ВЛИЯНИЕ УСЛОВИЙ СПЕКАНИЯ НА СТРУКТУРУ И СВОЙСТВА МЕДНЫХ ОБРАЗЦОВ, ПОЛУЧЕННЫХ МЕТОДОМ ЭКСТРУЗИОННОЙ АДДИТИВНОЙ ТЕХНОЛОГИИ

 Γ .С. КОПЫТОВ¹, М.Г. КРИНИЦЫН^{1,2}

¹Томский политехнический университет

²Институт физики прочности и материаловедения СО РАН E-mail: gsk10@tpu.ru

На сегодняшний день все большую популярность приобретают аддитивные технологии. Очень распространен метод послойного наплавления – FDM-печать. Он представляет собой процесс аддитивного производства, который реализовывается благодаря экструзии материалов на основе термопластичных полимеров. В FDM объект строится путем нанесения расплавленного материала по заранее установленному алгоритму, слой за слоем. В случае необходимости получить изделия из металла или керамики используют фидстоки – гранулированный материал, смесь мелкодисперсных металлических или керамических порошков с полимерным связующим. Однако различные фидстоки требуют определенных параметров печати, которые определяются эмпирическим путем. Целью данной работы является исследование структуры медных образцов, полученных методом FDM печати с применением фидстоков.

Создание фидстоков включало в себя смешивание металлического порошка и полимерного связующего с последующей экструзией полученной смеси. При создании фидстока использовались нанопорошки меди с небольшим содержанием оксида (Cu₂O), сформированного в результате естественного окисления порошка. Порошки отличаются дисперсностью, поэтому были разделены на 3 отдельные серии. На рисунке 1 представлены дисперсные составы порошков каждой серии.

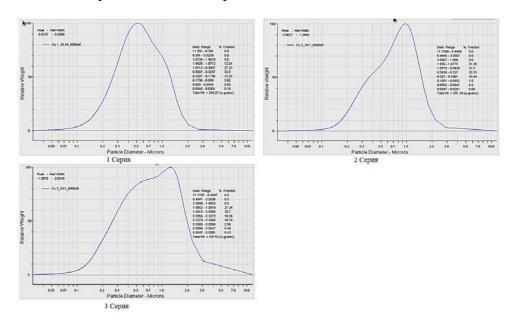


Рисунок 1 – Дисперсный состав порошков меди каждой серии. Серия 1 – порошок наименьшей дисперсности, серия 3 – наибольшей

Полученный материал был также изучен на лабораторном реометре. Для данных материалов был измерен показатель текучести расплава – показатель, который характеризует скорость течения расплавленного термопласта через капилляр стандартных размеров при заданных температуре и давлении. ПТР выражают в граммах выдавливаемого полимера в течение стандартного времени (10 мин). Исследования реометрических свойств происходили с грузом массой 2.16 кг и поршнем массой 0.325 кг при температурах 120-140°С. По

результатам исследования реологических свойств, представленных в таблице 1, определено, что они зависят от дисперсности следующим образом: чем крупнее фидсток, тем более вязким он становится.

T 7 1 D		U
Таблица I — Расцет	пеопогических своиств	ппа кажпои сепии
raomina racier	реологических свойств	дли каждон серин

No	1	2	3	4	5	Cp.	Среднекв.	Коэффициент	ПТР,
Серии	повтор,	повтор,	повтор,	повтор,	повтор,	знач.	отклонение	вариации	г/10
	Γ.	Γ.	Γ.	Γ.	Γ.				мин.
1	10,4167	9,0925	9,2145	9,2392	9,3541	9,4634	0,241913	2,5563	70,9755
2	8,3247	8,1943	8,1545	8,3457	8,0134	8,20652	0,060617	0,738644	60,1005
3	7,8663	9,128	7,7666	8,1251	7,5363	8,08446	0,277465	3,43208	56,52225

Следующим этапом было спекание образцов. Образцы спекались в печи в форвакууме при температуре $950\,^{\circ}$ С. Выявлено, что при спекании значительно увеличивается количество фаз оксида меди Cu_2O в связи с реакцией с кислородом. До спекания содержание оксида меди в образцах составляет: в первой серии $9,7\,\%$, во второй серии $2,3\,\%$, в третьей серии $1,2\,\%$. После спекания содержание оксида меди в образцах составляет: в первой серии $21,2\,\%$, во второй серии $10,4\,\%$, в третьей серии $9,1\,\%$.

Для определения лучшей среды спекания были дополнительно изготовлены образцы из порошков 1 и 2 серий. Спекание этих образцов, в отличие от первых, проводилось в среде водорода. В образцах дополнительных серий содержание меди после спекания составляет 67 % для 1 серии и 71,8 % для 2 серии, а содержание оксида меди 33% для 2 серии и 28.2 % для 3 серии.

Были проведены металлографические исследования образцов на оптическом микроскопе. На рисунке 2 представлены структуры образцов. По результатам были сделаны выводы:

В образце 1 серии медь имеет сплошную структуру, что говорит о завершении процесса спекания образца. Обнаружены множественные поры, на рисунке они обозначены окружностью, размер достигает 200 мкм, средний размер около 100 мкм. Их наличие объясняется вымыванием полимерного связующего при дебиндинге.

В образце 2 серии структура имеет более четкие границы частиц исходного порошка, что говорит о том, что процесс спекания не был завершен. На рисунках обозначены участки нерасплавленной меди. Они имеют округлую форму, в диаметре достигают 50 мкм. В отличие от образцов первой серии размеры пор значительно меньше: в среднем около 15 мкм, но количественно их больше. Присутствуют также круглые поры, диаметр достигает 20-25 мкм. Их наличие обусловлено выходом газов из материала. В образце 3 серии, так же, как и в образце 2 серии, обнаружены участки не сплавленного металла и множество пор, что говорит о незаконченности процесса спекания.

Образцы, спеченные в среде водорода, сохраняют свою форму после спекания и не разрушаются. Внутренняя структура характеризуется высокой пористостью, а в образцах 2 серии не происходит спекания с формированием монолитной структуры меди.

На поверхности образцов, спеченных в среде вакуума, обнаружено сильное растрескивание. Образцы, спеченные в водороде, имеют более устойчивую форму. Исходя из результатов снимков, можно заключить, что сохранению формы способствуют связи макрочастиц в образце. Стоит отметить, что образцы 1 серии, спеченные в среде водорода, расплавились в ходе процесса спекания. Образцы других серий сохранили свою форму. По результатам исследований была установлена зависимость способности к окислению от дисперсности порошков: более мелкий порошок должен быть более активен по отношению к кислороду.

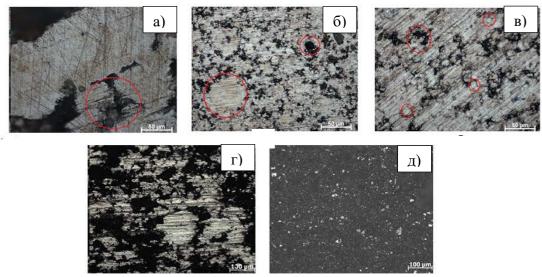


Рисунок 2 – Изображения структуры образцов: а) 1 серии; б) 2 серии; в) 3 серии; г)1 серии, спеченный в среде водорода; д) 2 серии, спеченный в среде водорода

На этапе рентгенофазового анализа был определен фазовый состав образцов каждой серии. Полученные результаты были обработаны методом Ритвельда. Были построены дифрактограммы. На рисунке 3 показаны полученные результаты.

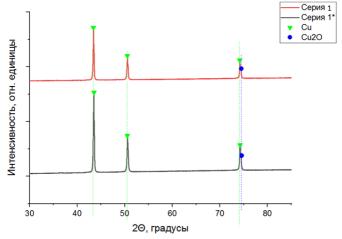


Рисунок 3 – Дифрактограммы образцов 1 серии после спекания: красный график – спеченный в среде вакуума, черный график – спеченный в среде азота

Работа выполнена при поддержке гранта Президента Российской Федерации для молодых российских ученых № MK-209.2022.4.

Список литературы

- 1. Yufei Chen et. al. Integration of interlayer surface enhancement technologies into metal additive manufacturing: A review // Journal of Materials Science & Technology. 2023. Vol. 165. P. 94-122.
- 2. Van Pham D. et al. Study into the effects of the feedstock properties and stability on the catalytic hydrocracking of heavy oil //Fuel. 2023. Vol. 339. P. 127427.
- 3. Liu C. et al. Effect of powders on aluminum nitride components fabricated by PIM //Powder Technology. 2023. Vol. 420. P. 118409.