ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 105

1960 г.

КОРРЕКЦИЯ ИСКАЖЕНИЙ ПЛОСКИХ ВЕРШИН ПЕРИОДИЧЕСКОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ИМПУЛЬСОВ В ВИДЕОУСИЛИТЕЛЯХ НА ПЛОСКОСТНЫХ ПОЛУПРОВОДНИКОВЫХ ТРИОДАХ (ППТ)

И. Н. ПУСТЫНСКИЙ

(Представлено научным семинаром радиотехнического факультета)

Введение

На рис. 1 изображена эквивалентная схема усилительного каскада на ППТ с общим эмиттером. Здесь цепочка $R_{\phi}C_{\phi}$ предназначена для коррекции искажений вершины импульса, обусловленных наличием переходной емкости C_n ,

$$R_1 = \frac{R_{\delta} \cdot R_{\theta X}}{R_{\delta} + R_{\theta X}},$$

где R_{δ} — сопротивление, обеспечивающее смещение на базу триода следующего каскада, входное сопротивление которого на низкой частоте равно $R_{s,x}$.

Предполагается, что емкость в цепи эмиттера последующего каскада отсутствует, поскольку при усилении импульсов большой длительности включать ее нецелесообразно ввиду значительных габаритов конденсатора. В случае необходимости включения этой емкости, ее влияние может быть учтено введением эквивалентного значения постоянной времени переходной цепи [2].

В отличие от ламповых усилителей в усилителях на полупроводниковых триодах (ПТ) величины сопротивлений R_1 и R_H соизмеримы, в результате чего формулы коррекции для ламповых усилителей здесь теряют силу.

Выражение для формы импульсов периодической последовательности на выходе усилителя

Нормированная переходная характеристика для схемы рис. 1 имеет вид

$$h(t) = \frac{1}{\gamma - \alpha} \left[(a_0 - \alpha) e^{-\alpha t} - (a_0 - \gamma) e^{-\gamma t} \right], \tag{1}$$

где при $R_{Bblx} \gg R_{H} + R_{\phi}$ и $R_{Bblx} \gg R_{1}$ (что обычно имеет место)

$$a_0 = \frac{1+d}{d \cdot \tau_H} \qquad (1a) , \qquad \tau_H = R_H \cdot C_{\phi} \qquad (1b) ,$$

$$\alpha = \frac{a_1 - \sqrt{a_1^2 - 4a}}{2a} \qquad (1s) , \qquad \gamma = \frac{a_1 + \sqrt{a_1^2 - 4a}}{2a} \qquad (1z) ,$$

$$a_1 = d \tau_H + \tau_n + \tau_n \cdot \kappa_1 (1+d) \quad (1u).$$

В соответствии с принципом суперпозиции [1] для выходного сигнала получим выражение

$$i_{2}(t) = K_{io} \frac{1}{\gamma - \alpha} \cdot \left\{ (a_{0} - \alpha) e^{-\alpha t} \left[(1 - e^{\alpha t u}) \cdot (1 + e^{\alpha T} + e^{2 \pi T} + \dots + e^{(n-1)\alpha T}) + e^{n\alpha T} \right] - (a_{0} - \gamma) e^{-\gamma t} \left[(1 - e^{\gamma t} u) \cdot (1 + e^{\gamma T} + e^{2\gamma T} + \dots + e^{(n-1)\gamma T}) + e^{n\gamma T} \right] \right\},$$
(2)

где

t_и — длительность импульса, T — период повторения импульсов,

$$K_{io} = \frac{\beta R_{H}}{R_{1} + R_{H}}$$
 — коэффициент усиления каскада по току на сред
них частотах.

Спустя *n* периодов, т. е. в промежутке от t = n T до $t' = nT + t_u$, выходной сигнал равен

$$i_{2}(t_{1}) = K_{io} \cdot \frac{1}{\gamma - \alpha} \cdot \left\{ (a_{0} - \alpha) \cdot \left[\frac{1 - e^{\alpha t_{u}}}{e^{\alpha T} - 1} \cdot (e^{-\alpha t_{1}} - e^{-\alpha (nT + t_{1})}) + e^{-\alpha t_{1}} \right] - (a_{0} - \gamma) \cdot \left[\frac{1 - e^{\gamma t_{u}}}{e^{\gamma T} - 1} \cdot (e^{-\gamma t_{1}} - e^{-\gamma (nT + t_{1})}) + e^{-\gamma t_{1}} \right],$$
(3)

где t_1 изменяется от 0 до t_u .

При установившемся режиме, поскольку $e^{-\alpha(nT+t_1)} \approx e^{-\gamma(nT+t_1)} \approx 0$, выходной сигнал равен

$$i_{2}(t) = K_{io} \frac{1}{\gamma - \alpha} \cdot \left[(a_{0} - \alpha) \cdot e^{-\alpha t} \frac{e^{\alpha T} - e^{\alpha t}}{e^{\alpha T} - 1} - (a_{0} - \gamma) \cdot e^{-\gamma t} \cdot \frac{e^{\gamma T} - e^{\gamma t}}{e^{\gamma T} - 1} \right].$$
Здесь для удобства опускаем индекс у t_{1} . (4)

Здесь для удобства опускаем индекс у t_1 .

Так как максимальные искажения вершины импульса наблюдаются при $t_u = 0,5$ T [1], этот случай представляет наибольший интерес, При $t_u = 0,5$ T формулу (4) можно записать в виде

$$i_{2}(t) = K_{io} \frac{1}{\gamma - \alpha} \left[(a_{0} - \alpha) \frac{e^{-\alpha t}}{1 + e^{-\alpha t_{u}}} - (a_{0} - \gamma) \frac{e^{-\gamma t}}{1 + e^{-\gamma t_{u}}} \right],$$
(5)

где $0 \leqslant t \leqslant t_u$.

Оптимальные параметры коррекции

Параметры схемы усилителя, обеспечивающие на его выходе симметричный по высоте сигнал (рис. 2) с возможно минимальными искажениями вершины, будем считать оптимальными.

Задача определения оптимальных параметров при практических расчетах сводится в основном к нахождению величин емкостей C_n и C_{ϕ} . Величины сопротивлений R_1 , R_H и R_{ϕ} обычно известны, однако величиной R_{ϕ} можно в некоторых пределах варьировать.

Первое уравнение для определения C_n и C_{ϕ} получается из выражения

(5), если потребовать обеспечения равенства $i_2(0) = i_2(t_u)$. Это уравнение имеет вид

$$a_{\theta} = \frac{\gamma \operatorname{th} \frac{\gamma t_{u}}{2} - \alpha \operatorname{th} \frac{\alpha t_{u}}{2}}{\operatorname{th} \frac{\gamma t_{u}}{2} - \operatorname{th} \frac{\alpha t_{u}}{2}}.$$
(6)

Поскольку обычно в реальных случаях $\frac{\alpha t_u}{2} < 1$ и $\frac{\gamma t_u}{2} < 1$, то уравнение (6) после разложения гиперболических тангенсов в степенные ряды можно упростить. Тогда

$$a_{0} \approx (\gamma + \alpha) \frac{1 - \frac{t_{u}^{2}}{12} (\gamma^{2} + \alpha^{2})}{1 - \frac{t_{u}^{2}}{12} (\gamma^{2} + \alpha \gamma + \alpha^{2})}$$

или, так как $\frac{t_{u}^{2}}{12} (\gamma^{2} + \alpha \gamma + \alpha^{2}) \ll 1$,
 $a_{0} \approx (\gamma + \alpha) \left(1 + \frac{t_{u}^{2}}{12} \gamma \alpha \right).$ (6*a*)

После подстановки в уравнение (6а) параметров схемы оно примет вид

$$\frac{\tau_{H}}{\tau_{n}} = \frac{d(1+k_{1}) - \frac{1}{12} \left(\frac{t_{u}}{\tau_{n}}\right)^{2} + \sqrt{\left[d(1+k_{1}) - \frac{1}{12} \left(\frac{t_{u}}{\tau_{n}}\right)^{2}\right]^{2} - \frac{1}{3} \left(\frac{t_{u}}{\tau_{n}}\right)^{2} (1+k_{1})[1+k_{1}(1+d)]}{2 d (1+k_{1})}.$$
(7)

При $\frac{t_u}{\tau_n} \leqslant d$ формулу (7) можно значительно упростить

$$\frac{\tau_{H}}{\tau_{n}} \approx 1 - \frac{1}{12} \left(\frac{t_{u}}{\tau_{n}}\right)^{2} \frac{1+d}{d^{2}}.$$
 (7*a*)

По формулам (7) и (7*a*) для наиболее часто применяемых значений κ_1 , *d* и $\frac{t_u}{\tau_n}$ построены графики на рис. З. Из графиков видно, что при $\frac{t_u}{\tau_n} \ll d$ максимальная погрешность определения $\frac{\tau_H}{\tau_n}$ по приближен-

ной формуле (7*a*) по сравнению с более точной формулой (7) не превышает 3÷10 процентов.

Графики рис. З могут служить для инженерных расчетов.

В дальнейшем условие (7) будем называть условием коррекции.

Второе уравнение для определения C_n и C_{ϕ} можно получить из условия наличия допустимых искажений, определяемых величиной $\Delta i = i_{\text{макс}} - i_0$ (рис. 2). Величина относительного искажения вершины импульса, измеренная по отношению к средней линии, равна

$$\delta = \frac{\Delta i}{i_0} = 2 i_{\text{marc}} - 1 , \qquad (8)$$

муле (7а).

так как $i_0 = 0,5.$

Величину $i_{\text{макс}}$ нетрудно найти из выражения (5), если вместо t подставить $t_{\text{макс}}$ — время, соответствующее максимальному искажению вершины.

Как и в ламповых усилителях [1] без заметной погрешности можно принять, что $t_{\text{маке}} = t_u/2$. Тогда

$$i_{\text{Marc}} = K_{io} \frac{\operatorname{sh} \frac{\gamma t_u}{2} - \operatorname{sh} \frac{\alpha t_u}{2}}{2 \operatorname{sh} \left(\frac{\gamma t_u}{2} - \frac{\alpha t_u}{2}\right)}$$
(9)

$$\delta = \frac{\operatorname{sh} \frac{\Upsilon t_u}{2} - \operatorname{sh} \frac{\alpha t_u}{2}}{\operatorname{sh} \left(\frac{\Upsilon t_u}{2} - \frac{\alpha t_u}{2} \right)} - 1.$$
(10)

И

11. Изв. ТПИ, т. 105.

После разложения гиперболических синусов формула (10) примет вид

$$\delta \approx \frac{1 + \frac{t_u^2}{24} (\gamma^2 + \alpha \gamma + \alpha^2)}{1 + \frac{t_u^2}{24} (\gamma - \alpha)^2} - 1$$

или, поскольку $rac{t_{u}^{\,2}}{24}\,(\gamma-lpha)^{2}\ll 1$,

$$\delta \approx \frac{1}{8} t_{u}^{2} \gamma \alpha. \qquad (10a)$$

После выражения а и у через параметры схемы формула (10а) запишется в виде

$$\delta \approx \frac{1}{8} \cdot \left(\frac{t_u}{\tau_n}\right)^2 \frac{1}{\frac{\tau_H}{\tau_n} \cdot d\left(1 + \kappa_1\right)}$$
$$\delta \approx \left(\frac{t_u}{\tau_n}\right)^2 \cdot \frac{12,5^{0/0}}{\frac{\tau_H}{\tau_n} \cdot d\left(1 + \kappa_1\right)},$$
(11)

 τ_n

1

т. е. в усилителях на ПТ искажение δ в (1 + κ_1) раз меньше, чем в усилителях на лампах [1].

Рис. 4а.

Для ускорения инженерного расчета по формуле (11) также были построены графики (рис. 4). На рис. 4в, кроме того, для наглядной оценки эффекта коррекции приведены кривые

162

ИЛИ

$$\Delta = 200^{\circ}/_{0} \operatorname{th} \frac{t_{u}}{2\tau_{n}(1+\kappa_{1})} \approx 100^{\circ}/_{0} \frac{t_{u}}{\tau_{n}(1+\kappa_{1})}, \qquad (12)$$

где Δ — относительный спад вершины импульса при отсутствии звена $R_{\phi} C_{\phi}$.

Рис. 4б.

Рис. 4в.

Количественно эффект, достигаемый коррекцией, может быть оценен по величине отношения искажений без коррекции к искажениям при коррекции, т. е.

$$\sigma_k = \frac{\Delta}{\delta} = 8 \frac{d \tau_H}{t_u}.$$
 (13)

Из (13) видно, что коррекция более эффективна при меньшем t_u и больших d и τ_{μ} . Например, при $d = 1,5, \frac{t_u}{\tau_n} = 1, \frac{\tau_{\mu}}{\tau_n} = 0,9$ (см. рис. 3) $\sigma_{\kappa} = 10,8, a$ при $d = 0,75, \frac{t_u}{\tau_n} = 1, \frac{\tau_{\mu}}{\tau_n} = 0,65$ $\sigma_{\kappa} = 3,9.$

Эксперимент

Для проверки теоретических результатов был проведен эксперимент. Схема экспериментальной установки приведена на рис. 5. Смещение на базу и коллектор триодов усилителя подавались от отдельных источников E_{δ} и E_{κ} , для того, чтобы имелась возможность не-

Рис. 5. Схема экспериментальной установки. Параметры схемы: $R = 10 \ \kappa o M$, $R_{\delta_1} = 130 \ \kappa o M$, $R_{\delta_2} = 75 \ \kappa o M$, $R_1 = 12 \ \kappa o M$, $R_e = 680 \ o M$, $C_1 = 50 \ M \kappa c$, $E_{6cp} = 4 \ s$, $E_{kcp} = 10 \ s$.

зависимого изменения напряжений.

От генератора прямоугольных импульсов ГИП-1 на базу первого каскада усилителя через сопротивление R = 10 ком подавались импульсы со скважностью $\tilde{Q} = 2$ и длитель-ностью $t_u = 8$ мсек. С усилителя импульсы поступали на осциллограф ЭО - 7. При определенных R_{BX} , C_n , κ_1 и *d* подбиралась емкость С_{фк}, обеспечивающая выполнение условия коррекции, и

измерялась величина искажения вершины. Результаты, полученные расчетным и экспериментальным путем, приведены в табл. 1. Как видно из таблицы, расхождение между расчетом и экспериментом незначительное.

Входное сопротивление второго каскада R_{ex} изменялось путем изменения сопротивления R_{e} . При этом измерение R_{ex} осуществлялось следующим образом.

Подключалось определенное сопротивление R₁ и измерялось импульсное напряжение на базе триода при разомкнутой цепи эмиттера. Затем цепь эмиттера замыкалась и путем изменения Re добивались уменьшения напряжения на базе триода в два раза по сравнению с напряжением при разомкнутой цепи. При этом $R_{\theta x} = R_1$.

Емкость С₁ предназначена для того, чтобы не изменялся режим триода по постоянному току при подключении R₁.

При увеличении Еб наблюдался некоторый спад вершины импульса, очевидно за счет уменьшения R_{gx} . При наличии сопротивления R_e (даже порядка 100 ом) за счет противосвязи нарушение условий коррекции значительно уменьшалось как при замене триодов, так

и при изменении E_{σ} . При изменении E_{κ} условия коррекции заметно не нарушались, очевидно, потому, что изменение U_к мало влияет на входное сопротивление триода.

Порядок инженерного расчета параметров коррекции

Расчет по графикам

1. По известным величинам k₁, d и в по графикам рис. 4 определяем допустимую величину $\frac{t_u}{\tau} = l_1$.

Таблица 1

R _{вх} , ком	Сп, мкф	κ_1	d	Расчет		Эксперимент		Расчет	Экспе- римент
				δ, %	Сфк, мкф	Сфк, мкф	δ, %	Δ, %	Δ, %
	10	0,25	1,0	7,0	35,2	33	8,0	60	60
			10	0,6	39,6	40	0		
1		2,0	0,5	_	нет коррекции	3,0	14	2 6,5	22,5
			1,0	3,0	4,4	4,0	5,0		
			4,0	0,55	4,8	5,0	0		
		0,1	0,5	7,5	25	23	8,0	47	40
			1,0	3,3	28,5	25	5,0		
5	3		10	0,35	29,6	28	0		
		1,0	0,5	4,3	2,4	2,0	5,0	26,0	2 2,5
			1,0	1,9	2,8	2,5	0		
10	1	0,1	0,5		нет коррекции	нет коррекции		68	65
			1,0	8,3	8 ,8	8,0	10		
			10	0,8	9,6	9,0	0		
		0,25	1,0	7,0	35,2	33	8,0	60	60
			10	0,6	39,6	40	0		
		0,5	0,5		нет кор ре кции	0,5	20	52	45
			1,0	6,0	1,6	1,5	7,0		

2. Вычисляем необходимую величину переходной емкости $C_n = \frac{\tau_n}{R_1} = \frac{t_u}{l_1 R_1}$ и берем ближайший больший номинал $C_{n\mu}$. 3. Определяем действительное отношение $\frac{t_u}{\tau_n} = \frac{t_u}{R_1 C_{n\mu}} = l_{1\mu}$.

4. По графикам рис. 3 для известных $\frac{t_u}{\tau}$, d и κ_1 находим отно-

шение
$$\frac{\tau_H}{\tau_n} = l_2$$
.

5. Вычисляем величину емкости Сфк, обеспечивающей условие коррекции $C_{\phi\kappa} = \frac{\tau_{\mu}}{R_{\mu}} = -\frac{l_2 \tau_n}{R_{\mu}}$, и берем ближайший номинал $C_{\phi\kappa}$. Если

 $C_{\phi_{H}}$ значительно отличается от $C_{\phi_{K}}$, то желательно несколько изменить R_{ϕ} (т. е. d) так, чтобы $C_{\phi_{H}} \approx C_{\phi_{K}}$, или в остальных каскадах усилителя при выборе $C_{\phi_{H}}$ учесть перекоррекцию (соответственно недокоррекцию) в этом каскаде.

Аналитический расчет

При $\frac{t_v}{\tau} \leqslant d$ пользоваться графиками для определения параметров коррекции нет необходимости. Порядок расчета при этом следующий.

1. По известным κ_1 , d, и δ ($^{0}/_{0}$) определяем отношение

$$\frac{t_u}{\tau_n} = \sqrt{\frac{(1+\kappa_1)\,\delta\cdot d}{12,5}} = l_1. \tag{14}$$

Формула (14) получается при совместном решении (7a) и (11) Если l_1 получится больше величины d, то аналитическим расчетом пользоваться не желательно из-за большой погрешности.

2. Из (14) вычисляем $C_n = \frac{\tau_H}{R_1} = \frac{t_u}{l_1 R_1}$ и берем ближайший больший номинал С_{пн}.

3. Определяем действительное отношение $\frac{t_u}{\tau_n} = \frac{t_u}{R_1 C_{nH}} = l_{1H}$.

4. Находим величину $\frac{\tau_{H}}{\tau_{n}}$ по формуле (7*a*). В дальнейшем по-

ступаем как в пункте 5 расчета по графикам.

Выводы

1. Анализ графиков рис. З показывает, что для обеспечения большей стабильности коррекции при изменении т_п необходимо брать меньшие k_1 и большие d, а при изменении τ_{H} -наоборот.

Поскольку наиболее нестабильной величиной является т_п (вследствие значительного изменения R_{вх} с температурой), желательно выбирать большие d и меньшие к₁, кроме того, целесообразно стабилизировать $R_{\theta x}$ [2].

2. Изменение искажений в от каких-либо факторов менее заметно при больших κ_1 и d (рис. 4).

3. Эффект, достигаемый коррекцией, тем больше, чем больше d и τ_{H} и меньше t_{u} (см. (13)).

4. Искажения вершины импульса некритичны к изменению напряжения на коллекторе триода.

ЛИТЕРАТУРА

1. Лурье О.Б., Усилители видеочастоты, Советское радио, 1955.

2. Пустынский И. Н., О коррекции искажений плоской вершины импульса. в видеоусилителях на плоскостных полупроводниковых триодах (статья помещенав этом сборнике).