к вопросу о возможности термического возбуждения кандолюминесценции **КРИСТАЛЛОФОСФОРОВ**

В. А. СОКОЛОВ

(Представлено профессором доктором А. А. Воробьевым)

Способность к кандолюминесценции связывается обычно с чистыми металлическими окислами и сульфидами белого цвета. Однако еще Никольсом и его сотрудниками [1] были испытаны (качественно) на высокотемпературное возбуждение в пламени некоторые препараты Ленарда и Клатта, представлявшие собой специально приготовленные для целей люминесценции кристаллофосфоры (с активатором). При этом было установлено, что ряд таких люминофоров дает при высоких температурах свечение, похожее по цвету на фото- или катодолюминесценцию этих же препаратов.

Высвечивающее действие термического нагревания на уже возбужденные кристаллофосфоры в случае обычных типов люминесценции общеизвестно. Однако вопрос о возможности возбуждения люминесцирующих дентров за счет передачи от кристаллической решетки энергии, запасенной при нагревании, до сих пор почти не обсуждался. Нам представляется, что в принципе подобное возбуждение вполне возможно. Действительно, за последнее время все чаще раздаются голоса о том, что даже в случае фотолюминесценции кристаллическая решетка играет важную роль в передаче энергии к центрам люминесценции.

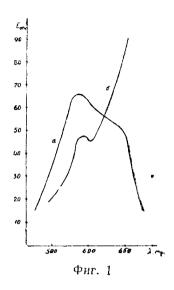
Известны прямые доказательства того, что в ряде случаев большая часть энергии возбуждающего света поглощается решеткой основного вещества и затем передается активатору [2]. Что касается таких видов люминесценции, которые возбуждаются катодной бомбардировкой или действием других корпускулярных излучений, то в этих случаях роль решетки основного вещества в передаче энергии центрам активатора кристаллофосфора выступает еще более отчетливо. В современных трудах по люминесценции кристаллов многие авторы уже с неизбежностью приходят к выводу о том, что в люминесцентных процессах кристалл в целом выступает как система, возмущающая центры свечения [3].

Поскольку это так, то любым способом запасенная кристаллической решеткой энергия может быть передана центрам свечения данного кристалла. В принципе, следовательно, может быть передана при определенных условиях и энергия, запасенная решеткой в результате термического возбуждения, что ни в коей мере не противоречит и теоретическим соображениям.

Нагревая некоторые кристаллофосфоры до высокой температуры, например, в пламени бунзеновской горелки, действительно, как и в опытах Никольса, можно наблюдать свечение, напоминающее по цвету люминесценцию этих же веществ. Причем тот же эффект можно получить как при непосредственном нагревании пламенем, так и изолированно от последнего (например, при нагревании в кварцевой трубке), что говорит о чисто термической природе эффекта. При этом в некоторых случаях подобный эффект проявляется весьма отчетливо. Это относится прежде всего к ZnS—Mn — фосфору. Как известно, сернистый цинк дает температурное свечение светло-зеленого оттенка. Однако тот же сернистый цинк, активированный марганцем в количестве 0.01%, то есть ZnS - Mn фосфор, показывает при температурном возбуждении ярко-оранжевое свечение, характерное для фотолюминесценции этого люминофора. Что же касается зеленого цвета, характерного для температурного свечения чистого ZnS, то даже и намека на него в данном случае обнаружить на глаз невозможно, несмотря на то, что сернистый цинк входит в данный кристаллофосфор в количестве 99,99%. У других кристаллофосфоров, хотя и менее отчетливо, но также можно заметить на глаз при их температурном свечении оттенки цветов, соответствующие фотолюминесценции этих же фосфоров. Причем, чем ближе к ультрафиолетовой части лежит спектр люминесценции данного кристаллофосфора, тем труднее возбудить такое же свечение его термическим путем.

В свете постановки вопроса о термическом возбуждении центров люминесценции представляло бы интерес сравнение спектров температурного свечения и спектров фотолюминесценции тех же фосфоров.

Нами были получены параллельно те и другие спектры некоторых фосфоров и проведено подобное сравнение их друг с другом. Спектры фотолюминесценции возбуждались ультрафиолетовым светом ртутной дуги, отфильтрованным с помощью увиолевого стекла. Спектры температурного свечения получались или путем непосредственного возбуждения фосфора в пламени светильного газа, или при нагревании тем же пламенем прозрачной кварцевой трубки с заключенным внутри нее исследуемым люминофором. Как уже отмечалось, характер температурного свечения фосфора в том и другом случае был одинаковым. Фотографиревались спектры с помощью стеклянного спектрографа ИСП-51. Фотометрирование снимков производилось на микрофотометре МФ-2.


На фиг. 1 изображены полученные нами спектр фотолюминесценции (а) и спектр температурного свечения (б) ZnS—Mn — фосфора. Легко видеть, что, во-первых, оба спектра в значительной мере перекрывают друг друга, а, во-вторых, в области температурного спектра, соответствующей примерно наибольшей интенсивности фотолюминесценции фосфора, отчетливо наметился побочный максимум, появление которого и обязано термическому возбуждению центров люминесценции кристаллофосфора.

На фиг. 2 приведены спектры фотолюминесценции и температурного свечения ZnS, CdS— Cu— фосфора. В этом случае побочный максимум на кривой температурного свечения (б), соответствующий возбуждению люминесцирующих центров, обозначился также совершенно отчетливо. Кривая (а), как и в предыдущем случае, представляет собой спектр фотолюминесценции фосфора.

Примерно подобная же картина наблюдается и у ZnS — Cu — фосфора с той лишь разницей, что побочный максимум на кривой температурного свечения сдвинут несколько правее по отношению к основному максимуму фотолюминесценции этого же люминофора.

Фосфоры с голубой люминесценцией термически возбуждаются с большим трудом. Так, у ZnS — Ag — фосфора голубое свечение, харак-

терное для его фотолюминесценции, в случае термического возбуждения визуально не обнаруживается явным образом и лишь при сравнительно высоких температурах (выше 1500°С) возбуждающего пламени на кривой теплового излучения фосфора в коротковолновой части видимого спектра намечается слегка побочный максимум голубого свечения.

Более трудная возбудимость коротковолновой части радиации легко объясняется на основе энергетических соображений, однако и в этих случаях термическое возбуждение люминесцентной составляющей фосфора

вполне возможно, с той лишь разницей, что для этого требуются более высокие температуры.

Все это говорит о том, что термическим путем запасенная решеткой энергия может быть передана люминесцирующим центрам таким образом, что в результате этого они становятся источником излучения тех же квантов, которые испускаются, например, и при фотолюминесценции данного кристаллофосфора.

Как уже упоминалось, наблюдаемое на глаз возбуждение кристаллофосфоров в горячих пламенах расценивалось в школе Никольса как качественное доказательство наличия кандолюминесценции у этих препаратов. Наши опыты по исследованию слектров температурного излучения кристаллофосфоров, казалось бы, могли служить до некоторой сте-

пени уже и количественным доказательством этого. Однако чисто термическое возбуждение истинной люминесценции в корне противоречило бы II началу термодинамики. Действительно, ведь люминесценция—это из-

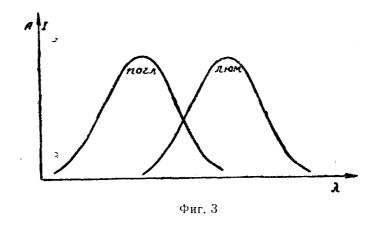
быток над тепловым излучением тела при данной температуре. Поэтому, если бы существовало какое-либо тело, способное при нагревании теплопроводностью давать люминесценцию¹), то обмен излучением междуним и нормально излучающим телом привел бы к осуществлению вечного двигателя второго рода. Таким образом, считаясь с фактом термического возбуждения люминесцентных центров кристаллофосфора, мы все же должны считать возникающую при этом радиацию компонентой равновесного теплового излучения.

Как известно, четкое и исчерпывающее определение люминесценции было дано С. И. Вавиловым [4] на основе уточнения идеи Видемана о противопоставлении люминесценции тепловому излучению. Однако исходя из этого противопоставления, С. И. Вавилов вместе с тем подчеркивал, что оно основано лишь на термодинамическом признаке, но не на принципе различия элементарных актов, которые могут быть и одинаковыми в том и другом случае. Тепловое излучение с необходимостью включает в себя как вынужденные, так и собственные, т. е. люминесцентные, акты излучения, но взаимные влияния элементарных процессов в условиях теплового равновесия таковы, что индивидуальные свойства частиц стираются и проявляются общие термодинамические свойства коллектива.

Следовательно, и в случае термического нагревания в принципе мы имеем право применить к кристаллофосфору полупроводниковую модель возбуждения активатора (переброс электрона за счет тепловых колебаний решетки в зону проводимости и последующая рекомбинация с ионизованном центром), но только должны помнить, что возникающая при этом компонента излучения будет представлять собой лишь составляющую равновесной тепловой радиации, которая не должна превышать в этой области спектра интенсивность излучения абсолютно черного тела.

Если это так, то наблюденные нами побочные максимумы на кривых температурного излучения кристаллофосфоров должны возникать в полном соответствии с законом Кирхгофа.

М. Н. Аленцев [5] обратил наше внимание на то, что эти максимумы вполне могут быть объяснены на основе закона Кирхгофа, если учесть правило Стокса-Ломмеля. Действительно, согласно этому правилу спектры поглощения и спектры фотолюминесценции кристаллофосфора перекрывают друг друга так, как это указано на фиг. 3. Следовательно, в области фотолюминесценции, с которой мы сравнивали спектр температурного излучения, имеется дополнительное поглощение, которое может простираться даже несколько дальше максимума люминесценции. Согласно закону Кирхгофа, излучательная способность тела Е равна его поглощательной способности А в данной области спектра и при данной температуре, умноженной на излучательную способность абсолютно черного тела ε₀ в тех же условиях.


Если учесть характер поглощения кристаллофосфора согласно фиг. 3, а также и то, что функция ε_0 растет значительно быстрее, чем A, то появление побочного максимума на кривой температурного излучения кристаллофосфора в области, соответствующей его фотолюминесценции, оказывается закономерным.

Резюмируя все вышеизложенное, можно сказать следующее.

Термическое возбуждение кристаллофосфоров возможно. За это говорят как теоретические соображения, так и непосредственно осуществ-

¹⁾ В данном случае исключается термолюминесценция, которая вызывается нагреванием лишь при условии предварительного возбуждения фосфора какими-либо другими агентами.

ленные опыты. Однако возникающая при этом компонента свечения, соответствующая фотолюминесценции кристаллофосфора, представляет собой лишь составляющую теплового излучения, возникающую в соответствин с законом Кирхгофа. Таким образом, наблюдаемая при высоких температурах так называемая кандолюминесценция кристаллофосфоров не

является истинной люминесценцией и объясняется лишь особенностями теплового излучения. Существование люминесценции в общепринятом ее понимании в случае чисто термического возбуждения вещества противоречило бы второму началу термодинамики.

ЛИТЕРАТУРА

- 1. Nichols E. L., Howes H. L. and Wilber D. T., Қатодолюминесценция и люминесценция раскаленных тел, Вашинглон, 1928.
 2. Моргенштерн З. Л. ДАН СССР, т. 105, 250, 1955.
- 3. Адирович Э. И. Некоторые вопросы теории люминесценции кристаллов, М—Л, 1951.
- 4. Вавилов С. И. Люминесценция и се длительность. Юбил. сборник АН СССР, посвященный 30-летию Октябрьской социалистической революции, стр. 377, М-Л, 1947.
- 5. Аленцев М. Н. Выступление в дискуссии по докладу В. А. Соколова «О кандолюминесценции кристаллофосфоров». Изв. АН СССР, сер. физ., т. 21, 528, 1957.

ОПЕЧАТКИ

Стр.	Строка	Напечатано	Следует читагь
3	11 сн.	10 6	10-6
9	9 св.	5.10 ₋₉ ceκ	5 ·10 −9 ceκ
11	1 св.	$2 \div 3 \cdot 10_8 - ce\kappa$	$2 \div 3 \cdot 10^{-8} ee\kappa$
29	6 сн.	10-6 см/сек	106 см/с ек
29	2 си.	большой	больший
30	3 cB.	10 6 cek	10-6 cek
	6 сн.		спайности
32	1 1	спаянности	4
33	17 св.	10 - сек	10_8 cv κ
34	3 св.	10 6 сек	10-6 cek
34	4,5 св.	10 · 4 · = 10 · · ceκ	$10^{-4} - 10^{-1} cek$
34	19 св.	10-8 и 10-6 см сек	10-8 сек и 100 см/сек
56	форм. 9	В конце фигурной	скобки следует - 1.
65	3 сн.	формулу	форму
91	5 св.	1350 ом и R $_{\rm T} = 30$ ком	$R_{\mathrm{T}} = 1350$ om $R_{\mathrm{T}} = 30$ kom
107	6 св.	$\tau = 10 - ce\kappa$	$\overline{\cdot} = 10^{-6} ce\kappa$
100	16 сн.	образцов	микретв ердости образ цов
111	4 сн.	E	E_{np}
112	риг. 9, 5 св .	поле однородное	поле неоднородное
115	лаг. 9, э св. 12 сн.	Винчелла	Винчелл
123	7 св.	спаянность	спайность
128	32 св.	40 мол 0 п	90 мол ч/6
170	1 сн.	ангенса	тангенса
217	15 сн.	При введении примесей типа внедрения	При введении примесей в твердые растворы типа внедрения
218	24 св.	Измерялась зависимость	Определялась зависимость
219	8 св.	хлористый рубидий	бромистый калий
219	22 сн.	хранения из монокристаллов	хранения монокристаллов
220	фиг. 2	В точке начала координат слева по оси 1g з следует поставить — 12	
228	1 cB.	ыражение	выражение
228	5 св.	огда	тогда
228	6 св.	арфора	фарфора
228	7 св.	каркасном	в каркасном
228	8 св.	етальной	д е тальной катушек
2 2 8	16 св.	гатушек Сg	$C_{\mathcal{G}}$
228 242	форм. 3 2 сн.	Из фиг. 1	Из диаграммы плавкости
244	11—12 cm.	рентгенограммы смещены	рентгенограммы сплава смещены
	24 св.	с ионизованном	с ионизированиым
251	ar cn.		
251 301	7 сн.	монизирующих	ионизирующих
		-процентного	50-процентного
301 302 306	7 сн.	-процентного 95% монокристалла	50-процентного 950 ₀ плотности монокристалла •
301 302 306 325	7 сн. 18 сн. 9 сн. 24 сн.	-процентного 95% монокристалла группы	50-процентного 950 плотности монокристалла • 11 группы
301 302 306 325 332	7 сн. 18 сн. 9 сн. 24 сн. 6 сн.	-процентного 95% монокристалла группы 107 — 108 <i>ом/сек</i>	50-процентного 950 о плотности монокристалла* 11 группы 107 — 108 см/сек
301 302 306 325	7 сн. 18 сн. 9 сн. 24 сн.	-процентного 95% монокристалла группы	50-процентного 950 плотности монокристалла • 11 группы