
К ОПРЕДЕЛЕНИЮ ОБЛАСТИ РАЦИОНАЛЬНОГО ПРИМЕНЕНИЯ ВЕНТИЛЯТОРОВ МЕСТНОГО ПРОВЕТРИВАНИЯ

Б. М. ТИТОВ

(Представлено проф. докт. техн. наук И. А. Балашевым.)

В статье инж. А. М. Фридлянд [1] правильно поднимается вопрос оскращении числа сбоек между параллельными выработками и уточнении области рационального применения вентиляторов местного проветривания.

Не возражая против приводимой А. М. Фридлянд методики технико-экономического расчета в целом, считаем, однако, необходимым уточнить вопрос определения стоимости энергии, расхолуемой на проветривание спаренных выработок в процессе их проведения.

В случае проветривания спаренной выработки только за счет напора главного вентилятора разность статических давлений между основным и вентиляционным штреками должна быть не менее $10~\kappa\Gamma/m^2$ [2, стр. 111]. Часто эта разность давлений бывает значительно меньше, например, на шахтах Южного Кузбасса она составляет всего лишь $1-5~\kappa\Gamma/m^2$ [2, стр. 110]. Искусственное же увеличение разности давлений между основным и вентиляционным штреками, установкой дроссельных окон приводит к значительному дополнительному расходу энергии.

На шахтах Донбасса и рудниках вследствие меньшего сечения и числа параллельных выработок разность статических давлений между основным и вентиляционным штреками значительно больше, но и в этом случае для проветривания спаренных выработок только за счет напора главного вентилятора приходится применять вентиляционные дроссельные окна, так как максимальная разность статических давлений между основным и вентиляционным штреками отрабатываемого этажа не совпадает во времени с максимальным сопротивлением проводимых подготовительных выработок нового этажа.

Сравним расход энергии на проветривание подготовительной выработки, проходимой спаренными забоями за счет напора главного вентилятора с расходом энергии на проветривание такой же тупиковой выработки при использовании вентилятора местного проветривания. Общешахтный коэффициент запаса воздуха в обоих случаях примем одинаковым, а к. п. д. вентиляторов равным средней величине за весь период проведения выработки.

Мощность, потребляемая двигателем главного вентилятора до проветривания тупиковой выработки,

$$N'_{1} = -\frac{HQ}{102\,\tau_{11}}\,,\tag{1}$$

где H — полный напор главного вентилятора, $\kappa \Gamma_{i} M^{2}$;

 Q_{uu} — производительность главного вентилятора, $u^{u}_{l}ce\kappa$; η_{1} — полный к.п.д. главной вентиляторной установки.

Мощность, потребляемая двигателем главного вентилятора при проветривании тупиковой выработки,

$$N''_{\perp} = \frac{(H + h_{\partial On}) (Q_{u} + Q_{1})}{102 \, \eta_{1}}, \tag{2}$$

 $h_{\partial on}$ — дополнительный напор главного вентилятора, расходуемый на преодоление сопротивления вентиляционных окон, $\kappa \Gamma_i M^2$:

на преодоление сопротивления вентиляционных окон, n_{J} , q_{J} . — количество воздуха, необходимое для проветривания вроводимой выработки, $M^3/ce\kappa$.

Приращение мощности, потребляемой двигателем главного вентилятора,

$$N_{\rm i} = N_{\rm i}'' - N_{\rm i}'' = \frac{(H + h_{\partial on}) Q_{\rm i} + h_{\partial on} Q_{m}}{102 \, r_{\rm i}}.$$
 (3)

Мощность, необходимая для проветривания такой же выработки при использовании вентилятора местного проветривания,

$$N_2 = \frac{HQ_2}{102\,\eta_1} + \frac{(h_m + h_g)\,Q_2}{102\,\eta_2}\,,\tag{4}$$

где Q_2 — количество воздуха, необходимое для проветривания выра ботки, м³/сек;

 h_m — падение давления в вентиляционном трубопроводе, $\kappa \Gamma / M^2$; h_B — падение давления в тупиковой части выработки, $\kappa \Gamma / M^2$; η_2 — полный к. п. д. вентиляторной установки местного провет-

Таким образом, по расходу энергии применение вентиляторов местного проветривания целесообразно только при соблюдении неравенства 1)

$$N_1 t a_{21} > N_2 t a_{21},$$
 (5)

где t — продолжительность работы вентиляторной установки, час;

 a_{91} — удельная стоимость энергии, расходуемой двигателем главного вентилятора, руб квт-ч.

 a_{32} — удельная стоимость энергии, расходуемой двигателем вентилятора местного проветривания, руб квт-ч;

Подставив в формулу (5) значение N_1 и N_2 из формул (3), (4) и пренебрегая весьма малым падением давления в тупиковой выработке $h_{\rm g}$, после несложного преобразования получим

$$\frac{HQ_1+h_{\partial on}\left(Q_1+Q_m\right)\left[\alpha_{\mathfrak{g}_1}\right]}{\eta_1}>\left(\frac{H}{\eta_1}+\frac{h_m}{\eta_{12}}\right)Q_2\alpha_{\mathfrak{g}_2}. \tag{6}$$

Если количество воздуха, необходимое для проветривания выработки за счет напора главного вентилятора, получается одинаковым

Предполагается, что привод вентилятора местного прогетривания может быть как электрическим, так и иневматическим.

с требуемой производительностью вентилятора местного проветривания, т. е. $Q_1 = Q_2 = Q$, то формула (6) упрощается

$$\frac{(Q+Q_{\mathfrak{w}})\,h_{\partial on}\,a_{\mathfrak{I}_{1}}}{\gamma_{\mathfrak{I}_{1}}} > \frac{Q\,h_{m}\,a_{\mathfrak{I}_{2}}}{\gamma_{\mathfrak{I}_{2}}}.\tag{7}$$

Величина к. п. д. вентилятора главного проветривания определяется по аэродинамической характеристике в соответствии с действительным режимом его работы или принимается ориентировочно равной 60-65%. Средневзвешенное значение к. п. д. вентилятора местного проветривания можно принимать равным 50%.

Формулы (6) и (7) помогают определить рациональное расстояние между сбойками и выбрать наиболее экономичный вариант проветривания выработки в том случае, когда технически для проветривания тупиковой выработки возможно использование напора вентилятора как главного, так и местного проветривания. Область рационального применения вентиляторов местного проветривания, определяемая формулами (6) и (7), при учете затрат на проведение и поддержание сбоек, проводимых специально для цепей проветривания при использовании напора главного вентилятора, расширяется.

ЛИТЕРАТУРА

1. Фридлянд А. М. Слижение стоимости строительства шахт за счет правильного выбора способа проветривания горных выработок. Уголь, № 6, 1955.
2. Баталин С. А. Вентиляция на шахтах Кузбасса. Углетехиздат, 1951.