ИССЛЕДОВАНИЕ ВЛИЯНИЯ УСИЛИЯ ПОДАЧИ, ДАВЛЕНИЯ воздуха на скорость бурения и рабочий процесс ПНЕВМАТИЧЕСКОГО БУРИЛЬНОГО МОЛОТКА РП-17

О. Д. АЛИМОВ, И. Г. БАСОВ, В. Ф. ГОРБУНОВ

(Представлено проф., докт. техн. наук Алабужевым П. М.)

Для определения оптимальных размеров податчика пневматических бурильных молотков РП-17 в лаборатории горных машин и рудничного транспорта были проведены экспериментальные исследования. Исследования проводились по ранее разработанной методике [1, 2]. Ниже приводятся полученные зависимости.

Исследование влияния усилия подачи на скорость бурения проводилось при бурении песчаника и гранита при давлениях сжатого воздуха у молотка 4, 5 и 6 ати. В качестве бурового инструмента использовался бур со съемной коронкой, характеристика которого приведена в табл. 1. Буродержатель с молотка был снят.

Таблица 1

№ nn	Наименование показателей	При бу- рении песча- ника	При бурении гранита	
1	Тип коронки	Коронка Каплуна	Стандартная однодолотча- тая КМЗ	
2	Диаметр коронки, мм	43	46	
3	Угол заточки, град	103	108	
4	Длина хвостовика бура, мм	82	82	
5	Длина бура, мм	750	750	
6	Вес бура, кг	2,5	2,5	

Изменение скорости бурения молотком РП-17 в зависимости от усилия подачи по песчанику и граниту с той же характеристикой крепости носит такой же характер, как и при бурении молотками ОМ-506л и ПМ-508 [2].

При бурении песчаника бурильным молотком РП-17 и давлении воздуха 4 ати устойчивая работа молотка определяется интервалом усилий подачи от 12,8 до 31 кг. Соответственно изменяется скорость бурения (рис. 1) от 150 до 320 мм/мин. С дальнейшим увеличением усилия подачи скорость бурения значительно уменьшается, так как молоток при этом работает ненормально, неустойчиво. При давлении сжатого воздуха у молотка 5 ата зона устойчивой работы определяется усилиями подачи 16,5 - 35 кг. Этим усилиям подачи соответствуют скорости в 190 - 395 мм/мин. При 6 атми скорость бурения песчаника изменяется от 300 до 515 мм/мин в зависимости от усилия подачи, изменявшегося в пределах $21 \div 44,5$ кг.

При бурении гранита в зоне устойчивой работы молоток имел следующие скорости бурения:

$$p=4$$
 amu $F=22-30,5$ кг $V=50-80$ мм мин $p=5$ amu $F=23,5-40$ кг $V=64-112$ мм/мин $p=6$ amu $F=26-45,8$ кг $V=70-175$ мм/мин

Характер изменения скоростей бурения гранита (рис. 1) подобен изменению скоростей бурения песчаника.

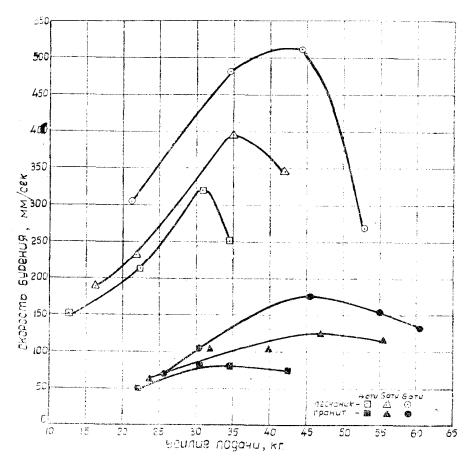


Рис. 1. Зависимость скорости бурения от усилия подачи.

В зоне устойчивой работы молотка скорость бурения с увеличением усилия подачи возрастает. После превышения определенного усилия подачи скорость бурения начинает уменьшаться. При этом первое время для запуска молотка необходимо снижение усилия подачи, а затем, по мере дальнейшего увеличения усилия подачи, молоток работает неустойчиво и глохнет.

Некоторое отклонение от этой закономерности наблюдалось при бурении гранита с давлением сжатого воздуха у молотка в 5 ати. В данном случае скорость бурения возрастала даже при режимах, в которых необходимо снижение усилия подачи при пуске молотка в работу. Это говорит о недостаточной мощности поворотного устройства молотка РП-17.

Из рис. 2 и табл. 2 видно, что число ударов бурильного молотка РП-17 с увеличением усилия подачи в зоне устойчивой работы молотка уве-

личивается невначительно, хотя скорость бурения при этом растет. Повышение скорости бурения можно объяснить увеличением энергии удара и лучшими условиями передачи энергии удара за счет уменьшения отхода корпуса бурильного молотка, что более подробно описано ниже.

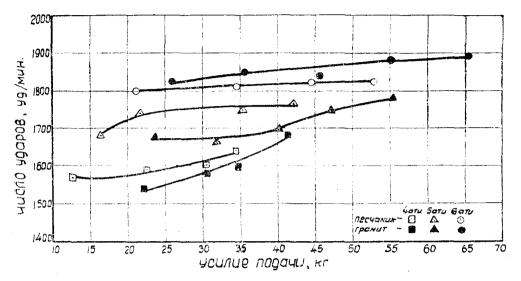


Рис. 2. Зависимость числа ударов от усилия подачи.

Испытания бурильного молотка РП-17 показали, что при бурении горной породы с изменением усилия подачи в значительной степени изменяются и углы поворота бура.

В зоне устойчивой работы молотка при бурении песчаника с давлением сжатого воздуха в 4 ати углы поворота бура изменяются в пределах $32,5-16,5^{\circ}$; соответственно усилие подачи увеличивается при этом от 12,8 до 31 кг. Минимальный угол поворота бура для p=4 ати, при котором бурильный молоток, хотя и неустойчиво, но работает, равен $11,5^{\circ}$. При

Таблица 2

		p=4 amu		p=5 amu		
Горная порода	F, кг	п, уд мин	<i>п_х</i> при холо- стой работе	F, кг	п, уд/мин	п _х уд[мин
Песчаник (гранит	12,8-31 22-30,5	1570—1600 1540—1580	1710 1710	8,5 – 35 23,5 – 40	1680—1950 1680—1700	1860 1860

p = 6 amu								
$egin{array}{c cccc} F, & n, & n_x \ \kappa z & y\partial/ ext{ ho}/ ext{ ho} & y\partial/ ext{ ho}/ ext{ ho} \end{array}$								
1800—1820	2000							
1830—1865	2000							
	n , уд/мин 1800—1820							

5 ати пределам усилия подачи в $16.5 \div 35 \ \kappa i$, ограничивающим устойчивую работу молотка, соответствуют углы поворота бура $31.5 \div 17^{\circ}$.

Если при рабочем давлении сжатого воздуха у молотка в 4 и 5 ати углы поворота бура по мере увеличения усилия подачи плавно понижались и незначительно отличались при равных усилиях подачи, то при давлении сжатого воздуха у молотка в 6 ати углы поворота бура изменяются несколько по-другому. Зона устойчивой работы молотка в этом случае огра-

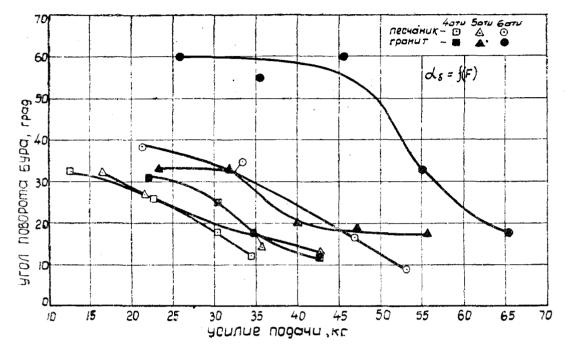


Рис. 3. Зависимость угла поворота бура от усилия подачи.

тничилась усилиями подачи в $21 \div 47,5$ кг. С увеличением усилия подачи от 21 до 34,5 кг наблюдается плавное уменьшение углов поворота бура от 38,5 до 32,5°. При увеличении усилия подачи свыше 34,5 кг углы поворота

Таблица 3

	p = 4 amu			p=5 amu		
Горная порода	F, кг	^а б град	^а б мин град	F, кг	а _б град	^α б мин г рад
Песчаник	12,8—31	32,5—16,5	11,5	16,5-35	31,3—17	13
Гранит	22-30,5	31,23	11,5	23,5—40	35-23	17

p = 6 amu							
F, кг	^а б град	^α б мин град					
21-47,5	38,5—16,6	9					
25,6-45	60-45	18					

бура резко уменьшаются как в зоне устойчивой работы, которая ограничивается усилием подачи в 47,5 кг ($\alpha=16,6^{\circ}$), так и в зоне неустойчивой работы молотка. Минимальный угол поворота бура при p=6 ати в зоне неустойчивой работы молотка равен 9° .

При бурении гранита бурильным молотком РП-17 изменение углов поворота бура в зависимости от усилия подачи (рис. 3) для всех рабочих давлений сжатого воздуха у молотка аналогично описанному. Из табл. 3 и рис. 3 видно, что при усилии подачи, обеспечивающем максимальную скорость бурения гранита, углы поворота бура для всех давлений воздуха больше, чем при бурении песчаника.

С изменением усилия подачи изменяется также и средний отход корпуса бурильного молотка от ограничительного буртика бура. Характер изменения отходов H_{cp} в зависимости от усилия подачи показан на рис. 4. Из кривых рис. 4 и табл. 4 видно, что с увеличением усилия подачи вели-

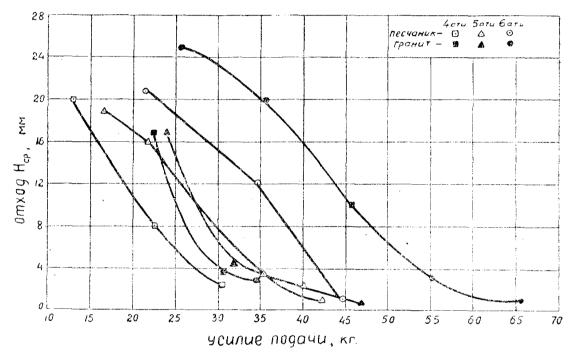


Рис. 4. Изменение отхода корпуса бурильного молотка от ограничительного буртика бура в зависимости от усилия подачи.

чина среднего отхода корпуса от ограничительного буртика бура уменьшается как при бурении гранита, так и при бурении песчаника.

Кроме всех рассмотренных выше зависимостей, во время испытаний бурильного молотка РП-17 исследовалось и изменение амплитуды колебания

Таблица 4

Горная	p=4 amu		v = 5 amu		p=6 amu	
порода	F, кг	H _{ср} , мм	F, кг	$H_{\rm cp}$, мм	F, кг	H_{cp} , мм
Песчаник	12,8-31	20—2,5	16,5-35	21-3,5	21-44,5	23—1,0
Гранит	22-30,5	17-4,0	23,5-40	17-2,5	25,6-45	251,0

корпуса молотка за удар в зависимости от усилия подачи и давления воз-

Ayxa.

Из кривых (рис. 5) видно, что изменение средних амплитуд колебания корпуса бурильного молотка A_{cp} при бурении песчаника носит одинаковый характер при различных заданных давлениях сжатого воздуха. С увеличе-

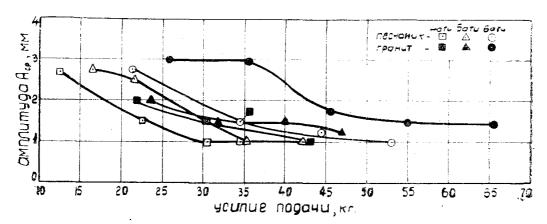


Рис. 5. Зависимость амплитуды колебания корпуса бурильного молотка за удар от усилия подачи.

нием усилия подачи амплитуды колебания корпуса уменьшаются и при достижении определенного усилия подачи, величина которого зависит от давления сжатого воздуха, амплитуда колебания корпуса остается постоянной, равной 1 мм.

При бурении гранита на давлениях сжатого воздуха 4 и 5 ати амплитуды колебания корпуса бурильного молотка незначительно отличаются но величине при равных усилиях подачи, в то время как при давлении воздуха 6 ати амплитуды колебания увеличиваются почти вдвое. Для сравнения амплитуд колебания корпуса молотка как при бурении гранита, так и при бурении песчаника, приведена табл. 5.

Таблица 5

Горная по род а	p=4 amu			p		
	F, кг	. А _{ср.} мм	А _{мин} мм	F, кг	А _{ср.} мм	A MHIE M.M.
Песчаник	12,8-31	2,7—1	1	16,5—35	2,7-1	i
Гранит	22-30,5	2-1,5	1,25	23,5-40	2-1,5	1,25

p=6 amu							
F, кг	А _{ср.} мм	А _{мин} мм					
21 ~ 44,5	2,7-1,25	1					
25,6-45,6	3-1,7	1,5					

Из диаграммы отдачи (рис. 6) видно, что в отличие от бурильных молотков ПМ-508 и ОМ-506 для бурильного молотка РП-17 характер амплитуд колебания за удар несколько иной. Для молотков ПМ-508 и ОМ-506 характерны перегибы на кривой амплитуды колебания за удар, начиная с определенного усилия подачи, даже в зоне устойчивой работы молотка. Для РП-17 в зоне устойчивой работы молотка таких явлений не наблюдается и очень редко встречаются при работе с усилиями подачи выше оптимальных.

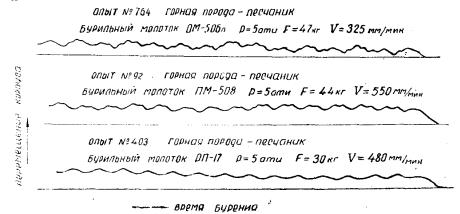


Рис. 6. Кривые отдачи бурильных молотков при бурении.

Исследование кинематики ударного узла молотка РП-17 при бурении

Исследование кинематики ударного узла молотка РП-17 велось по той же методике, что и исследование молотка ОМ-506 [1]. В дальнейшем при анализе полученных зависимостей мы пользуемся обозначениями, введенными нами ранее при исследовании молотка ОМ-506 [3].

Характер зависимости величины хода поршня от давления воздуха и усилия подачи (рис. 7) при бурении гранита представляется прямыми линиями. Некоторые отклонения от прямолинейной зависимости имеются при бурении песчаника, с давлением воздуха 4, 5 и 6 amu. При увеличении усилия подачи на $10~\kappa z$ ход поршня уменьшается на величину ΔS . Значение ΔS при различном давлении воздуха и бурении различных горных пород приведены в табл. 6.

Сравнение величин хода поршня при одном и том же усилии подачи показывает, что при увеличении давления на 1 amu ход поршня увеличивается в среднем на 2-8 mm, причем в зоне малых усилий подачи увеличение хода поршня незначительное, порядка 2 mm, а при холостой работе около 1 mm. Величина хода поршня при холостой работе молотка при давлении воздуха $4 \div 6$ amu составляет $60 \div 62$ mm, при давлении 3 amu—58 mm и при давлении 2 amu—52 mm.

Величины хода поршня, соответствующие максимальной скорости бурения, приведены в табл. 7 и равны, в большинстве случаев, 48 мм. Минимально возможный ход поршня (полученный при работе молотка) 37 мм. При этом выхлопное окно при обратном ходе поршня не открывается, а передняя кромка поршня доходит только до передней кромки выхлопного окна.

Наблюдаются отдельные циклы с ходом поршня 33—34 мм. Все эти циклы имеют остановку поршня в заднем положении. Время задержки поршня в заднем положении составляет от 0,5 до полного времени цикла при устойчивой работе, а в отдельных исключительных циклах время остановки составляет 3÷4-кратную продолжительность цикла.

Песчаник		Гранит		
p, amu	ΔS на 10 кг F	p,amu	Δ S на 10 кг F	
4	5—7 мм	4	4 мм	
5	4-7 мм	5	3 мм	
6	3-6 мм	6	3 мм	

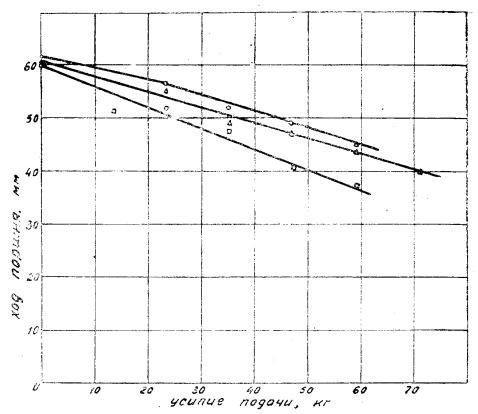


Рис. 7. Зависимость величины хода поршня от усилия подачи при бурении гранита. $\Box -4$ ати; $\Delta -5$ ати; $\bigcirc -6$ ати.

При колостой работе молотка и давлениях воздуха 4, 5 и 6 amu степень сжатия переднего буфера (рис. 8, 9) составляет около $95^{\circ}/_{\circ}$, заднего буфера соответственно 83, 85, $87^{\circ}/_{\circ}$. В случае работы молотка с инструментом степень сжатия переднего и заднего буферов уменьшается с увеличением усилия подачи. При бурении песчаника сжатие переднего буфера прекращалось на усилиях подачи 26, 38, 50 κ 2, соответствующих давлению воздуха 4, 5, 6 amu. С дальнейшим увеличением усилия подачи поршень не полностью перекрывает канал "Б".

Сжатие переднего и заднего буферов при одинаковых усилиях подачи увеличивается с повышением давления воздуха. Повышение давления на 1 amu дает увеличение сжатия переднего буфера на $25^0/_0$ —при бурении песчаника, и на 10%—при бурении гранита. Сжатие заднего буфера с увеличением давления на 1 amu увеличивается на величину $B_3\%$, показанную в табл. 8.

Давловие воздуха, р ати	Пределы изменения усилия подачи, кг	Пределы изменения энергии удара, кгм	Энергия удара, соотв. У _{макс.} кгм	Усилия подачи, соотв. V _{макс.} кг	Ход поршня, соотв. V _{макс.} мм	Отход соотв. V _{макс.} мм
		Пес	чаник			
4	14—36	1,7-3,2	3,2	27	48	5
5	14-48	2,0-3,4	3,4	33	47	5
6	23-60	2,2-5,6	4,7	47	48	3
		Гра	нит			
4	1460	1,6-2,6	2,3	37	46	3
5	23—71	2,13,7	3,7	47	48	2
- 6	23—71	3,0-4,8	4,4	53	48	4
90 90 90 90 90 90 90 90 90 90 90 90 90 9		\$ 5 \$ A	<i>B</i> 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300ний бу	\$60	·
4	A	20 30	3 3	передний о	Typee 70	

Рис. 8. Зависимость величины хода поршня и степени сжатия воздушных буферов от усилия подачи при бурении гранита. \Box - 4 amu; \triangle - 5 amu; \bigcirc - 6 amu.

Yeunue nogowu, Hr

Таблица 8 Гранит

Песчан	ник	Гранит			
F, В ₃ %		F, кг	B ₃		
0 ÷ 20	2 ÷ 3%	· 0 ÷ 20	2 ÷ 4%		
20 ÷ 40	3 ÷ 7%	20 ÷ 50	4 ÷ 10%		
более 40	до 12	50 - 70	до 18		

Минимальное сжатие заднего буфера составляет при бурении песчаника 62 и для гранита— $58^{0}/_{0}$, что соответствует ходам поршня 39 и 37 мм. Неустойчивая работа молотка соответствует степени сжатия заднего буфера B_{3} менее $70^{0}/_{0}$ для песчаника и $B_{3}=64^{0}/_{0}$ для гранита.

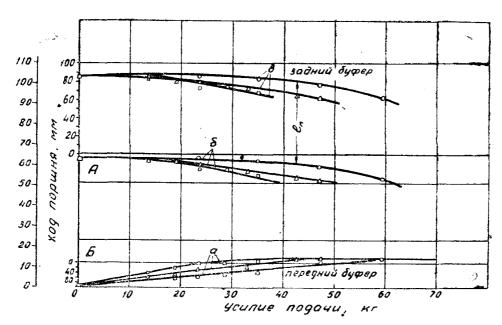


Рис. 9. Зависимость величины хода поршня и степени сжатия воздушных буферов от усилия подачи при бурении песчаника. $\Box -4$ ати; $\triangle -5$ ати; $\bigcirc -6$ ати.

Режимам работы молотка, обеспечивающим высокие скорости бурения, соответствуют сжатия воздушных буферов: заднего— $73-80^{\circ}/_{o}$, переднего— $15-20^{\circ}/_{o}$ для гранита и $0-10^{\circ}/_{o}$ для песчаника

Зависимость $B_n = f(F)$ (рис. 8) можно считать за прямолинейную для всех давлений как при бурении песчаника, так и при бурении гранита. Зависимость $B_3 = f(F)$ отличается от прямолинейной. В зоне больших усилий подачи степень сжатия заднего буфера с увеличением F уменьшается быстрее, чем в зоне малых усилий подачи.

Общий характер изменения энергии удара в зависимости от усилия подачи при различных давлениях воздуха (рис. 10) изменяется аналогично изменению скорости бурения. При увеличении усилия подачи до определенного значения энергия удара увеличивается до максимальной. С дальнейшим увеличением усилия подачи энергия удара резко уменьшается.

Усилия подачи, соответствующие максимальным кинематическим энертиям поршня перед ударом его по буру, близки и в ряде случаев совпадают с усилиями подачи, обеспечивающими максимальную скорость бурения (табл. 9). Максимальные значения кинетической энергии поршня перед ударом приведены в табл. 9.

Таблица 9

Порода	Песчаник			Гранит		
Давление, ати	4	5	6	4	5	6
$A_{y\partial}$, $\kappa r M$	3,2	3,4	4,7	2,6	3,7	4,7
Усидие подачи соответ. $V_{\it make}$	27	30	47	33	47	47

Из графика рис. 11 видно, что максимальная энергия удара соответствует ходу поршня, близкому к 48 мм; отклонение от этой величины приводит к уменьшению энергии удара. С уменьшением хода поршня (в зоне больших усилий подачи) энергия удара уменьшается за счет плохого вы-

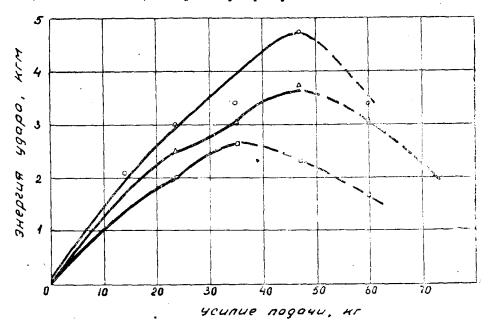


Рис. 10. Зависимость энергии единичного удара от усилия подачи при бурения гранита. $\square - 4$ ати; $\triangle - 5$ ати; $\bigcirc - 6$ ати.

хлопа из передней полости молотка, вследствие чего большая часть кинетической энергии поршня расходуется на сжатие воздуха в передней полости. При увеличении хода поршня более 48-50~мм (в зоне малых усилий подачи) увеличивается участок рабочего хода, где поршень движется за счет накопленной кинетической энергии, и дополнительно к этому тратит приобретенную кинетическую энергию на сжатие переднего воздушного буфера уже после перекрытия впускного канала "Б".

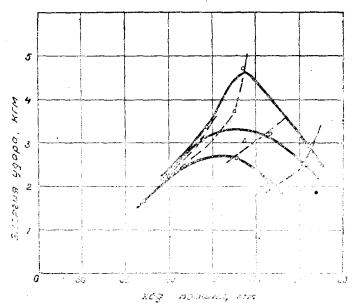


Рис. 11. Зависимость энергии единичного удара от хода поршня при бурении гранита. $\Box - 4$ ати: $\triangle - 5$ ати, $\bigcirc - 6$ ати.

Длительность одного цикла хода поршня $t_{\rm u}$ изменяется с изменением давления воздуха и усилия подачи (рис. 12). С увеличением давления воздуха на 1 amu продолжительность цикла уменьшается на 1,5—3 миллисекунды, т. е. на $3-10^{\rm o}/_{\rm o}$, причем наблюдается отклонение от этого при бурении песчаника, когда длительность цикла при давлении 5 amu больше, чем при давлении 4 amu (при усилии подачи 33 κ 2).

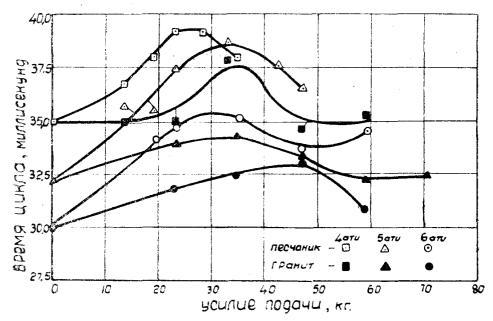


Рис. 12. Зависимость времени цикла хода поршня от усилия подачи.

С изменением усилия подачи от 0 до $25~\kappa z$ (для давления 4~amu) и до 30, $35~\kappa z$ для давлений 6 и 5~amu длительность цикла увеличивается (по песчанику). При бурении гранита увеличение продолжительности цикла распространяется до усилий подачи в $35-40~\kappa z$. С дальнейшим увеличением усилия подачи продолжительность цикла уменьшается до усилия подачи $60~\kappa z$ для гранита и $50~\kappa z$ для песчаника. Увеличение усилия подачи сверх этих значений ведет к увеличению длительности циклов, но при таких режимах молоток глохнет. Объяснение изменению длительности цикла остается тем же, что при описании характера изменения t_{ij} молотка OM-506 [3].

Минимальная продолжительность цикла при бурении гранита меньше, чем при бурении песчаника, вследствие большего отскока поршня после удара. При этом разница в минимальных значениях t_{ij} составляет ≈ 3 миллисекунды, что соответствует изменению числа ударов в минуту на 175.

Отношение длительности обратного (холостого) хода t_x к длительности рабочего хода поршня t_p изменяется в зависимости от усилия подачи. Характер данной зависимости (рис. 13 и 14) выражается выпуклой кривой, имеющей максимум для песчаника и гранита при усилиях подачи, обеспечивающих максимальные скорости бурения.

В зоне малых усилий подачи при бурении песчаника отношение t_x/t_p растет от 1,1 (работа вхолостую) до 1,8; 2,05; 2,2 соответственно для давлений воздуха 4, 5 и 6 amu. Затем, при дальнейшем увеличении усилия подачи, величина отношения t_x/t_p начинает уменьшаться.

При бурении гранита наблюдаются аналогичные изменения отношения $\frac{t_x}{t_p}$, причем максимум кривой равен 1,7; 1,85; 1,95 для давлений 4, 5 и 6 ати, т. е. на 0,1—0,2 меньше, чем при бурении песчаника. При усилиях подачи даже на немного больших оптимального молоток РП-17 работает

неустойчиво и быстро глохнет. Это является существенным отличием молотков РП-17 от ОМ-506, которые в ряде случаев продолжают работать даже при значительном превышении оптимального усилия подачи.

Отношения $-\frac{t_x}{t_p}$, соответствующие устойчивой работе молотка, возрастают с увеличением усилия подачи, так как при этом наблюдается увели-

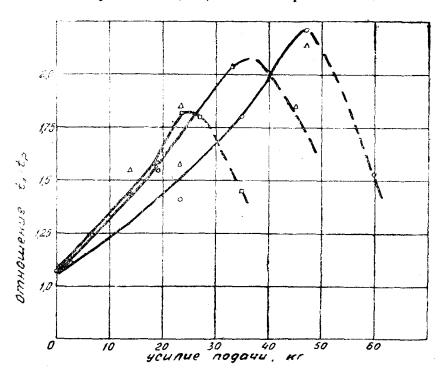
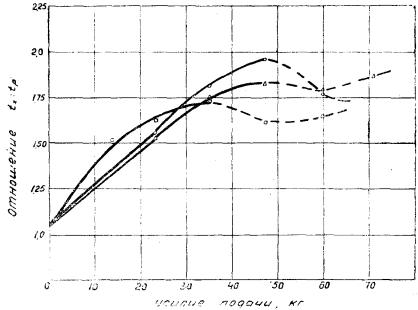



Рис. 13. Изменение характера рабочего пропесса бурильного молотка в зависимости от усилия подачи при бурении песчаника. □ — 4 ати; △ — 5 ати; ○ — 6 ати.

чение продолжительности обратного хода $t_{\scriptscriptstyle X}$ и сокращение времени рабочего

хода t_p . При повыш

При повышении усилия подачи сверх оптимального продолжительность рабочего хода поршня начинает увеличиваться, очевидно, за счет сопротивления воздуха в передней полости, вследствие неполного выхлопа. При бурении гранита этого явления не наблюдается, очевидно, оно имеет место в зоне усилий подачи, на которых молоток уже глохнет ("не тянет").

Уменьшение, в ряде случаев, длительности обратного хода поршия в зоне больших усилий подачи можно объяснить укорочением величины хода поршня при относительно большом сопротивлении вращению бура. Бур в этом случае поворачивается только через несколько циклов хода поршня, так как поворотное устройство молотка РП-17 в этих случаях не обеспечивает оборота бура при каждом цикле. Наблюдались случаи, когда при бурении породы молоток работал, а бур не вращался. Очевидно, ход поршня был настолько мал, что не обеспечивал поворот стержня на 1/2 шага зубьев храповой буксы.

Изменение мощности ударного узла (рис. 15) аналогично изменению скорости бурения в зависимости от давления воздуха и усилия подачи. Максимальные значения мощности ударного узла РП-17 в большинстве слу-

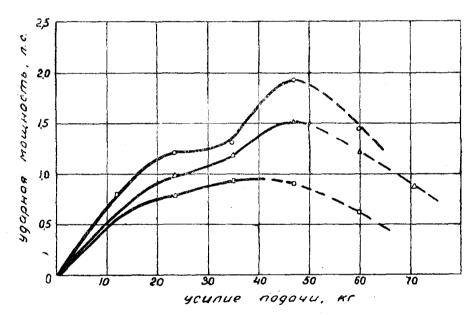


Рис. 15. Зависимость ударной мощности от усилия подачи при бурении гранита. $\Box - 4$ amu; $\Delta - 5$ amu; O - 6 amu.

чаев наблюдались при усилиях подачи, обеспечивающих максимальную скорость бурения. При увеличении усилия подачи до оптимального (обеспечивающего максимальную скорость бурения) ударная мощность молотка увеличивается до значения, указанного в табл. 10.

Таблица 10

Порода	Песчаник			Гранит		
Давление воздуха в ати	4	5	6	4	5	6
Ударная мощность молотка в л/с	1,1	1,3	1,8	0,95	1,5	1,9

При превышении оптимального усилия подачи ударная мощность мо-

лотка резко уменьшается.

С изменением усилия подачи и давления воздуха изменяется и объемная работа разрушения горной породы. Характер зависимости объемной работы разрушения от усилия подачи показан на рис. 16. Минимальная объемная работа разрушения почти одинакова для всех давлений сжатого воздуха и ей соответствуют усилия подачи в 35 кг при бурении песчаника и 50—60 кг при бурении гранита. При этих режимах отход молотка от ограничительного буртика бура очень мал, а следовательно, коэффициент передачи энергии удара поршня буру—наибольший.

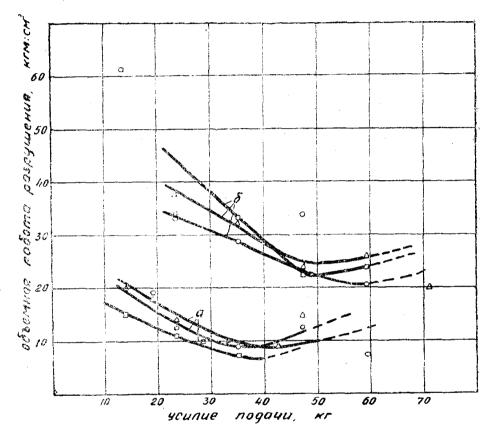


Рис. 16. Зависимость объемной работы разрушения от усилия подачи. a — песчаник δ — гранит \Box — 4 amu; Δ — 5 amu; \Box — 6 amu.

При значительном превышении оптимального усилия подачи объемная работа разрушения увеличивается. В этом случае скорость бурения уменьмается быстрее, чем ударная мощность молотка, которая остается на достаточно высоком уровне за счет большего числа ударов и значительной
энергии удара молотка.

Выводы

1. Оптимальные усилия подачи молотка РП-17 следует выбирать из условия обеспечения устойчивой работы молотка. Для бурения горивонтальных шпуров в горных породах различной крепости бурильным молотком РП-17 могут быть рекомендованы усилия подачи:

при
$$p = 4$$
 amu $F = 30$ кг
при $p = 5$ amu $F = 37$ кг
при $p = 6$ amu $F = 45$ кг.

- 2. Наиболее подходящим для молотка РП-17 является поршневой пневматический податчик.
- 3. На основании приведенного анализа можно предполагать, что работа молотка РП-17 может быть значительно улучшена за счет некоторого ивменения конструкции и размеров ударного узла. Например, длина выхлопного окна молотка никогда не используется полностью. При рациональных режимах работы молотка выхлопное окно открывается на $40-60^{\circ}/_{0}$ и только при холостой работе молотка выхлопное окно открывается на $85-90^{\circ}/_{0}$ своего сечения. Следовательно, величину выхлопного окна можно уменьшить примерно на 5 мм за счет приближения задней кромки к передней, это уве личит эффективную величину рабочего хода поршня. Устойчивость молотка при больших усилиях подачи может быть увеличена за счет устройства тангенциального канала "В" (подобно молоткам ОМ-506 и ПМ-508). Внутреннее отверстие этого канала должно быть расположено на расстоянии ~ 25 мм от задней кромки выхлопного окна.
- 4. Можно предполагать, что внергию удара молотка РП-17 можно несколько увеличить за счет уменьшения выхлопных окон (приближения задней кромки к передней на 4—5 мм) и увеличения тем самым полезной длины хода поршня.
- 5. Для улучшения работы поворотного устройства бурильного молотка РП-17 необходимо изменить храповое устройство, заменив его четырьмя храповыми собачками по типу молотка ПА-23.
- 6. Следует отметить, что минимальная объемная работа разрушения при бурении молотком РП-17 составляет такую же величину, как при бурении молотком ОМ-506, и равна: для песчаника 10 кгм/см³, для гранита—20 кгм/см³

ЛИТЕРАТУРА

1. Адимов О. Д., Басов И. Г., Горбунов В. Ф., Серов Я. А. Мотодика проведения опытов при исследовании ударных узлев пневматических бурильных молотков и обработки опытных данных. Изв. ТПИ, т. 88, 1956.

2. Алимов О. Д., Басов И. Г., Горбунов В. Ф. Методика лабораторного исследования влияния усилия подачи на скорость бурения пневматическими бурильными

молотками. Изв. ТПИ, т. <u>8</u>3, 1956.

3. Алимов О. Д., Горбунов В. Ф. Некоторые результаты исследования пновматического бурильного молотка ОМ-506. Изв. ТПИ, т. 88, 1956.