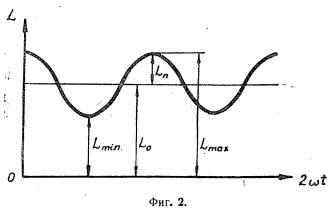

ОБ ОПРЕДЕЛЕНИИ КОЭФФИЦИЕНТА ГЛУБИНЫ МОДУЛЯЦИИ ИНДУКТИВНОСТИ ПАРАМЕТРИЧЕСКОГО ГЕНЕРАТОРА


в. м. высоцкая

(Представлено научным семинаром электромеханического факультета)

Электрическая цепь параметрического генератора индуктивного типа представляет собой колебательный контур, состоящий из переменной индуктивности L, постоянной емкости C и сопротивления нагрузки R (фиг. 1).

При вращении индуктивного параметрического генератора в его цепипри известных условиях возникает и поддерживается переменный ток частоты вдвое меньшей, чем частота изменения параметра L.

На фиг. 2 показана кривая гармонического изменения индуктивности параметрического генератора.

Для упрощения можно сделать близкое к истине допущение, что переменная часть индуктивности генератора меняется по закону косинуса. В момент начала отсчета времени индуктивность имеет максимум, и выражение для нее получает вид:

$$L = L_0 + L_n \cos 2 \omega t$$
.

Здесь L_0 — среднее значение индуктивности, L_n — амплитуда ее переменной части.

Как видно из фиг. 2,

$$L_0 = \frac{L_{\max} + L_{\min}}{2} \quad \text{if} \quad L_n = \frac{L_{\max} - \dot{L}_{\min}}{2}.$$

Введем m — глубину модуляции параметра, т. е. относительное изменение параметра.

$$m = \frac{L_n}{L_0} = \frac{L_{\text{max}} - L_{\text{min}}}{L_{\text{max}} + L_{\text{min}}}.$$

Таким образом, окончательно получим:

$$L = L_0 (1 + m \cos 2 \omega t).$$

Для выбора параметров схемы возбуждения параметрического генератора и определения условий его устойчивой работы необходимо знать величину коэффициента глубины модуляции m.

Определить коэффициент глубины модуляции опытным путем возможно только после того, как параметрический генератор изготовлен и пущен в ход. В этом случае измеряются индуктивные сопротивления параметрического генератора X_{\max} и X_{\min} , вычисляются индуктивности L_{\max} и L_{\min} , а затем определяется глубина модуляции параметрического генератора, как

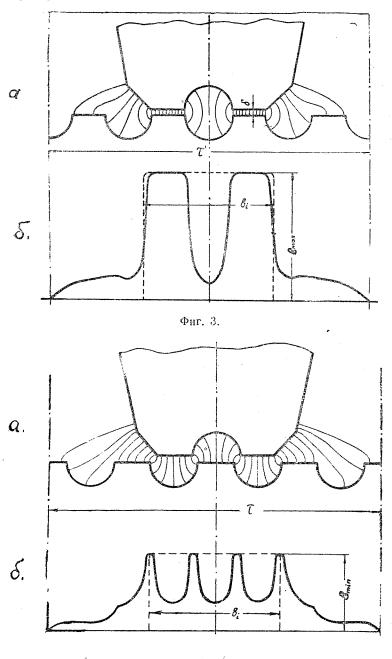
$$m = \frac{L_{\text{max}} - L_{\text{min}}}{L_{\text{max}} + L_{\text{min}}}.$$

Можно рекомендовать способ определения приблизительного значения величины коэффициента глубины модуляции в процессе проектирования параметрического генератора для любой формы профиля пластин тела статора и ротора.

Для этого следует построить картину распределения магнитных силовых линий в воздушном зазоре для двух случаев:

1) когда зубцы ротора располагаются против зубцов статора, т. е. для наибольшего значения индуктивности (фиг. 3 a);

2) когда зубцы ротора располагаются против впадин статора, что соот-


ветствует наименьшему значению индуктивности (фиг. 4a). Построив кривые распределения магнитной индукции в воздушном зазоре для указанных выше случаев и заменив площадь, охватываемую этими кривыми, площадью прямоугольников с основанием, равным расчетной ширине полюсной дуги статора b_i , находим, что высота прямоугольника в первом случае (фиг. 36) равна B_{\max} , а во втором случае (фиг. 46) — B_{\min} .

Очевидно, что справедливо следующее равенство:

$$\frac{L_{\text{max}} - L_{\text{min}}}{L_{\text{max}} + L_{\text{min}}} = \frac{B_{\text{max}} - B_{\text{min}}}{B_{\text{max}} + B_{\text{min}}},$$

$$\text{T. e. } m = \frac{B_{\text{max}} - B_{\text{min}}}{B_{\text{max}} + B_{\text{min}}}.$$

Экспериментальная проверка на опытном параметрическом генераторе дала вполне удовлетворительные результаты и показала, что, пользуясь указанным методом, можно определить коэффициент глубины модуляции м индуктивного параметрического генератора для любого профиля междужелезного пространства.

Фиг. 4.

ЛИТЕРАТУРА

1. Папалекси Н. Д. Параметрическое генерирование переменных токов. Журн. "Электричество" № 11, 1938.

2. Жежери н Р. П. О параметрическом генерировании. Журн. "Электричество" № 11, 1940.