ГРАФО-АНАЛИТИЧЕСКИЙ СПОСОБ ПРЕДВЫЧИСЛЕНИЯ ТОЧНОСТИ СТОРОН ТРИАНГУЛЯЦИИ

М. В. ПОСТНИКОВ

(Представлено научным семинаром кафедр маркшейдерского дела и геодезии).

Для оценки достоинства геометрического построения звеньев триангуляций, а также триангуляции, развиваемой по методу геодезических засечек, при проектировании и рекогносцировке, определяют обратный вес каждой фигуры $-\frac{1}{P_F}$, а затем эти величины суммируют по всему звену триангуляции. Полученная величина характеризует точность определения конечной стороны звена. Такое предвычисление достоинства триангуляции в отношении точности передачи длин сторон носит до известной степени приближенный характер. Как известно, величина обратного веса $\frac{1}{P_F}$ какого-либо элемента триангуляции (дирекционного угла, стороны и т. п.) строгим способом может быть вычислена из выражения:

$$\frac{1}{P_F} = [f.f.n].$$

Однако применение этой формулы сопряжено с значительными вычислениями и на практике при предвычислении точности триангуляции обычно пользуются приближенными формулами. При выборе формул для этой цели большое значение придается их простоте и удобству пользования ими.

Для предвычисления точности проектируемой триангуляции, определяемой по методу засечек, подсчитывается величина Q по формуле [1]:

$$Q = 2\delta^{2}_{A+B} + \delta^{2}_{A} - 2\delta_{A+B} \cdot \delta_{A} , \qquad (1)$$

где Q — величина, обратная весу треугольника;

 δ_{A+B},δ_A — приращения логарифмов синусов углов треугольников при изменении этих углов на одну секунду, в единицах 6-го знака логарифмов.

Для определения величины Q в ЦНИИГАИК под руководс † вом проф. А. И. Дурнева составлена таблица, опубликованная в "Сборнике статей ГУГК, 1944 г.

Порядок определения величины Q по этой таблице следующий:

1. По составленной в результате проектирования (или рекогносцировки) схеме сети измеряются транспортиром углы А и В с точностью до одного градуса (рис. 1).

2. По аргументам А и В для всех треугольников каждой передачи из таблицы двойным интерполированием, получаются значения Q. (Таблицы составлены с двумя входами—углами А и В).

Для правильного отыскания величины Q следует принять следующее правило обозначения углов A и B.

Обозначим стрелкой направление передачи длины линии (рис. 1). Тогда в треугольнике N 1 задний угол при стороне ходовой линии S нужно обозначать A_1 , передний B_1 ; в треугольнике N 2 задний угол соответствует B_2 , передний A_3 и т. д.

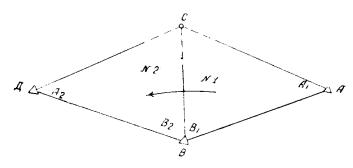


Рис. 1.

В горизонтальной строке таблицы отыскивается значение угла B, в вертикальном столбце берется значение угла A, в пересечении линий читается величина Q. Затем, как рекомендует A. И. Дурнев [1], для каждой передачи вычисляется среднее арифметическое значение Q_{cp} и Q_{cp} из двух треугольников. Одновременно с этим вычисляется вес P для каждой передачи и Q_m для обеих передач. Вес каждой передачи P и величина Q_m вычисляются по формулам:

$$Q_{cp} = \frac{Q_1' + Q_2'}{2}; \ Q_{cp} = \frac{Q_1'' + Q_2''}{2} \ , \tag{2}$$

$$Q_{m} = \frac{Q_{cp}' + Q_{cp}''}{2} , \qquad (3)$$

$$P_{1'} = \frac{100}{Q_{cn'}}; P_{2''} = \frac{100}{Q_{cn''}}. \tag{4}$$

Вычисления величины Q и веса передачи P производятся в ведомости следующей формы (табл. 1):

Указанные правила вычисления Q_m и P_m справедливы только при равенстве углов A и B. Если углы A и B резко отличаются между собой, то вычисление величины Q следует производить иначе.

Двойная передача повыщает точность (вес) результата, поэтому вес уравненного значения стороны будет равен сумме весов обеих передач, т. е.

$$P = P_1 + P_2$$

или

$$P = \frac{1}{Q'} + \frac{1}{Q''} = \frac{Q' + Q''}{Q' \cdot Q''}$$
;

тогда

$$Q_m = \frac{Q' \cdot Q''}{Q' + Q''} ,$$

где

$$Q' = Q_1' + Q_2'$$
; $Q'' = Q_1'' + Q_2''$.

Вычисления обратного веса триангуляции Формулы:

$$Q = 2 \delta_{A+B}^2 + \delta_A^2 - 2\delta_{A+B} \cdot \delta_A .$$

$$Q_{cp}+rac{Q_1+Q_2}{2}$$

$$Q_m = \frac{Q'_{cp} + Q''_{cp}}{2}$$

$$P = \frac{100}{Q_{cp}}$$

Первая передача

Вторая передача

№№ треуголь- ников		Q'	$Q_{cp}^{\ \prime}$	$P_1' = \frac{100}{Q'_{cp}}$		№№ треуголь- ников	A B	Q"	Q" _{cp}	$P_{cp}^{"} = \frac{100}{Q_{cp}^{"}}$
26	39°	65	49	2,00	Перед. № 7 $Q_m = 33,5$	25	38°	30	18	5,6
28	94° 51°	33	73	2,00	$P_m = 3.0$	27	55°	6	10	J,0

Отсюда легко доказать, что
$$\frac{Q' \cdot Q''}{Q' + Q''} \leqslant \frac{Q' + Q''}{2}$$
 .

Заметим, что такой прием нахождения обратного веса передачи не является совершенно строгим, так как $\frac{1}{P_F} = [f.f.\,n] \leqslant \frac{Q'.\,Q''}{Q'+Q''} \;.$

$$\frac{1}{P_F} = [f.f.n] \leqslant \frac{Q'.Q''}{Q'+Q''}$$

Однако это правило определения обратного веса будет давать результаты, более близкие к значениям, вычисленным по строгой формуле. Ниже приводится порядок вычисления Q_m и P.

1. Из значений Q, определенных для каждого треугольника передачи, находятся величины Q' и Q''

$$Q' = Q_1' + Q_2'; \quad Q'' = Q_1'' + Q_2''.$$
 (5)

2. По найденным Q' и Q'' вычисляется вес неуравненного значения стороны S_2

$$P' = \frac{100}{Q'}; \quad P'' = \frac{100}{Q''}. \tag{6}$$

3. Вычисляется вес уравненного значения стороны P_{m} и Q_{m}

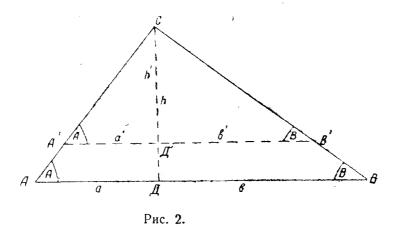
$$P_m = P' + P''. \tag{7}$$

$$Q_m = \frac{1}{P_m} = \frac{Q' \cdot Q''}{Q' + Q''}.$$
 (8)

Вычисление величины Q и веса P производится в схеме следующей формы:

Таблица 2

Вычисления обратного веса стороны триангуляции


$$Q' = Q_1' + \mathbf{Q}_2'$$
 $Q'' = Q_1'' + \mathbf{Q}_2''$ $Q'' = Q_1'' + \mathbf{Q}_2''$ $P'' = \frac{100}{Q'}$ $P'' = \frac{100}{Q''}$ $Q_m = \frac{1}{P_m} = \frac{\mathbf{Q}' \cdot \mathbf{Q}''}{\mathbf{Q}' + \mathbf{Q}''}$

Первая передача

Вторая передача

№№ треуголь- ников	A B	\mathbf{Q}_{1}^{\prime} \mathbf{Q}_{2}^{\prime}	Q'	$P' = \frac{100}{Q'}$	№№ передач	№№ треуголь- ников	A B	\mathbf{Q}_1'' \mathbf{Q}_2''	Q″	$P'' = \frac{100}{\mathbf{Q''}}$		
00	39°				Передача № 6	0.5	38°	20				
26	114°	65				25	9 9,	30				
28	94°	33	98	1,02	$P_{m}=3,80$	27	55°	6	36	2,78		
	51°				$Q_{m}=26,3$		57°					

Чтобы ускорить и упростить получение величин Q, можно измерять в треугольниках триангуляции не углы A и B, а длины проекций a и b, прилежащих к этим углам (рис. 2) при определенном значении высоты треугольника (например: h=40 мм), а затем по аргументам a и b определять величины Q по особой таблице.

Теоретическая основа этого способа заключается в следующем: в треугольнике ABC (рис. 2) опустим перпендикуляр h = CD из вершины C на сторону AB, который разделит сторону AB на отрезки AD = a и DB = b.

Очевидно, отношение $\frac{a}{h}$ будет выражать котангенс угла A, а отноше-

ние $\frac{b}{h}$ — контангенс угла B.

Проведем линию A'B' параллельно стороне AB на расстоянии от вершины треугольника C, равном заданной величине CD'=h', тогда:

$$\frac{a'}{h'} = \frac{a}{h} = \operatorname{ctg} A. \tag{9}$$

$$\frac{b'}{h'} = \frac{b}{h} = \operatorname{ctg} B. \tag{10}$$

Формулу (1) можно представить в ином виде, переходя от с к котангенсам углов:

$$Q = [\operatorname{ctg}^{2}A + 2\operatorname{ctg}^{2}(A + B) - 2\operatorname{ctg}(A + B) \cdot \operatorname{ctg}A] \cdot \left(\frac{10^{6}\mu}{\rho}\right)^{2}.$$
 (11)

Выражая котангенсы углов через элементы треугольника a, b и h, формула (11) напишется так:

$$Q = \left\{ \left(\frac{a}{h}\right)^2 + 2 \left[\frac{\frac{a}{h} \cdot \frac{b}{h} - 1}{\frac{a}{h} + \frac{b}{h}} \right]^2 - 2 \left(\frac{a}{h}\right) \left[\frac{\frac{a}{h} \cdot \frac{b}{h} - 1}{\frac{a}{h} + \frac{b}{h}} \right] \left(\frac{10^6 \mu}{\rho}\right)^2$$
(12)

или после соответствующих преобразований:

$$Q = \left\{ \frac{(ab - h^2)^2 + (a^2 + h^2)^2}{h^2(a + b)^2} \right\} \left(\frac{10^6 \mu}{\rho} \right)^2.$$
 (13)

Для измерения отрезков a и b, при постоянной величиве h, можно построить палетку на прозрачной основе (рис. 3).

Палетка

На линии CD откладываются равные отрезки по 20 мм и через их концы проводятся перпендикулярно к CD прямые A'B', A''B'' и A'''B''', на которых наносятся шкалы с делениями в один миллиметр. Для правильной установки какой-либо шкалы с миллиметровыми делениями параллельно основанию треугольника, между прямыми A'B', A''B'' и A'''B''' и параллельно им проводятся вспомогательные пунктирные линии.

Порядок определения величины Q при помощи линейных отрезков будет следующий:

1. На схеме построенной сети триангуляции накладывается прозрачная палетка, точка S совмещается с вершиной C треугольника ABC (рис. 1), а одна из шкал устанавливается параллельно основанию AB треугольника.

При измерении линейных отрезков a и b следует принять такое правило: отрезок a всегда будет внешним отрезком каждого пучка засечек, а отрезок b прилежащим к средней (связующей) стороне.

Отрезки a и b измеряются с точностью до одного миллиметра.

2. По аргументам a и b из таблицы выбирается значение Q.

Иногда один из связующих углов в треугольнике может быть тупым,

т. е. превышать 90° (рис. 4).

В этом случае отрезки a и b, определяющие значения углов A и B, измеряются в одном направлении от вертикальной линии CD, а отрезок, определяющий тупой угол, будет отрицательным. Так, для случая (a) на рис. 4 линия D'A' = a, D'B' = -b для случая (b), D'A' = -b и D'A' = a:

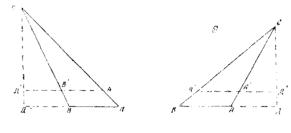


Рис. 4.

Таблица для определения величин Q по линейным отрезкам должна иметь два входа. В горизонтальной строке аргумента подписываются отрезки b, а в вертикальном столбце — отрезки a. В пересечении горизонтальной и вертикальной линий получается значение Q. Таблицу величин Q рекомендуется составить при $h=40\,$ мм, что соответствует среднему треугольнику триангуляции IV класса, нанесенному на чертеж в масштабе 1:25000.

В этом случае при определении отрезков a и b на палетке следует пользоваться средней шкалой.

При составлении таблицы значений Q длины отрезков a и b необходимо устанавливать с различными интервалами, с учетом обеспечения точности определения величин Q в $2-3^{\circ}/_{\circ}$ (т. е. без интерполирования).

Составленная таким образом таблица практически не будет требовать интерполяции при определении $Q_{f \cdot}$

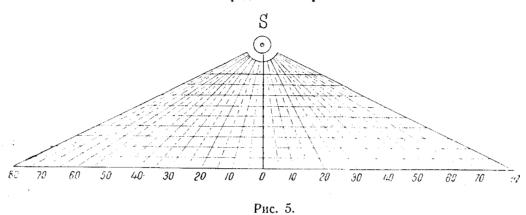
При постоянной высоте треугольника h необходимая точность измерения отрезков a и b определяется скоростью изменения величины Q. Чтобы получить по линейным отрезкам величину Q с точностью до единицы шестого знака логарифма, отрезки a и b при углах A и B более 90° следует измерять с погрешностью не более 1 мм; при углах A от 40 до 105° и углах B от 20 до 40° величина Q изменяется очень медленно и здесь отрезки a и b могут быть измерены с погрешностью до 3-4 мм.

Таблица для вычисления величины Q по линейным отрезкам приводится в приложении \mathbb{N}_2 1. Для ее составления была использована таблица значений Q, составленная в ЦНИИГАИК, но вместо входов A° и B° были вычислены новые входы a мм и b мм при b=40 мм.

Эта таблица не имеет соответствующих целых интервалов для величин a и b и не может полностью выявить преимущество нового способа определения Q.

Если треугольник очень мал, то измерение отрезков следует производить по верхней шкале (при h=20 мм), но для получения величины Q измеренные отрезки нужно удвоить. При значительном размере треугольника измерение отрезков производится по нижней шкале (при h=60 мм).

Для получения величины Q в этом случае измеренные отрезки a и b необходимо умножить на 2/3.


Пример 1.

Дано: a = 63 мм; b = 55 мм, найти Q;

шкала средняя ответ: Q = 7.

Чтобы избежать вычислений, связанных с переводом отсчетов, сделанных по верхней или нижней шкалам к средней шкале, для которой составлена таблица значений величин Q, можно изготовить палетку с радиальными лучами (рис. 5).

Палетка для определения отрезков а и в

На рис. 5 изображена палетка с пучком линий, расходящихся из вершины палетки. Надписи 10; 20; 30... 80 у концов линий выражают собой отрезки a и b в m, приведенные к средней шкале, для которой составлена таблица. При пользовании указанной на рис. 5 палеткой измерение отрезков a и b следует производить по основанию треугольника.

Графо-аналитический способ предвычисления точности сети может быть применен и для триангуляции, построенной из сплошных треугольников.

При проектировании и рекогносцировке рядов триангуляции обычно производится оценка достоинства их геометрического построения путем подсчета для каждой фигуры ряда обратного веса и суммирования этих величин по всему ряду.

Для определения обратного веса фигуры, вычисляется величина R по формуле:

$$R = (\delta_A^2 + \delta_{B_2} + \delta_A \cdot \delta_B), \tag{14}$$

где δ_A и δ_B — приращения логарифмов синусов связующих углов при изменениях этих углов на одну секунду (в единицах 6-го знака логарифмов).

Формулу (14) можно представить в ином виде, переходя от 6 к котангенсам углов

$$R = (\operatorname{ctg^2}A + \operatorname{ctg^2}B + \operatorname{ctg}A \cdot \operatorname{ctg}B) \left(\frac{10^6 \mu}{\rho}\right)^2. \tag{15}$$

Выражая котангенсы углов через элементы треугольника a, b и h (рис. 2), формулу (15) напишем так:

$$R = \left(\frac{a^2 + b^2 + a \cdot b}{h^2}\right) \left(\frac{10^6 \mu}{\rho}\right)^2. \tag{16}$$

Отрезки a и b измеряются палеткой (рис. 3 и 5) в том же порядке как было указано выше.

Для получения величины R по линейным отрезкам может быть составлена таблица, аналогично таблице значений Q, для чего в имеющиеся таблицы

вместо входов A° и B° должны быть вычислены два новых входа a мм и b мм через соответствующие целые интервалы (приложение $N \circ 2$). Для получения величины R по линейным отрезкам можно построить номограммы [3] (приложения $N \circ 3$ и 4). Если значение R меньше 20 единиц 6-го знака логарифма, то оно получается по номограмме 2.

Пользование номограммами состоит в следующем:

1. При помощи палетки измеряются отрезки a и b с точностью до 1 мм.

2. По кривой ab номограммы находят две точки, соответствующие измеренным отрезкам a и b и соединяют их прямой линией до пересечения ее со шкалой R, на которой читается ответ. Если значения отрезков a и b одинаковы, то в соответствующей точке кривой ab проводят касательную до пересечения со шкалой.

Пример 2.

Дано a = 110,6 мм, b = 14,3 мм. Найти R.

Решение. Задача решается с помощью номограммы № 1.

Ответ:

R = 39,0 единиц шестого знака логарифма.

Пример 3.

Дано: a = b = 72 мм. Найти R.

Задачу решаем по номограмме \mathbb{N}_2 1. Проводим касательную к кривой ab в точке номограммы 72 мм. В пересечении касательной со шкалой находим ответ R=43.

Следует заметить, что по величине R можно судить о сравнительных достоинствах отдельных треугольников.

Пренебрегая ошибкой исходной стороны, для ряда, состоящего из n треугольников, среднюю квадратическую ошибку логарифма связующей стороны n треугольника, можно выразить так:

$$m_{\lg a_n} = m'' \sqrt{\frac{2}{3} \sum_{1}^{n} \left(\delta_A^2 + \delta_B^2 + \delta_A \cdot \delta_B\right)}$$
 (17)

или

$$m^2 \lg a_n = m^{n/2} \frac{1}{P_{a_n}}, \tag{18}$$

где

m''—-средняя квадратическая ошибка измеренного угла;

 $\frac{1}{P_{a_n}}$ — сумма величин $\frac{1}{P}$, вычисленных для каждого треугольника по

формуле:
$$\frac{1}{P} = \frac{2}{3} (\delta_{A}^{2} + \delta_{B}^{2} + \delta_{A} \cdot \delta_{B}).$$
 (19)

Формула (19), как известно, совершенно строга при уравнивании цепи триангуляции по углам за условия фигур.

Когда ряд состоит не из треугольников, а из четырехугольников и центральных систем, обратный вес этих фигур будет вычисляться уже по приближенной формуле:

$$\frac{1}{P} = \frac{1}{2} \left(\delta_A^2 + \delta_B^2 + \delta_A \delta_B \right). \tag{20}$$

Формулы (19) и (20), служащие для подсчета обратного веса последней стороны ряда, могут быть объединены в одну:

$$\frac{1}{P_{a_n}} = k \sum_{1}^{n} (\delta_A^2 + \delta_B^2 + \delta_A \cdot \delta_B), \qquad (21)$$

где для треугольников $\kappa=2/3$; для геодезических четырехугольников и центральных систем $\kappa=\frac{1}{2}$.

Если под m'' понимать среднюю квадратическую ошибку измеренного направления, то величины коэффициентов в формуле (21) будут другие. Для треугольников величина $\kappa = \frac{4}{3}$, для геодезического четырежугольника и центральной системы $\kappa = 1,0$.

Формулой (21) можно пользоваться и тогда, когда звено состоит из различных фигур; в этом случае надлежит вычислять значение обратного веса для каждой фигуры и образовать затем сумму этих весов для всех фигур, составляющих звено.

Выводы

При проектировании триангуляции рядами или по методу геодезических засечек, графо аналитический способ определения величин Q и R ускоряет и упрощает процесс работы.

Опыт показывает, что определение с помощью палетки линейных отрезков a и b, по которым находятся величина Q или R, производится быстрее примерно в два раза, чем измерение транспортиром углов A^c и B^o

Пользование таблицей значений R, составленной Береговой и Геодезической службой США для определения R, требует интерполяции по обоим входам A° и B° . Таблица же, составленная по линейным отрезкам с интервалами, указанными выше, исключает это неудобство

Предлагаемые автором номограммы для определения величин R по отрезкам a и b решают также задачу получения R практически без интерполирования.

ЛИТЕРАТУРА

- 1. Дурнев А.И. Новые системы построения геодезических сетей. Геодезиздат, 1952. 2. Красовский Ф. Н. и Данилов В.В. Руководство по высшей геодезии. Часть 1, выпуск 1, Геодезиздат, 1939.
- 3. Модринский Н.. И. Номограммы для геодезических вычислений. ОНТИ, 1937. 4. Магницкий В. А. К вопросу об оценке достоинства геометрического построения триангуляции. Сборник статей ГУГК, выпуск XVIII. Геодезиздат, 1948.
- 5. Павлов Ф. Ф. Предвычисление точности засечек в маркшейдерских триангуляциях, Углетехиздат, 1951.

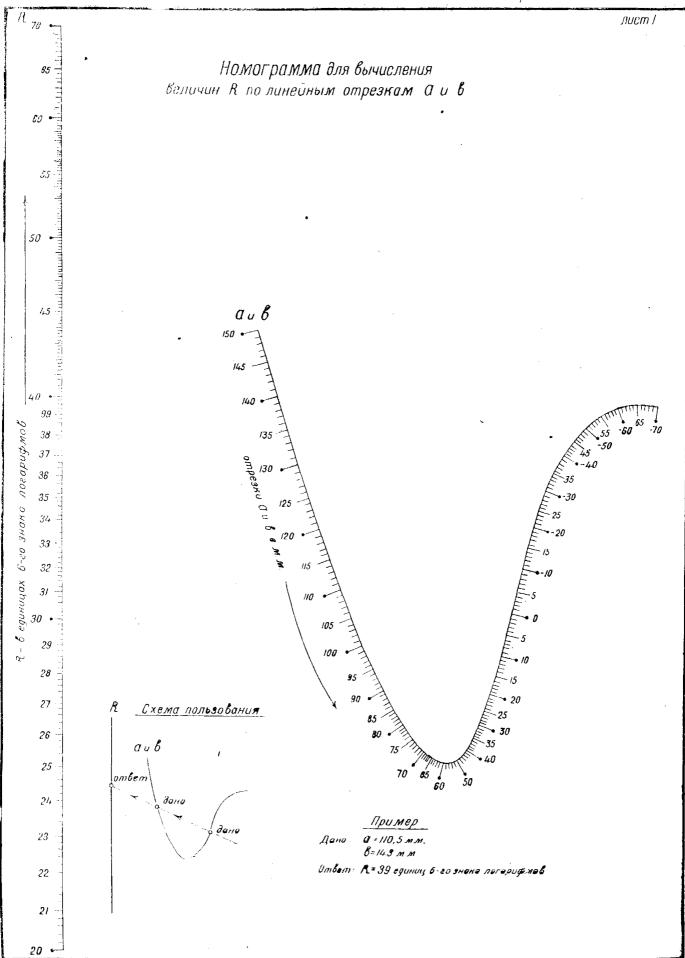
ТАБЛИЦА ВЕЛИЧИН Q

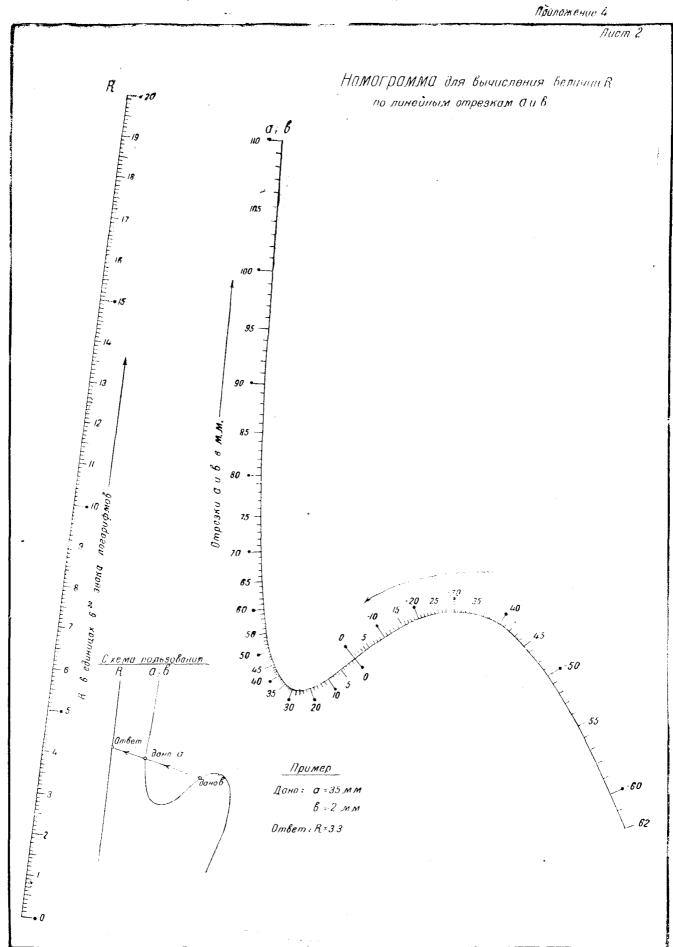
(в единицах 6 знака логарифма)

 $Q = 2 \delta_{A+B}^2 + \delta_A^2 - 2 \delta_{A+B} \delta_A$

Составлена по двум аргументам: 1. Значения углов A и B 2. Длины отрезков α и b в мм при $h \approx 40$ мм

Кате	тьвим.	109,9	99,0	89,8	85,8	82,0	75.2	69,3	64,0	59,3	57,1	55, I	51,2 ⁴	17,7	44,4	41,4	40,0	38,6	36,0	33,6	28,0	23,1	18,7	14,6	10,7	7,1	3,5	0	3.5	 7,1	-	10,7	-14,6	-18.7	-23,0	25,0	27,		,0,-:	29,1	-31,3	- 33,5	 - 36,0
Катет <i>а</i> в мм	V. B.	20°	22°	24°	25°	26°	28*	30°	32°	34°	35°	36°	38°	40°	42°	44°	45°	46°	48°	50	55	60	65	70%	7 5"	80°	85°	90°	95°	100°	1	05°	110°	115°	120°	122°	124°	125	i ² 1	26°	128°	130°	132°
109, 9 85,8 69,3 57,1 47,1	20 25 30 35 40	17 10 7 4 3	17 10 7 5 3	18 11 7 5 3	18 11 7 5 3	18 11 7 5 3	19 11 7 5 3		20 12 8 5	20 12 8 5 4	21 12 8 6 4	21 13 8 6 4	22 13 9 6 4	22 13 9 6	23 14 9 7 5	24 14 10 7 5	24 15 10 7 5	24 15 10 7 6	. 8	26 16 11 9 6	28 17 12 9 7	29 19 13 10 8	31 20 15 12 10	33 22 16 13	36 24 18 15 13	38 26 20 17 15	11 28 22 19 18	43 31 25 22 21	47 34 28 26 26	50 38 32 31 31		55 43 38 37 39	60 48 44 45 51	67 56 53 58 70	75 66 66 77 102	79 71 74 88 123	84 77 82 102 151	85 80 87 111 169)	89 84 92 21 91	95 92 106 145 252	102 102 122 180 351	111 114 144 230
40,0 33,6 28,0 23,1 18,7	45 50 55 60 65	2 2 1 1 1	2 2 1 1 1	2 2 1 1 1	2 1 1 1	2 2 1 1 1	3 2 2 1	2	3 2 2 2 1	3 2 2 2 2 2	3 2 2 2	3 2 2 2	3 3 2 2	1 3 3 3 3	3 3 3	4 3 3 3	4 4 4 4		5 4 4 4	4	6 6 6 6	7 7 7 7 8	9 8 9 9	10 10 11 12 14	12 13 14 16 18	15 16 17 20 25	18 19 22 27 35	22 25 29 37 51	28 32 40 53 79	35 13 56 82 140	- 1	11	64 87 149 316	95 154 322	161 330	209	285	340) 	ļ	į.		
14,6 10,7 7,1 3,5 0	70 75 80 85 90	1 1 1 1	1 1 1 1 2	1 1 1 1 2	1 1 1 2 2	1 1 1 2 2	1 1 2 2 3	1 2 2 2 3	2 2 2 3 3	2 2 3 3 4	2 3 3 4	2 3 4 5	3 3 4 5	3 1 5 6	3 4 5 6	1 5 5 8	4 5 6 7 9	4 5 6 7 10	5 6 7 8	5 6 8 10 13	7 9 11 14 18	10 12 15 19 27	18 16 20 28 41	$\begin{array}{c} 17 \\ 22 \\ 29 \\ 42 \\ 67 \end{array}$	23 31 44 69 124	71 126	48 74 129 290	76 132 291	136 299	301					!								
$\begin{array}{r} - & 3.5 \\ - & 7.1 \\ - & 8.5 \\ - & 10.0 \\ - & 10.7 \end{array}$	95 100 102 104 105	2 2 2 3 3	2 3 3 4	2 3 1 1 1	2 3 4 4 5	5	4 5	5 6 6	4 6 7 8 8	7	6 7 8 9	. 81	7 9 10 12 13	8 11 12 14 15	9 13 14 16 18	11 15 17 19 21	21	13 17 20 23 25	15 20 24 27 30	24	25 38 45 55 61	38 63 78 100 115	17.0	91 278	281														,				
- 11,5 - 13,0 - 14,6 - 16,2 - 17,8	106 108 110 112 114	3 4 4 5 5	4 4 5 1 6	5	5 5 6 7 8	8	6 7 8 9 10	8	8 10 11 13 14	10 11 13 15 17	14 16	12 13 15 18 21	14 16 18 21 25	16 19 22 25 30	-37.1	23 26 31 37 45	41 51	46 57	58 73	39 48 59 74 95	68 86 112 152 215	133 183 267																					
- 19,4 - 21,2 - 23,0 - 25,0 - 27,0	116 118 120 122 124	6 7 8 9 11	7 8 9 11 13	8 10 11 13 15	9 11 12 14 17	12	12 14 16 19 22	14 16 19 23 27	20 23 28	24 28	22 26 31 38 47	24 29 35 42 52	29 35 43 53 68	36 44 54 69 89	45 55 70 90 121	56 71 91 122 170	63 81 106 144 206	72 93 124 172 253	94 125 174 255	126 175 258																i i		:		-			
- 28,0 - 29,1 - 31,3 - 33,5 - 36,0	125 126 128 130 132	11 12 14 17 20	14 15 17 20 24	16 18 21 25 30	18 20 23 28 34	20 22 26 31 38	26 32 39	30 33 40 50 63	64	46 52 65 85 114	52 58 75 99 135	86	88 119 164	110	168 4	205 251	252															A STREET											


ТАБЛИЦА ЗНАЧЕНИЙ ВЕЛИЧИН R


(в единицах шестого знака логарифма)

$$R = \delta_A^2 + \delta_B^2 + \delta_A \, \delta_B$$

Составлена по двум аргументам: 1. Длины отрезков "а" и "b" в мм при h=40 мм 2. Значения связующих углов A° и B°

								2.	Знач	чения	і свя	зуюц	inx 7	/FAOB	A	K B.				
Катет в	В ММ	123,1	109,9	99,0	89,8	82,0	75,2	69,3	57,1	47,7	40,0	 33,6 	28,0	23,1	18,7	14,6	10,7	7,1	3,5	0
Катет а в мм	A° B°	18°	20°	22°	24°	26°	28°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°
109,9 99,0 89,8 82,0 75,2	20 22 24 26 83	113 103 95 89 23	100 91 83 77 72	91 81 74 68 63	74 67 61 57	61 56 51	51 47	43												
69,3 57,1 47,7 40,0	30 35 40 45	79 71 65 60	68 60 54 50	59 52 47 43	53 46 41 37	48 41 36 32	43 37 32 28	40 33 29 25	33 27 23 20	23 19 16	16 13	11								
33,6 28,0 23,1 18,7	50 55 60 65	57 54 51 49	47 44 42 40	39 37 35 33	34 32 30 28	29 27 25 24	26 24 22 21	23 21 19 18	18 16 14 13	14 12 11 10	11 10 9 7	9 8 7 6	8 7 5 5	5 4 4	4 3	2				
14,6 10,7 7,1 3,5	70 75 80 85	48 46 45 43	38 37 36 34	32 30 29 28	27 25 24 23	23 21 20 19	19 18 17 16	17 16 15 14	12 11 10 10	9 8 7 7	7 6 5 5	5 4 4 3	4 3 3 2	3 2 2 2	2 2 1 1	2 1 1 1	1 1 1 0	1 0 0	0	0
0	90	42	33	27	22	19	16	13	9	6	4	3	2	1	1	1	0	0	0	0
- 3,5 - 7,1 - 10,7 - 14,6	95 100 105 110	41 40 39 38	32 31 30 30	26 25 25 24	22 21 20 19	18 17 17 16	15 14 14 13	13 12 12 11	9 8 8 7	6 6 5 5	4 4 4 3	3 3 2 2	2 2 2 2	1 1 1	I 1 1	0 0 0 1	0 0 0	0	0	
- 18,7 - 23,0 - 28,0 - 33,6	115 120 125 130	37 36 35 34	29 28 27 26	23 22 22 21	19 18 18 17	15 15 14 14	13 12 12 12	11 10 10 10	7 7 7 7	5 5 5 5	3 3 4 4	2 2 3 3	2 2 2	1	1					
- 40,0 - 47,7 - 57,1 - 69,3	135 140 145 150	33 32 32 32 32	26 25 25 26	21 20 21 21	17 17 17 18	14 14 15 16	12 12 13 15	10 10 11 13	7 8 9	5 6										
- 75,2 - 82,0 - 89,8 - 99,0 -109,9	152 154 156 158 160	32 33 34 35 38	26 27 28 30 33	22 23 25 27	19 21 22	17 19	16													

