МЕРКУРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ГАЛОГЕНОВ В ОРГАНИЧЕСКИХ СОЕДИНЕНИЯХ

Р. Д. ГЛУХОВСКАЯ, Н. А. УГОЛЬНИКОВ и З. М. МУРАВЬЕВА

(Представлено проф. докт. хим. наук Б. В. Троновым)

Ранее нами была предложена бомба для разложения органических веществ [1] и разработан меркуриметрический метод определения галогенов с дифенилкарбазоном [2, 3], а также с β -нитрозо- α -нафтолом [4, 5] в качестве индикаторов. Недостатки, присущие этим индикаторам, побудили нас провести некоторые исследования, в результате которых для меркуриметрического определения хлоридов, бромидов и иодидов был предложен новый смешанный индикатор [6], представляющий смесь дифенилкарбазона с β -нитрозо- α -нафтолом.

В настоящей работе описывается метод определения галогенов с применением смешанного индикатора в различных органических соединениях, в том числе галогенопроизводных лигнина.

Сущность метода. Органическое вещество, содержащее галоген, разлагают нагреванием с металлическим натрием в стальной бомбе [1], с последующим меркуриметрическим определением галогенида со смешанным индикатором [6].

Реактивы

Натрий металлический х. ч.

Нитрат окисной ртути 0,025 н.

Хлористый натрий х. ч. 0,02 н

Азотная кислота 6 н и 1 н, не содержащая галогенидов.

Спирт этиловый (ректификат).

Фенолфталеин 1-проц. спиртовый раствор.

Дифенилкарбазон 1-проц. спиртовый раствор [7].

 β -Нитрозо – α -нафтол 3-проц. спиртовый раствор 1).

Выполнение анализа. Навеску вещества 10—20 мг берут в трубочке по разности, а в случае жидких веществ в запаянных ампулках [8] помещают на дно пробирки (бомбы) и прибавляют 50—70 мг металлического натрия. Бомбу закрывают и нагревают пламенем газовой горелки (с воздушным дутьем) в продолжение 2—3 минут при температуре красного каления. Затем бомбу охлаждают погружением в стакан с холодной водой, освобождают пробирку от пробки и растворяют не вошедший в реакцию натрий этиловым спиртом 2). Содер-

2) Все вышеописанные операции, начиная от прибавления металлического натрия,

проводят в очках.

 $^{^{1}}$) β -Нитрозо— α -нафтол, полученный по Генрикусу и Ильинскому [7], необходимо перекристаллизовать из разбавленного спирта.

жимое пробирки фильтруют в коническую колбу емкостью на $50 \, m \Lambda$, промывают бомбу несколько раз водой, каждый раз протирая стенки ее стеклянной палочкой с резиновым наконечником до тех пор, пока весь галогенид количественно не будет перенесен в колбочку (проба с $AgNO_3$ или $Hg(NO_3)_2$).

К щелочному раствору галогенида прибавляют 1 каплю фенолфталеина и по каплям 6 н азотной кислоты до исчезновения малиновой окраски раствора. Затем добавляют еще одну каплю азотной кислоты и кипятят раствор до тех пор, пока объем его не уменьшится до 1,5—2 мл. Колбу охлаждают, прибавляют к бесцветному раствору 1—2 капли 1 н азотной кислоты, 2—3 мл спирта (в случае анализа йодсодержащих веществ: на каждый мг йода—2 мл спирта), 1 каплю дифенилкарбазона, 1 каплю β-нитрозо-α-нифтола и титруют из микробюретки раствором меркуринитрата до изменения окраски из желто-зеленой в красную.

$$\frac{0}{6}$$
 галогена $\frac{a \cdot T \cdot 100}{6}$, где

в - расход меркуринитрата, мл,

T — титр раствора меркуринтрата по галогениду,

а — навеска вещества в г.

Приготовление и установка титра раствора мерку ринитрата. 4-5z нитрата окисной ртути отвешивают на техничес ких весах, прибавляют несколько $\mathcal{M}\Lambda$ дистиллированной воды и по каплям 6 н азотной кислоты (около $0,5\mathcal{M}\Lambda$) до полного растворения соли. Доливают дистиллированной водой до 1Λ и оставляют стоять до следующего дня. В случае выпадения осадка, раствор фильтруют и устанавливают его титр по хлористому натрию. Для этого готовят титрованный раствор хлористого натрия (приблизительно 0,02 н), переносят $5\mathcal{M}\Lambda$ его в коническую колбу, добавляют 1 каплю 6 н азотной кислоты и кипятят содержимое колбы до тех пор, пока объем раствора не уменьшится до $1,5-2\mathcal{M}\Lambda$. Раствор охлаждают, прибавляют 1 каплю 1 н азотной кислоты, $2-3\mathcal{M}\Lambda$ спирта, 1 каплю дифенилкарбазона, 1 каплю β -нитрозо- α -нафтола и титруют из микробюретки до перехода окраски из желто-зеленой в красную.

Некоторые результаты определения галогенов в хлор-, бром- и йодпроизводных органических соединений и галогенопроизводных лигнина, содержащих, кроме хлора, азот, фосфор и серу, приведены в табл. 1 и 2.

Как показывают данные таблиц, меркуриметрический метод с применением смешанного индикатора позволяет довольно точно определять галогены в органических соединениях. Метод отличается простотой и непродолжительностью анализа.

Выводы

Описан меркуриметрический метод определения галогенов со смешанным индикатором. Метод позволяет довольно точно и быстро определять хлор, бром и йод в различных классах органических соединений, в том числе галогенопроизводных лигнина, содержащих кроме галогена азот, фосфор и серу.

Таблица 1 Определение галогенов в некоторых органических галогенопроизводных

№ п/п	Вещество	Содержание галогена %		
		найдено	рассчитано	Ошибка, %
1	Хлоруксусная кислота	37,86 37,98	37,52	+0,34 -0,46
2	Хлорбензойная кислота	22,20 22,46	22,64	$ \begin{array}{c c} -0.44 \\ -0.18 \end{array} $
3	Гексахлорбензол	74,59 74,46	74,71	-0.12 -0.25
4	Трихлоранилин	54,04 53,84	54,16	$ \begin{array}{c c} -0,12 \\ -0,32 \end{array} $
5	Триброманилин	72,83 72,97	72 ,68	+0.15 +0.29
6	Т ри бр оммез итиле н	67,36 67,42	67,17	-0.19 +0.25
7	Дибромдифенил	51,04 51,00	51,23	-0,19 -0,23
8	Трибромтолуол	73,11 73,16	72,93	-0.18 -0.23
9	Триподфенол	80,89 81,02	80,71	+0.13 +0.31
10	Иодоформ	96,94 9 6,83	96,69	-0.25 -0.14
11	Фурамон	47,82 47,64	47,51	+0.31 -0.13
12	Сергозип	52,29 52,37	52,02	+0.27 +0.35

Таблица 2 Определение хлора в некоторых галогенопроизводых лигнина

N⊵ IIII	Хлорлигнин	Найдено хлора, %
1	Препарат № 1	29,5 30,1
2	" № 2	26,7 2 6 ,8
3	No 4	18,5 18,1
4	—"— № 18	8,4 8,5
5	—"— № 18a	12,6 12,4
6	№ 25	3,6 3 ,5
7	 • № 19	5,5 5,1
8	—"— № 23	3,9 4,2
9	—"— № 48	20,9 21,2
10	_ "— № 48a	14,0 13,7
11	—"— № 486	18,6 18,9

ЛИ**Т**ЕРАТУРА

- 1. Глуховская Р. Д., Угольников Н. А. Труды ТГУ, 145, 173, 1957. 2. Угольников Н. А., Глуховская Р. Д. Ученые записки ТГУ, 26, 173, 1955.
- 3. Глуховская Р. Д., Труды ТГУ, 145, 77, 1957. 4. Глуховская Р. Д., Угольников Н. А. Ученые записки ТГУ, 29, 130, 1959.
- 5. Глуховская Р. Д., Угольников Н. А. Ученые записки ТГУ, 29, 134, 1959.
- 6 Глуховская Р. Д., Угольников Н. А. Известия вузов, серия "Химия и химическая технология", 3, №1, 49, 1960.
- 7. Кульберг А. М. Синтезы органических реактивов. Госхимиздат, 1947. 8. Коршун М. О., Гельман Н. Э. Новые методы элементарного микроанализа, Госхимиздат, стр. 84 и 111, 1949.

