A., Bir V.A., Fedorov A.F. Nonisothermal kinetics of independent reactions // React. Kinet. Catal. Lett. – 1982. – V. 20. – № 3–4. – P. 327–330.
- Ван Кревелен Д.В., Шуер Ж. Наука об угле. М.: ГНТ Изд-во литературы по горному делу, 1960. – 303 с.
- Маль С.С. Углеводы и азотсодержащие вещества торфа. Минск: Наука и техника, 1982. – 231 с.
- 14. Бенсон С. Термохимическая кинетика. М.: Мир, 1971. 306 с.
- Шишмина Л.В. Исследование кинетики и механизма термического декарбоксилирования некоторых органических кислот: Автореф. дис. ... канд. хим. наук. – М., 1980. – 26 с.

УДК 665.61

НИЗКОМОЛЕКУЛЯРНЫЕ АЗОТСОДЕРЖАЩИЕ ОСНОВАНИЯ НЕФТЕЙ, РАЗЛИЧАЮЩИХСЯ СОДЕРЖАНИЕМ СЕРЫ

Н.Н. Герасимова, Т.А. Сагаченко*

Томский политехнический университет *Институт химии нефти СО РАН. г. Томск E-mail: dissovet@ipc.tsc.ru

Изучены распределение и состав низкомолекулярных азотсодержащих оснований в нефтях юрско-палеозойского комплекса Западной Сибири, различающихся содержанием серы. Показано, что малосернистые нефти содержат в среднем меньше общего и основного азота, чем сернистые нефти. В составе азотистых оснований нефтей первого типа выше доля низкомолекулярных сильноосновных соединений. Их качественный состав не зависит от степени осерненности нефтей. Во всех исследованных образцах азотсодержащие основания представлены алкил- и нафтенопроизводными пиридина, хинолина, бензо-, дибензохинолина, азапирена, тиазола, тиофено-, бензотиофено-, дибензотиофенохинолина и высших аналогов бензола. Максимум в распределении сильных оснований приходится на хинолины, бензохинолины, тиофено- и бензотиофенохинолины. Особенностью сернистых нефтей является более высокое относительное содержание тиофенохинолинов. На примере алкилбензохинолинов показано, что индивидуальный состав сильных оснований также не зависит от типа нефти.

Введение

При характеристике углеводородного сырья, поступающего на переработку, большое значение имеет содержание в нем серы. Это связано с тем, что наличие сернистых соединений в исходном сырье снижает эффективность процессов каталитической переработки нефтяных дистиллятов, ухудшает качество горюче-смазочных материалов, представляет экологическую опасность из-за попадания в окружающую среду окислов серы, образующихся при сгорании низкокачественных топлив [1].

При прямой перегонке нефтей, как правило, невозможно получить высокосортные товарные продукты, отвечающие современным экологическим требованиям и конструкционным особенностям двигателей. Поэтому дистиллятные фракции и мазуты подвергают процессам десульфуризации, среди которых ведущее место занимает гидроочистка. Однако катализаторы этого процесса чувствительны к азотистым основаниям (АО) [1, 2]. Так, основания ряда хинолина тормозят реакции гидрообессеривания за счет блокирования каталитических центров соединениями азота и промежуточными продуктами гидродеазотирования [1]. Кроме того, азотистые соединения (AC), так же, как и сернистые, отрицательно влияют на эксплуатационные характеристики товарных продуктов, окружающую среду, наносят ущерб здоровью людей [1, 3]. В этой связи актуальны исследования, направленные на выявление взаимосвязи между содержанием в нефтяном сырье серы и распределением в них АС.

Данная работа посвящена изучению количественного содержания и состава низкомолекулярных АО в нефтях различной степени осерненности. Интерес к исследованию этих компонентов обусловлен тем, что низкомолекулярные АО концентрируются в дизельных и масляных фракциях, представляющих сырье для каталитической переработки. Охарактеризованы АО нефтей юрско-палеозойского комплекса Западной Сибири, который в настоящее время считают основным объектом подготовки запасов нефти в регионе [4].

Экспериментальная часть

Общее содержание AC (N_{ofm}) определяли методом сожжения в реакторе Покровского [5], содержание AO (N_{octh}) — методом неводного потенциометрического титрования раствором хлорной кислоты в диоксане [6].

Выделение низкомолекулярных AC и их последующее фракционирование по химическому типу осуществляли методом кислотной экстракции [7]. Были получены продукты, содержащие смесь сильных и слабых оснований (K, K₀) и только сильные основания (K₁, K₂). Сильные основания K₀ отличаются от AO K₁ и K₂ более развитым алкильным и/или нафтеновым замещением азаареновых ядер и, как следствие, наибольшей молекулярной массой [8]. В свою очередь сильноосновные соединения K₂ более высокомолекулярны и менее ароматичны по сравнению с сильными основаниями K₁ [7, 8].

Для выделения фракции азаареновых оснований соединения K_1 разделяли с помощью метода двухступенчатой линейной элюционной адсорбционной хроматографии на оксиде алюминия, модифицированном 3,75 об. % H₂O, с использованием бинарных смесей растворителей [9]. Получали продукт (K_1^A), элюируемый системой с $\varepsilon_{AB}^0=0,30$, в котором содержится большая часть сильных оснований исходного продукта.

Структурно-группововй состав сильных оснований K_1 и K_2 определяли методом масс-спектрометрии. Анализ проводили на масс-спектрометре MX-1320 с прямым вводом образца в ионный источник при энергии электронов 70 эВ. Оптимальную температуру испарения образца (скорость нагрева – 7 град/мин) определяли по полному ионному току, при максимальном значении которого регистрировали масс-спектры [10]. Для расчета структурно-группового состава АО использовали соотношение интенсивностей пиков молекулярных и псевдомолекулярных ионов в моноизотопных масс-спектрах [11].

Индивидуальный состав АО К₁^A определяли методом хромато-масс-спектрометрии на приборе R10-10С фирмы NERMAG (Франция) с системой сбора и обработки данных Spectral-500. Разделение основных соединений проводилось на кварцевой капиллярной колонке 30,0×0,32 мм с неподвижной фазой SE-54, с гелием в качестве газа-носителя. Масс-спектры измерены при энергии ионизации 70 эВ. Температура ионизационной камеры – 230 °С; время развертки спектра – 0,4 с; диапазон регистрируемых масс – 33–450. Идентификацию АО осуществляли путем сравнения со спектрами, полученными на однотипных фазах [12].

Результаты и их обсуждение

Согласно данным табл. 1, в массиве исследованных нефтей присутствуют малосернистые ($S_{ofm}=0,10...0,49$) и сернистые ($S_{ofm}=0,50...1,56$ мас. %) образцы [13]. Наличие малосернистых и сернистых нефтей (далее I и II типы соответственно) характерно для каждого геологического возраста. Содержание в нефтях общего (от следов до 0,16 мас. %) и основного (от 0,004 до 0,041 % мас.) азота типично для нефтей юрско-палеозойского комплекса Западной Сибири [14].

В табл. 2 приведены средние значения содержания AC в исследованных нефтях. Это связано с тем, что в данной работе на характер распределения и состав AC рассматривалось только влияние возраста вмещающих отложений; роль других геологогеохимических факторов (тип исходного органического вещества, окислительно-восстановительные условия его накопления, приуроченность залежи к тектонической зоне) не учитывалась.

Как следует из данных табл. 2, среднее содержание $N_{oбш}$ и $N_{ocн.}$ в малосернистых нефтях ниже (0,09...0,10 и 0,015...0,020 мас. % соответственно), чем в сернистых (0,10...0,15 и 0,018...0,036 мас. %). Для второго типа нефтей характерно более высокое относительное содержание АО (18,0...24,3 против 16,5...20,0). Вниз по разрезу юрских отложений для нефтей обоих типов наблюдается тенденция снижения средних концентраций общего и основного азота. Среднее содержание $N_{oбш.}$ и $N_{ocн.}$ в малосернистых и сернистых нефтях из палеозойских отложений выше (0,10...0,12 и 0,018...0,022 мас. % соответственно), чем в однотипных нефтях нижней юры (0,09...0,10 и 0,015...0,018 мас. %).

Количество низкомолекулярных AC, экстрагируемых из исследованных образцов, изменяется в широких пределах (0,039...0,512 мас. %). В их составе выделяется в среднем от 7,9 до 22,1 отн. % сильных оснований нефтей (К), табл. 3. Доля наиболее низкомолекулярных ароматичных соединений K_1 составляет 1,8...4,0 отн. %; на долю сильных оснований K_2 приходится от 2,7 до 7,8 отн. %. Количество оснований с экранированным атомом азота в молекуле K_0 колеблется от 3,4 до 11,1 отн. %.

Сравнительный анализ показывает, что малосернистые нефти характеризуются большим количеством всех типов низкомолекуляных сильных оснований. Так, общая степень выделения низкомолекулярных АО из малосернистых нефтей колеблется в пределах 14,1...22,1; из сернистых – в пределах 7,9...18,4 отн. %. Суммарная доля оснований К₁ и К₂ и сильных оснований в К₀ в малосернистых нефтях составляет 5,7...11,7 и 8,4...11,1 отн. % соответственно. В сернистых нефтях относительное содержание суммы K_1 и K_2 изменяется от 4,5 до 10,1; содержание сильных оснований в K_0 – от 3,4 до 9,5 отн. %. Вниз по разрезу юрского комплекса в нефтях, независимо от их типа, содержание низкомолекулярных АО снижается. В палеозойских нефтях содержание таких соединений выше, чем в однотипных образцах нижней юры.

Mactopoxygoung No cyp	Интервал	Содержание, мас.%						
месторождение, № скв.	отбора, м	S _{общ.} *	N _{общ.}	N _{och.}				
Вер	хняя юра							
Никольское, Р-1	23802400	0,20	0,12	0,025				
Лугинецкое, 188	23892392	0,41	0,10	0,020				
Рыбальное, 406	24202425	0,23	0,13	0,029				
Лонтыньяхское, 63	24762483	0,64	0,14	0,034				
Катыльгинское, 105	24822487	0,59	0,16	0,040				
Останинское, 418	24842488	0,28	0,13	0,028				
Западно-Останинское, 447	24882534	0,33	0,11	0,019				
Западно-Катыльгинское, 106	25122590	1,41	0,15	0,038				
Линейное, 5	25172531	0,20	0,09	0,011				
Тунгольское, Р-1	26032610	0,22	0,10	0,017				
Ван-Еганское, Р-113	26102612	0,31	0,09	0,025				
Нижне-Табаганское, 8	26172638	0,09	следы	0,004				
Моисеевское, б	26412650	0,60	0,16	0,042				
Чворовое, 1	27652772	0,51	0,15	0,041				
Карайское, 3	27842790	1,17	0,16	0,040				
Налимье, 1	28752887	0,50	0,16	0,039				
Средняя юра								
Новоютымское, 41	26812695	1,56	0,14	0,032				
Нижне-Табаганское, 18	27122727	1,31	0,14	0,030				
Герасимовское, 1	27372748	0,88	0,10	0,024				
Герасимовское, 10	27422750	0,88	0,10	0,023				
Кулгинское, 141	27442746	0,60	0,07	0,018				
Западно-Останинское, 444	27642774	0,34	0,09	0,014				
Герасимовское, 12	27702780	0,85	0,10	0,023				
Западно-Останинское, 444	28002814	0,41	0,10	0,018				
Широтное, 53	29082920	0,30	0,10	0,016				
Пихтовое, 200	29062927	0,82	0,15	0,034				
Них	княя юра							
Герасимовское, 10	28282857	0,69	0,09	0,016				
Западно-Останинское, 444	28342860	0,81	0,10	0,019				
Толпаровское, 1	30283034	0,16	0,05	0,009				
Широтное, 53	30333052	0,36	0,12	0,020				
Приколтогорское, 2	32803292	0,13	0,06	0,011				
Палеозой								
Останинское, 418	28022813	0,10	0,08	0,015				
Герасимовское, 12	28472860	0,75	0,15	0,030				
Арчинское, 42	30333042	0,49	0,12	0,023				
Широтное, 51	30653076	0,67	0,12	0,025				
Нижне-Табаганское, 4	30803090	0,16	0,07	0,019				
Калиновое, 10	31203137	0,62	0,09	0,012				
Урманское, 4	32353240	0,34	0,12	0,023				
		•	•					

Таблица 1. Характеристика исследованных нефтей

По данным масс-спектрометрического анализа низкомолекулярные сильные основания малосернистых и сернистых нефтей юрско-палеозойского комплекса Западной Сибири представлены одинаковыми наборами азот- (С_nH_{2n-z}N) и азотсеросодержащих (C_nH_{2n-z}NS) соединений с преобладанием азааренов (в среднем 61,0...69,3 отн. %), табл. 4. В составе азааренов всех нефтей присутствуют алкил- и нафтенопроизводные пиридина, хинолина, бензо-, дибензохинолина, азапирена и высших аналогов бензола. Среди азотсеросодержащих оснований установлены алкил- и нафтенопроизводные тиазола, тиофено-, бензотиофено-, дибензотиофенохинолина и высших бензологов. Максимум в распределении азааренов приходится на хинолины (14,1...18,2) и бензохинолины (13,5...19,8 отн. %). Среди оснований гибридной структуры преобладают тиофено- (8,1...12,2) и бензотиофенохинолины (9,4...13,9 отн. %). Следует отметить, что в сернистых нефтях доля тиофенохинолинов несколько выше (8,9...12,2), чем в малосернистых (8,1...9,9 отн. %).

Таблица 2. Содержание азота в малосернистых и сернистых нефтях юрско-палеозойского комплекса Западной Сибири

Типцофти	Содержан	N /N 100.9/					
типнефти	N _{общ.}	N _{och.}	Побщ./Посн. 100 /0				
Верхняя юра							
l (9)*	0,10	0,020	20,0				
II (8)	0,15	0,036	24,3				
Средняя юра							
I (3)	0,10	0,016	16,5				
(7)	0,11	0,026	23,3				
Нижняя юра							
(3)	0,08	0,013	16,3				
(2)	0,10	0,018	18,0				
Палеозой							
(4)	0,10	0,018	18,0				
(3)	0,12	0,022	18,6				

* здесь и далее в скобках указано число образцов, по которым проведено усреднение

Таблица 3. Распределение низкомолекулярных сильных оснований в малосернистых и сернистых нефтях юрско-палеозойского комплекса Западной Сибири

Типцофти	Содержание N _{осн.} , отн. %							
Типнефти	K	K ₁	K ₂	K ₀				
Верхняя юра								
I (9)	22,1	3,9	7,8	10,4				
(7)	18,3	3,2	6,9	8,2				
Средняя юра								
(3)	20,1	4,0	5,0	11,1				
(7)	7,9	1,8	2,7	3,4				
Нижняя юра								
(2)	14,1	2,1	3,6	8,4				
(2)	13,0	2,7	3,4	6,9				
Палеозой								
(4)	19,8	3,5	6,5	9,8				
(3)	18,4	2,7	6,3	9,5				

С увеличением возраста вмещающих отложений в составе низкомолекулярных АО нефтей обоих типов возрастает относительное содержание азааренов. Так, в нефтях верхней юры количество таких оснований составляет в среднем 65,5 и 61,0, а в нефтях палеозоя — 69,3 и 68,0 отн. % для малосер-

^{*} данные получены в лаборатории гетероорганических соединений нефтей ИХН СО РАН

	Содержание относительно суммы сильных оснований, отн. %							
Соединения	Верхняя юра		Средняя юра		Нижняя юра		Палеозой	
	I тип (6)	II тип (4)	I тип (2)	II тип (4)	I тип (1)	II тип (1)	I тип (3)	II тип (1)
$C_n H_{2n-z} N (z=7-37)$	65,5	61,0	65,6	65,3	63,9	65,4	69,3	68,0
Пиридины (<i>z</i> =7-11)	2,9	5,2	6,8	7,2	1,0	2,4	6,6	2,9
Хинолины (<i>z</i> =11-19)	15,9	17,0	17,5	18,2	14,1	14,2	17,2	17,8
Бензохинолины (<i>z</i> =17-23)	17,3	14,9	13,5	13,9	19,1	17,5	17,6	19,8
Дибензохинилины (<i>z</i> =23-29)	9,2	7,2	6,7	6,6	9,4	11,0	7,6	9,3
Азапирены (<i>z</i> =21-25)	9,9	8,6	9,2	8,3	8,9	11,6	10,5	8,6
Высшие аналоги бензола (<i>z</i> =27-37)	10,3	8,1	11,9	11,1	11,4	8,7	9,8	9,6
$C_n H_{2n-z} NS (z=9-35)$	34,5	39,0	34,3	37,4	36,1	34,6	30,7	32,0
Тиазолы (<i>z</i> =9-13)	9,2	10,9	10,4	9,6	7,3	6,5	5,7	3,3
Тиофенохинолины (<i>z</i> =15-19)	9,9	10,9	9,4	10,1	8,1	8,9	9,4	12,2
Бензотиофенохинолины (<i>z</i> =21-27)	10,0	10,9	9,6	9,4	13,9	13,4	11,8	12,8
Дибензотиофенохинолины (<i>z</i> =27-31)	4,4	5,0	4,3	4,3	6,8	5,8	3,4	3,7
Высшие аналоги бензола (<i>z</i> =33, 35)	1,0	1,3	0,7	1,3	0	0	0,4	0

Таблица 4. Структурно-групповой состав низкомолекулярных сильных оснований малосернистых и сернистых нефтей юрскопалеозойского комплекса Западной Сибири

нистых и сернистых нефтей соответственно. Среди АО увеличивается доля полициклоароматических структур (бензохинолинов, бензотиофенохинолинов), что может быть связано с их большей термодинамической устойчивостью по сравнению с хинолинами и тиофенохинолинами [15].

Анализ продуктов K₁^A методом хромато-масс-спектрометрии показал, что несмотря на разнородность исследованных образцов, качественный состав бензохинолинов характеризуется набором одних и тех же серий (m/z=193, 207, 221, 235), соответствующих их алкилпроизводным (табл. 5). Незамещенных бензохинолинов не обнаружено. Во всех нефтях преобладают С₂- и С₃-алкилбензохинолины (m/z=207 и 221). Из исследованных нефтей II типа выделяется палеозойская нефть. Для нее отмечено самое низкое содержание С₂-алкилбензохинолинов и самое высокое содержание С₃-алкилбензохинолинов. Для одновозрастных нефтей содержание С₃-алкилбензохинолинов практически не зависит от степени осерненности нефти.

Таблица 5. Изомерный состав алкилбензохинолинов малосернистых и сернистых нефтей юрско-палеозойского комплекса Западной Сибири

	Содержание, отн. %							
Соединения	Верхняя юра		Средняя юра	Нижняя юра		Палеозой		
	I тип (1)	II тип (2)	II тип (5)	I тип (1)	II тип (1)	II тип (1)		
С1-бензохинолины:	1,0	2,4	1,9	1,7	0,7	OTC.		
2-метил-бензо(h)хинолин	1,0	2,4	1,9	1,7	0,7	OTC.		
С ₂ -бензохинолины:	54,0	21,0	24,1	51,4	51,9	19,3		
Диметил-бензохинолин	1,7	1,4	1,5	0,6	1,6	1,2		
Диметил-бензохинолин	4,5	1,2	1,0	1,3	1,0	1,4		
Диметил-бензохинолин	3,1	5,1	6,5	3,0	6,9	2,4		
2,4-диметил-бензо(h)хинолин	33,9	6,9	9,7	31,0	30,7	11,3		
2,3-диметил-бензо(h)хинолин	10,2	5,5	4,8	11,2	11,1	2,6		
Диметил-бензохинолин	0,6	0,9	0,6	4,3	0,6	0,6		
С ₃ -бензохинолины:	40,7	40,5	43,8	39,7	39,3	72,9		
Триметил-бензохинолин	0,9	0,5	2,0	0,1	1,9	0,5		
Триметил-бензохинолин	0,3	1,9	2,3	1,5	2,0	1,9		
Триметил-бензохинолин	2,0	1,4	2,3	1,3	1,1	9,9		
Триметил-бензохинолин	1,0	3,0	3,5	4,3	2,9	2,5		
Триметил-бензохинолин	7,4	5,5	4,8	3,7	4,8	6,0		
Триметил-бензохинолин	5,3	5,2	4,3	6,6	3,6	4,9		
Триметил-бензохинолин	7,2	6,5	5,6	3,3	5,7	14,3		
2,4,6-триметил-бензо(h)хинолин	8,9	6,7	6,4	7,3	8,6	15,0		
Триметил-бензохинолин	5,6	6,5	5,4	6,3	3,1	7,8		
Триметил-бензохинолин	1,8	2,4	5,0	3,5	4,4	9,0		
Триметил-бензохинолин	0,3	0,9	2,2	1,8	1,2	1,1		
С₄-бензохинолины	4,3	36,1	30,2	7,2	8,1	7,8		

Сравнение с литературными данными [12] позволило установить, что серии m/z=193, 207, 221 представлены только метилзамещенными бензохинолинами, число которых растет с увеличением m/zсерии. Структура боковых цепей для соединений с m/z=235 не установлена. В составе монометилбензохинолинов во всех нефтях присутствует лишь 2-метил-бензо(h)хинолин. Среди диметилбензохинолинов идентифицированы 2,4- и 2,3-диметилбензо(h)хинолины, среди триметилбензохинолинов только 2,4,6-триметилбензо(h)хинолин. Независимо от типа нефти, во всех исследованных образцах доминирует 2,4-диметилбензо(h)хинолин (табл. 5).

Выводы

Малосернистые нефти юрско-палеозойского комплекса Западной Сибири содержат в среднем

СПИСОК ЛИТЕРАТУРЫ

- Багрий Е.И., Нехаев А.И. Нефтехимия и защита окружающей среды (обзор) // Нефтехимия. – 1999. – Т. 39. – № 2. – С. 83–97.
- Turaga Uday T., Wang Gang, Ma Xiaoliang, Song Chunshan, Schobert Harold H. Influence of nitrogen on deep hydrodesulfurization of 4,6-dimethyldibenzothiophene // Petrol. Chem. Div. Prepr. - 2002. - V. 47. - № 1. - P. 89–92.
- Schmitter J.M., Arpino P.J. Azaarenes in fuels // Mass-spectrometry Reviews. – 1985. – № 4. – P. 87–121.
- Нефтегазоносные бассейны и регионы Сибири. Западно-Сибирский бассейн / Под ред. А.Э. Конторовича. – Новосибирск: Наука, 1994. – 200 с.
- Чумаченко М.Н., Хандик Т.А., Соснина Н.П., Воротникова В.А. Определение азота в нефтях и нефтепродуктах // Химия и технология топлив и масел. – 1983. – № 5. – С. 39–40.
- Безингер Н.Н., Гальперн Г.Д. Функциональный анализ азотистых соединений нефти // Методы анализа органических соединений нефти, их смесей и производных. Сб. 1. – М.: Изд-во АН СССР, 1960. – С. 141–169.
- Герасимова Н.Н., Сагаченко Т.А., Бейко О.А., Огородников В.Д. Выделение и фракционирование азотистых оснований из нефти // Нефтехимия. – 1987. – Т. 27. – № 1. – С. 32–38.
- Туров Ю.П., Герасимова Н.Н., Сагаченко Т.А., Бейко О.А. Групповой состав низкомолекулярных азотистых оснований самотлорской нефти // Нефтехимия. – 1987. – Т. 27. – № 1. – С. 39–44.

меньше общего и основного азота, чем сернистые нефти. В составе АО нефтей первого типа выше доля низкомолекулярных сильных оснований. Их качественный состав не зависит от степени осерненности нефтей. Во всех исследованных образцах низкомолекулярные АО представлены алкил- и нафтенопроизводными пиридина, хинолина, бензо-, дибензохинолина, азапирена, тиазола, тиофено-, бензотиофено-, дибензотиофенохинолина и высших аналогов бензола. Максимум в распределении сильных оснований приходится на хинолины, бензохинолины, тиофено- и бензотиофенохинолины. Особенностью сернистых нефтей является более высокое относительное содержание тиофенохинолинов. На примере алкилбензохинолинов показано, что индивидуальный состав сильных оснований также не зависит от типа нефти.

- Сагаченко Т.А., Гришанова Л.А., Герасимова Н.Н., Лукьянов В.И., Сваровская Л.И. Биодеградация азотсодержащих соединений нефти // Химия в интересах устойчивого развития. – 1999. – № 7. – С. 189–193.
- Туров Ю.П., Сагаченко Т.А., Унгер Ф.Г. Возможности количественного масс-спектрометрического анализа многокомпонентных смесей при прямом вводе образца в камеру ионизации // Журнал аналитической химии. – 1988. – Т. 43. – № 8. – С. 1406–1409.
- Полякова А.А. Молекулярный масс-спектральный анализ органических соединений. – М.: Химия, 1983. – 248 с.
- Ignatiadis I., Schmitter J.M., Arpino P.J. Seperation et identification par chromatographie en phase gazeuse et chromatographie en phase gazeuse-spectrometrie de masse de composes azotes nune huile lourde desasphaltee // Journal of Chromatography. – 1985. – V. 324. – № 1. – P. 87–111.
- Камьянов В.Ф. Основы химии нефти. Учебное пособие. Часть 1. – Томск: Изд-во ТГУ, 1981. – 132 с.
- Герасимова Н.Н., Николаева Т.Л., Коваленко Е.Ю., Сагаченко Т.А., Мин Р.С. Распределение азот- и сероорганических соединений в нефтях юрского и палеозойского комплексов Западной Сибири // Нефтехимия. – 1999. – Т. 43. – № 4. –С. 266–272.
- Bakel A.J., Philp R.P. Distribution and quantitation of organonitrogen compounds in crude oils and rock pyrolisates // Org. Geochem. - 1990. - V. 16. - № 1-3. - P. 353-367.