К МЕТОДИКЕ ИЗВЛЕЧЕНИЯ БИТУМА ИЗ БУРОГО УГЛЯ

К. К. СТРАМКОВСКАЯ

(Представлено проф. докт. техн. наук И. В. Геблером)

В общем балансе запасов ископаемых твердых топлив бурые угли занимают значительное место. Наряду с использованием их как энергетического топлива они находят себе широкое применение как химическое сырье, а именно, для получения жидкого топлива путем полукоксования и гидрогенизации, а также для газификации. Наиболее битуминозные из них применяются для получения монтан-воска, представляющего собой весьма ценный технический продукт, используемый в целом ряде промышленных производств. Он используется в электротехнической промышленности для изоляционных целей, полиграфической для изготовления копировальных бумаг и лент пишущих машинок, кожевеннообувной для производства кремов и аппритур, лакокрасочной, а также при получении густых смазок для прокатных станов, литейного крепителя для точного литья и во многих других случаях.

• В настоящее время считают, что битум бурого угля распределяется равномерно по всей его массе, но иногда встречаются исключения. Некоторые месторождения бурых углей содержат целые прослойки битуминозных углей [2].

Выход и в некоторой степени свойства монтан-воска зависят от происхождения угля, характера растворителя и условий процесса

экстрагирования [1].

Целью настоящей работы являлось выяснить поведение битуминозной части бурых углей при обработке их слабыми водными растворами щелочей. Исследовался ярский бурый уголь Томского района, характеристика которого была описана нами в работах [3, 4]. В качестве реагентов применялись одно-, двух-и трехпроцентные водные растворы едкого натра, едкого калия и соды.

При кипячении пробы угля с водным раствором щелочи (при соотношении примерно 1:10) в открытом сосуде на поверхности жидкости образуется твердая пленка. Если эту пленку удалять, то она образуется вновь и вновь. Таким образом при определенном времени кипячения уголь можно разделить на три продукта: 1) пленку, собирающуюся на поверхности жидкости; 2) гуматы, растворимые в щелочном растворе; 3) остаточный уголь (частицы угля, не растворимые при этих условиях). Выход и характеристика продуктов приведены в таблице 1 [5].

Из данных таблицы следует, что образование пленки идет лучше в растворах едких щелочей: NaOH и КОН при двухпроцентной концентрации раствора. Как видно из таблицы, по элементарному составу полученные продукты отличались мало. Результаты экстрагирования этих продуктов различными растворителями приведены в таблице 2.

Полученные данные говорят о том, что все испытанные растворители дали при экстрагировании пленки больший выход битума. Причем битумы, извлеченные одним и тем же растворителем как из исходного угля, так и из пленки имеют одинаковый элементарный состав, сходные числа кислотности и количество восковой части. Битум с большим содержанием восковой части и с более высокими диэлектрическими свойствами получается при применении в качестве растворителя дихлорэтана.

Таблица 1

№ № пп	Полученный	Концентрация раствора в %	Cyxoro rba на уголь, %	анали- сая, %	на сухую АС, %	Элементарный состав, %			
	продукт	Конце	Выход сух вещества д сухой угол	Влага ана тическая,	Зола н массу	Cr	H	(O-N-S)	
	. Ки	пяче	ние с	раст	воро	м ХаОН			
1	Пленка	1	16,8		-				
2	Пленка	2	49,7	7,94	28,55	66,20	5,07	28,73	
3	Гуматы натрия	2	10,6	8,90	35,40	66,00	5,01	28,95	
4	Остаточный уголь	2	39,7	7,45	40,70	61,10	5,00	28,90	
5	Пленка	3	55,0	6,52	34,66			. —	
6	Гуматы натрия	3	16,8	6,08	39,50.		_		
7	Остаточный уголь	3	28,2	4,59	41,50	<u></u>		<u> </u>	
	К	пяче	ние с	раст	воро	м КОН	•		
8	Пленка	2	51,7		30,9				
9	Пленка	3	51,7	6,52	37,95				
	Ки	пяче	ние с	раст	вором	M Na ₂ CO ₃			
10	Пленка	2,5	39,6	11,58	28,35				
11	Пленка	3,5	39,6	14,65	19,60	-	_		

С целью определения битумов А и С пленка, гуматы и остаточный уголь были обработаны соляной кислотой и проэкстрагированы. Выходы экстракта приведены в таблице 3.

Данные этой таблицы убедительно показывают, что действительно происходило обогащение пленки по битуму, так как остаточный уголь давал только $5.8^{\circ}/_{\circ}$ битума, а из пленки его извлекалось $20^{\circ}/_{\circ}$. Спиртобензол в этом случае давал больший выход экстракта, извлекая вместе с битумом и гуминовые кислоты. В данном случае $73.6^{\circ}/_{\circ}$ спиртобензольного экстракта растворялось в однопроцентном растворе щелочи. Это подтверждает утверждения В. С. Веселовского [6] о том, что битумные вещества могут не только сами переходить в раствор, но и вызывать растворение и небитумных веществ, адсорбируясь на поверхности их частиц и сообщая им индуцированную растворимость, или, как иначе говорят, служат защитным коллоидом.

Из остаточного угля спиртобензолом было извлечено экстракта примерно столько же, что и дихлорэтаном, так как в остаточном угле уже отсутствовали гуминовые кислоты. Пленка, обогащенная битумом

Таблица 2

		Выход би-		Характеристика битума													
Растворитель	тума, % на су- на го-		зола, %	число кис-	число эфир-	число ом ы-	Элементарный состав %			Темпе- ратура	Содержание		Темпера-	Угол ди- электри-	Диэлек- тричес-		
	хое веще-	рю- чую массу	- D		ности	\$ i	С	H ^r	(O+N+S)	р азмяг- чения, °С	восков, %	смол, %	мягчения воска, °С	ческих	кая по- стоянная		
		Битум из исходного угля															
Спирт — этиловый бензол 1:1	10,70	14,60	0,5	65,3	68	133 ,3	70,1	8,11	21,79	75	58,92	41,03	85	3,60	4,22		
Бензол ,	8,45	11,86	0,48	42,0	77,4	119,4	75,65	8,75	15,5	64	45,0	55,0	77		_		
Сольвент—нафта	8,90	12,16	0,52	39,4	75,6	115,0	76,49	8,76	17,75	67	46,0	51,0	76	3,36	4,92		
Дихлорэтан	9,85	13,50	0,5	52,6	123	175	75,0	10,55	14,45	66	58,0	42,0	77	2,52	4,76		
	Бит	гум и:	зпле	' нки,	не о	браб	отан	пойс	оляной ки	слотой	:						
Спирт этиловый— бензол 1:1	14,7	20,4		45,5	1	110,5				82,0	58,0	42,0	85		_		
Спирт этиловый— дихлорэтан 1:1	15,7	22,2		46,0	68,0	114,0	70,0	7,95	22,05	83,8	55,0	45,0	84				
Спирт метило- вый—дихлорэтан 1:1	16,7	23,4	· ·	45,9	67,1	112,9	70,65	8,22	21,3	83,10	55,8	44,2	83,8				
Бензол	10,75			47,0				8,71	16,29	65,0	46,2	53,8	76				
Дихлорэтан	12,94			26,0	103,5		75,25		13,79	68,0	-59,1	40,9	76	2 ,52	4,76		

образуется и в том случае, если уголь со щелочным раствором предварительно прокипятить в закрытом сосуде, затем дать отстояться и, отделив остаточный уголь, кипятить в открытом сосуде.

Процесс перехода битумной части угля в раствор вместе с гу-

Таблица 3

D 2	Выход на горячую массу, %					
Вещество, обработанное соляной кислотой	спирт этиловый бензол 1:1	дихлорэтан				
Пленка	3 9,8	20,4				
Гуматы	44 ,2	8,3				
Остаточный уголь	4 ,5	5,8				

матами, растворимыми в щелочном растворе, очевидно, состоит в том, что при кипячении бурого угля со щелочью гуминовые кислоты, находящиеся в таких углях в большом количестве, переходят в раствор в виде гуматов, увлекая за собой и битуминозную часть угля, адсорбированную на своей большой внутренней поверхности. Такой агрегат, в котором присутствует битум, очевидно, становится более легким и всплывает на поверхность жидкости, где вследствие охлаждения затвердевает, образуя пленку.

По-видимому, в подходящих природных условиях не исключен и такой путь обогащения гумусовой части битумом на ранних стадиях углеобразования. Так, например, Уитман и Штрахе [1] считали, что при распределении битума в гумусовой части угля имело место их расслоение по удельному весу.

Технологические свойства обогащенного продукта как сырья для извлечения монтан воска характеризуются не только повышенным содержанием в нем битума. Обогащенный продукт значительно быстрее высыхает до воздушно сухого состояния, имеет значительно больший насыпной вес. Так, при измельчении под сито 400 отв/см². обогащенный продукт имел насыпной вес 0,75 г/см³, а у исходного угля того же измельчения и одинаковой влажности он был равен 0,36 г/см³. Кроме того, проэкстрагированный продукт удерживает значительно меньшее количество растворителя. Следовательно, для извлечения монтан-воска из бурых углей их следует предварительно обрабатывать щелочным раствором и получать продукт, обогащенный битумом.

Выводы

- 1. При кипячении бурого угля с двухпроцентным раствором щелочи в открытом сосуде на поверхности жидкости собирается продукт, обогащенный битумом, который обладает более высокими технологическими показателями, как сырье для извлечения монтан—воска, чем исходный уголь.
- 2. Показано, что составные растворители наряду с битуминозной частью из обогащенного продукта извлекают и гуминовые кислоты, а также, что наиболее чистый битум, с большим количеством восковой части и с более высокими диэлектрическими показателями, извлекает растворитель дихлорэтан.

ЛИТЕРАТУРА

1. Химия твердого топлива. Сборник 1. Издательство Иностранной литературы, 164, 163, 367, 1951.

- 2. Стадников Г. Л. Происхождение углей и нефти. 3-е изд. Издательство АН СССР, 1937.

 3. Геблер И. В. и Страмковский В. Ф. Изв. ТПИ, 64, 275, 1948.

 4. Геблер И. В. и Страмковская К. К. Изв. ТПИ 64, 291, 1948.

 5. Страмковская К. К. Кандидатская диссертация, г. Томск, 1947.

 6. Веселовский В. С. Химическая природа горючих ископаемых. Издательство АН СССР, 158, 1955.