Том 139

О ПРЕДСТАВИМОСТИ ЧЕТНОГО ЧИСЛА СУММОЙ ДВУХ ПРОСТЫХ ЧИСЕЛ

В. И. ЛЕКОНЦЕВ

(Представлена научным семинаром факультета автоматики и телемеханики)

1. Пусть $\varphi_2(l,N)$ выражает число пар чисел n и n+l, одновременно взаимно простых с N, первое из которых не превосходит N. Очевидно, что $\varphi_2(l,1)=1$. Легко доказать следующие свойства функции: Функция φ_2 мультипликативна.

При
$$p$$
 простом $\varphi_2(l,p^a) = \begin{cases} p^{a-1}(p-2), & \text{если } (l,p) = 1, \\ p^{a-1}(p-1), & \text{если } (l,p) = p. \end{cases}$ Таким образом, $\varphi_2(l,N) = N \prod_{\substack{p \mid N \\ p \mid l}} \left(1 - \frac{1}{p}\right) \prod_{\substack{p \mid N \\ p \mid k}} \left(1 - \frac{2}{p}\right).$

2. Пусть $\varphi_3(l_1, l_2, N)$ выражает число троек чисел $n, n+l_1, n+l_2,$ одновременно взаимно простых с N, первое из которых не превосходит N. Функция φ_3 мультипликативна и

$$\varphi_3\left(l_1,\,l_2,\,p^\alpha\right) = \begin{cases} p^{\alpha-1}\,(p-3), \text{ если } (l_1,\,p) = 1, \ (l_2,\,p) = 1, \\ p^{\alpha-1}\,(p-2), \text{ если одно из } l \text{ взаимно просто с } p, \\ p^{\alpha-1}\,(p-1), \text{ если } (l_1,\,p) = p \text{ и } (l_2,\,p) = p, \end{cases}$$

так что

$$\varphi_{3}\left(l_{1},\ l_{2},\ N\right) = N \prod_{\substack{p/l_{1} \\ p/l_{2}}} \left(1 - \frac{1}{p}\right) \prod_{\substack{p/l_{1} \\ p \times l_{2}}} \left(1 - \frac{2}{p}\right) \prod_{\substack{p \times l_{1} \\ p \times l_{2}}} \left(1 - \frac{3}{p}\right). \tag{p/N}$$

3. Для функции $\varphi_m(l_1,...,l_{m-1},N)$, выражающей число m-чисел $n,...,n+l_{m+1}$, взаимно простых с N, первое из которых не превосходит N, справедливы аналогичные свойства.

Из п. 1 следует, что число пар чисел n и n' (n'-n=l), взаимно простых с p_1, \ldots, p_κ и непревосходящих $Q=p_1\cdots p_\kappa$, равно

$$E_2(l, \kappa, Q) = \prod_{p/l} (p-1) \prod_{p \times l} (p-2) \qquad (p/Q), \tag{1}$$

откуда следует приближенная формула для чи**с**ла пар простых чисел [1, n], полученная также в работах [1], [2],

$$\pi_2(l, n) \approx \frac{n}{Q} \prod_{\substack{p/l \ p/Q}} (p-1) \prod_{\substack{p \times l \ p/Q}} (p-2) \sim c \frac{n}{\ln^2 n},$$

где c — некоторая постоянная. Из (1) можно также предположить,

что
$$\frac{\pi_2 \ (l_1, \, n)}{\pi_2 \ (l_2, \, n)} \rightarrow \frac{E_2 \ (l_1, \, Q)}{E_2 \ (l_2, \, Q)} \qquad (n \rightarrow \infty)$$
 Так,
$$\frac{\pi_2 \ (6, \, n)}{n_2 \ (2, \, \pi)} \rightarrow 2, \qquad \frac{\pi_2 \ (10, \, n)}{\pi_2 \ (2, \, n)} \rightarrow \frac{4}{3} \ , \qquad \frac{\pi_2 \ (2^i, \, n)}{\pi_2 \ (2, \, n)} \rightarrow 1.$$

Следующая таблица дает представление об этой гипотезе.

n	$\left \pi_2 \left(2, \ n \right) \right $	$\pi_2 (8, n)$	$\pi_2(6, n)$	$\pi_2 (10, n)$
1000	35	39	73	52
4000	103	106	197	135
6000	143	137	274	180

Лемма 1. Число пар чисел, взаимно простых с $p_1,...,p_\kappa$ и непревосходящих n+l, имеет оценку снизу

$$E_2(l, n) \gg \left[\left[\left[n \frac{p_1 - 1}{p_1} \right] \frac{p_2 - 2}{p_2} \right] \cdots \frac{p_{\kappa} - 2}{p_{\kappa}} \right] \gg \frac{n}{2p_{\kappa}}.$$

Доказательство. Для доказательства этого неравенства необходимо показать справедливость следующего утверждения: после вычеркивания из общего числа n чисел, кратных p_1 , среди каждых p_2 чисел последовательности, получившейся в результате первого "высевания", не более одного числа делится на p_2 ; в результате "высевания" чисел, кратных p_2 , получаем последовательность, в которой на каждые p_3 чисел приходится не более одного числа, делящегося на p_3 и так дальше; после $\kappa = 1$ шага получаем последовательность чисел, в которой на каждые p_{κ} , начинающихся с 1, чисел не более одного делится на p_{κ} . Это можно показать, во-первых, тем фактом, что среди $Q = p_1 \cdots p_\kappa$ первых чисел количество чисел, взаимно простых с p_1, \dots, p_κ , равно $(p_1-1)(p_2-1)\cdots(p_\kappa-1)$ (Эйлер). Это, же значение получим при указанном способе подсчета, то есть с помощью постепенного "высевания" из оставшихся чисел, кратных следующему простому числу. Действительно, после первого шага — "высевания" чисел, кратных p_1 , получаем число чисел, взаимно простых с p_1 , которое равно $Q_1 = \left[Q\frac{p_1-1}{p_1}\right] = (p_1-1)p_2\cdots p_\kappa$; далее, из оставшихся чисел взаимно простых с p_2 равно величине

$$Q_{2} = (p_{1} - 1)(p_{2} - 1)p_{3} \cdots p_{\kappa} = \left[\left[Q \frac{p_{1} - 1}{p_{1}}\right] \frac{p_{2} - 1}{p_{2}}\right],$$

а это возможно лишь благодаря тому, что из каждых p_2 , оставшихся после первого "высевания" чисел, не более одного числа делится на p_2 . На i шаге "высевания" получаем величину

$$Q_i = (p_1 - 1) \cdots (p_i - 1) p_{i+1} \cdots p_{\kappa}$$

— число чисел, взаимно простых с $p_1,...,p_i$. Из оставшихся чисел количество чисел, взаимно простых с p_{i+1} , равно величине

$$(p_1-1)\cdots(p_i-1)(p_{i+1}-1)p_{i+2}\cdots p_{\kappa} = \left[Q_i\frac{p_{i+1}-1}{p_{i+1}}\right].$$

Это опять же возможно лишь благодаря тому, что на каждые p_{i+1} оставшихся чисел приходится не более одного числа, делящегося на p_{i+1} . Но вследствие того, что не более одного числа, кратного p_i , приходится на каждые p_i чисел, мы можем применить это свойство при произвольном n, при этом последняя группа чисел, если она окажется неполной, при применении знака [] отпадает, от чего мы только усилим неравенство. Это рассуждение дополним индукцией по к. Составим последовательность, получающуюся после i-1 шага "высевания", состоящую из ν полных групп чисел по p_i в каждой, неполную группу, если она окажется, отбрасываем:

1,
$$p_i$$
, p_{i+1} ,..., α_1 , α_2 ,..., p_i^2 ,..., α_3 , α_4 ,..., p_i , p_{i+1} ,...

Предположим, что из каждых p_i чисел этой последовательности одно делится на p_i , из каждых p_{i+1} одно делится на p_{i+1} и т. д. "Высеваем" числа, кратные p_i , после чего в последовательности остается $p_i - p_i$ чисел. Первоначально среди p_i чисел, кратных p_{i+1} , было $\left\lceil \frac{\mathbf{v} \, p_i}{p_{i+1}} \right\rceil$, но

при высевании чисел, кратных p_i , отпали и числа

$$p_i p_{i+1}, \qquad p_i p_{i+1}^2, \qquad p_i p_{i+1} p_{i+2}, \ldots, \leqslant n,$$

 $p_i p_{i+1}, \quad p_i p_{i+1}^2, \quad p_i p_{i+1} p_{i+2}, ..., \leqslant n,$ таких чисел не меньше числа членов f геометрической прогрессии с первым членом p_{i+1} . и со знаменателем p_{κ} . Тогда на долю у p_i — у чисел, кратных p_{i+1} , останется не больше

$$\left\lceil \frac{v p_i}{p_{i+1}} \right\rceil - f.$$

Теперь уже нетрудно показать, что на каждые p_{i+1} из оставшихся чисел приходится не более одного числа, делящегося на p_{i+1} . Этим наше утверждение о том, что на i-шаге "высевания" на долю каждых p_i чисел приходится не более одного числа, кратного p_i , доказано.

Лемма получается из этого утверждения при учитывании того, что при (l, p) = 1 из p_i чисел "высеваются" по два числа n' и n' + r, где $r \equiv l \pmod{p}, r < p$.

Этот метод решета несколько отличается от ранее применяемых, например, в [1], [2] и других тем, что в отличие от "высевания" чисел, кратных последовательным простым из общего числа n, здесь "высевание" происходит на каждом шаге из оставшихся чисел. Но при ближайшем рассмотрении получается одна и та же картина: "высевание" чисел, кратных простым.

Tеорема 1. При $n \geqslant 6$ между n и 2n существует по меньшей

мере одна пара простых чисел близнецов p', p'' (p'' - p' = 2).

Доказательство. Найдется такое κ , что $p_{\kappa} \leqslant n < p_{\kappa+1}$. Число пар чисел, взаимно простых с $p_1,...,p_\kappa$ в [1, 2n] по лемме 1 не меньше $\frac{n}{2} \gg 1$. Но среди первых чисел нет искомой пары: $(p_{\kappa} \leqslant n < p_{\kappa+1})$. Поэтому пара чисел (быть может большее число), взаимно простых с $p_1,...,p_\kappa$, находится между n и 2n. Но они меньше $p_{\kappa+1}^2$, поэтому оба числа из пары будут простыми.

Теорема 2. Четное число представимо разностью двух простых

чисел, и число таких представлений бесконечно.

Доказательство. Каково бы ни было четное число l, найдутся такие p_{κ} и n (таких p_{κ} и n при фиксированном l будет бесконечное множество), что будут выполняться неравенства:

$$n+l < p_{\kappa+1}^2, \qquad n > 4p_{\kappa}.$$

Для $n \gg 4p_{\kappa}$ имеем $E_2(l,\kappa,n) \gg 2$ (больше 1 нам недостаточно, так как такой парой могут оказаться числа 1 и 1+l), следовательно между p_{κ} и n существует первое число по крайней мере одной пары простых чисел p' и p'' таких, что p''-p'=l.

Лемма 2. Числа, взаимно простые с $p_1,...,p_\kappa$, расположены симметрично относительно числа $p_2\cdots p_\kappa$ в интервале $[1,p_1\cdots p_\kappa]$, и такая симметрия повторяется в последующих интервалах такой же длины.

Теорема 3. Четное число представимо суммой двух простых чи-

сел, и число таких представлений не меньше

$$\left[\left\lceil N\frac{p_2-2}{p_2}\right\rceil\cdots\frac{p_\kappa-2}{p_\kappa}\right].$$

Доказательство. По лемме 2 число решений уравнения $P_1 + P_2 = 2N$ в простых числах равно числу пар чисел n и $n + p_1 \cdots p_{\kappa} - 2N$, одновременно взаимно простых с p_1, \dots, p_{κ} , где $p_{\kappa} \leqslant \sqrt{2N-1} < p_{\kappa+1}$. Действительно, если n и $n + p_1 \cdots p_{\kappa} - 2N$ взаимно простые с p_1, \dots, p_{κ} , то n и 2N-n также взаимно просты с p_1, \dots, p_{κ} и, следовательно, $(n < p_{\kappa+1}^2, 2N - n < p_{\kappa+1}^2)$ будут простыми. По лемме 1 число таких пар чисел оценивается указанным выражением.

Из п. 2 следует, что число троек чисел $n, n+l_1, n+l_2$, одновременно взаимно простых с p_1, \ldots, p_κ и непревосходящих $p_1 \cdots p_\kappa + l$, равно

$$E_{3}(l_{1}, l_{2}, \kappa, Q) = \prod_{\substack{p/l_{1} \\ pl/2}} (p-1) \prod_{\substack{p/l_{1} \\ p \times l_{2}}} (p-2) \prod_{\substack{p \times l_{1} \\ p \times l_{2}}} (p-3)$$
 (p/Q)

и, следовательно, имеем приближенную формулу для числа троек простых чисел указанного вида в [1, n]

$$\pi_3(l_1, l_2, n) \approx \frac{n}{Q} \prod_{\substack{p/l_1 \ p/l_2}} (p-1) \prod_{\substack{p/l_1 \ p \times l_2}} (p-2) \prod_{\substack{p \times l_1 \ p \times l_2}} (p-3) \sim c \frac{n}{\ln^3 n},$$

где c — некоторая постоянная и $p_{\kappa} \leqslant n < p_{\kappa+1}^2$. Из п. 3 следует, что число четверок чисел, например, вида n, n+2, n+6, n+8, одновременно взаимно простых с p_1, \ldots, p_{κ} , и непревосходящих $p_1 \cdots p_{\kappa}$, равно $(p_1-1) (p_2-2) (p_3-4) \cdots (p_{\kappa}-4)$, поэтому можно принять число четверок простых чисел указанного вида из [1, n] приближенно за величину

$$\frac{n}{p_1 \cdots p_{\kappa}} (p_4 - 4) \cdots (p_{\kappa} - 4) \approx c \frac{n}{\ln^4 n}, \qquad n < p_{\kappa+1}^2.$$

Дополнение к доказательству леммы 1

Применяем принцип решета к последовательности A_1 натуральных чисел, непревосходящих x,

$$A_1$$
 1, 2, 3, 4,..., $n^{(1)}$, $n^{(1)} \leqslant x$.

На первом шаге высеваются числа, кратные p_1 , то есть числа, равные первым членам последовательности A_1 , умноженные на p_1 и непревосходящие x. При этом высевается и $\frac{1}{p_1}$ часть чисел, кратных $p_2,...,p_\kappa$. В результате получаем последовательность

$$A_2$$
 1, 3, 5, 7, 9,..., $n^{(2)}$, $n^{(2)} \leqslant x$,

 \cdot содержащую не менее $Q_1 = \left[x \frac{p_1 - 1}{p_1}\right]$ членов вида $2\kappa + 1 \leqslant x$. На вто-

ром шаге будут высеваться члены последовательности A_2 , кратные p_2 , непревосходящие x и равные первым ее членам, умноженным на p_2 . На каждые p_i (i=2,3,...) членов последовательности A_2 приходится не более одного члена, кратного p_i . Действительно, члены, кратные p_i , образуются последовательно из первых членов A_2 путем умножения их на p_i , так что если n — общее число членов A_2 , n^* — число ее членов, кратных p_i , то из неравенств

$$[x] - 1 \le 2n^i + 1 \le [x],$$
 $n \ge \frac{[x] - 2}{2}$

$$(2n^*+1) p_i \leqslant [x], \qquad n^* \leqslant \frac{[x]-p_i}{2p_i}$$

заключаем, что $n^* \leqslant \frac{n}{p_i}$.

В результате высевания чисел последовательности A_2 , кратных $p_2 = 3$, получаем последовательность

$$A_3$$
 1, 5, 7,..., 25,..., $n^{(3)}$, $n^{(3)} \leqslant x$,

содержащую не менее $Q_2 = \left[Q_1 \frac{p_2 - 1}{p_2} \right]$ членов, которые имеют вид $mp_1p_2 + b$, где $(b, p_1 \cdot p_2) = 1$, $b < p_1 \cdot p_2$, то есть b = 1,5. Будем высевать числа, кратные p_3 , равные первым членам A_3 , умноженным на p_3 и непревосходящие x. Точно так же можно показать, что на каждые p_i $(i \geqslant 3)$ чисел последовательности A_3 приходится не более одного числа, кратного p_i .

Предположим, что в результате высевания чисел, кратных $p_1,...,p_{i-1}$, получаем последовательность

$$A_i$$
 1, p_i , p_{i+1} ,..., p_i^2 ,..., p_i , p_{i+1} ,..., $n^{(i)}$, $n^{(i)} \leqslant x$,

в которой на каждые p_j $(j \geqslant i)$ чисел приходится не более одного числа, делящегося на p_j . Покажем, что в результате высевания чисел, кратных p_i , получим последовательность A_{i+1} , в которой на каждые p_j $(j \geqslant i+1)$ чисел приходится не более одного числа, делящегося на p_j . Числа последовательности A_i , подлежащие высеванию, то есть

кратные p_i , образуются из первых ее членов, непревосходящих $\left[\frac{x}{p_i}\right]$,

путем умножения их на p_i . При высевании чисел, кратных p_i , из последовательности A_i , содержащей у групп по p_i чисел в каждой, будут высеваться и числа, кратные $p_{i+1}, p_{i+2},...$ у высевающихся чисел образованы из у первых чисел последовательности A_i , поэтому среди

у высевающихся чисел кратных p_{i+1} будет либо $\left[\frac{\nu}{p_{i+1}}\right]$, либо $\left[\frac{\nu}{p_{i+1}}\right]+1$,

причем равным $\left[\frac{\nu}{p_{i+1}}\right]$ будет при p_{i+1}/ν и равным $\left[\frac{\nu}{p_{i+1}}\right]+1$ при $\nu=c\cdot p_{i+1}+r$, $1\leqslant r\leqslant p_{i+1}-1$ и среди r чисел будет одно число, кратное p_{i+1} .

В обоих случаях:
$$\left[\frac{\nu p_i}{p_{i+1}}\right] - \left[\frac{\nu}{p_{i+1}}\right] \leqslant \frac{\nu p_i - \nu}{p_{i+1}}$$
 при p_{i+1}/ν ,
$$\left[\frac{\nu p_i}{p_{i+1}}\right] - \left[\frac{\nu}{p_{i+1}}\right] - 1 \leqslant \frac{\nu p_i - \nu}{p_{i+1}}$$
 при $\nu = cp_{i+1} + r$.

Откуда заключаем, что на каждые p_{i+1} чисел последовательности A_{i+1} приходится не более одного числа кратного p_{i+1} . Таким же образом можно показать, что из каждых $p_j (j \gg i+1)$ чисел A_{i+1} не более одного кратно p_j .

ЛИТЕРАТУРА

1. А. О. Гельфонд, Ю. В. Линник. Элементарные методы в аналитической теории чисел. М., 1962.
2. А. И. Виноградов. Применение ζ(s) к решету Эратосфена. Мат. сб. 41, 1957.