- Овчинников В.В., Голобородский Б.Ю., Гущина Н.В., Чемеринская Л.С., Семенкин В.А., Wieser E., Möler W. Investigation of effect of irradiation with gaseous and metallic ions on atomic structure of alloy Fe+15 at % Cr // Труды VI Междунар. конф. по модификации материалов пучками частиц и плазменными потоками. – Томск, 23–28 сентября 2002 г. – Томск, 2002. – С. 212–216.
- Овчинников В.В., Голобородский Б., Гущина Н.В., Чемеринская Л.С., Семенкин, В.А. Изучение радиационно-динамических эффектов в сплаве Fe+8,25 ат. % Мп при комбинированном электромагнитном и ионном облучении // Радиационная физика твердого тела: Труды XIII Междунар. совещ. – Севастополь, М.: НИИ ПМТ МГИЭМ (ТУ), 2003. – С. 587–591.
- Чемеринская Л.С., Махинько Ф.Ф., Гущина Н.В., Овчинников В.В., Сачков И.Н., Eichhorn F., Wieser E. Структурные изменения в объеме сплава Рd₄₀Сu₅₀ при ионном (Cu⁺) облучении // Радиационно-термические эффекты и процессы в неорганических материалах: Труды IV Междунар. научной конф. – Томск, 12–19 августа 2004. – Томск, 2004. – С. 278–281.

- Крейндель Ю.Е. В кн.: Разработка и применение источников интенсивных электронных пучков. – Новосибирск: Наука, 1976. – С. 113–129.
- Золотаревский В.С. Механические свойства металлов. М.: Металлургия, 1983. – 352 с.
- Булычев С.И., Алехин В.П. Испытание материалов непрерывным вдавливанием индентора. М.: Машиностроение, 1990. 223 с.
- Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. – М.: Изд-во МИСИС, 1994. – 328 с.
- Металловедение алюминия и его сплавов / Под ред. И.Н. Фриндлендера. – М.: Металлургия, 1983. – 112 с.
- Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов. – М.: Изд-во МИСИС, 1999. – 416 с.

УДК 539.12.04

ИЗМЕНЕНИЕ ДИСЛОКАЦИОННОЙ СТРУКТУРЫ И ФАЗОВОГО СОСТАВА СПЛАВА АМГ6 ПРИ ОБЛУЧЕНИИ ИОНАМИ АГ⁺ С ЭНЕРГИЕЙ 40 кэВ

А.Р. Школьников*, В.В. Овчинников, Н.В. Гущина, Ф.Ф. Махинько, Л.С. Чемеринская, С.М. Можаровский*, В.А. Козловских*, Л.И. Кайгородова**

> Институт электрофизики, УрО РАН. г. Екатеринбург *Каменск-Уральский металлургический завод. г. Каменск-Уральский **Институт физики металлов, УрО РАН. г. Екатеринбург E-mail: vladimir@iep.uran.ru

Методом электронной микроскопии установлено, что облучение ионами Ar⁺ с энергией 40 кэВ плакированных (с защитными поверхностными слоями Al ~130 мкм) образцов 15×15×3 мм³ промышленного алюминиевого сплава AMr6, после холодной прокатки, приводит к заметному сужению границ внутризеренной ячеистой дислокационной структуры и повышению степени ее регулярности. При воздействии ускоренных ионов непосредственно на сплав, после снятия плакирующего слоя, в нем формируется развитая полигональная структура, подобная образующейся на начальных стадиях рекристаллизационного отжига. Облучение ионами Ar⁺ приводит, кроме того, к измельчению и растворению грубых интерметаллидов кристаллизационного происхождения, которые не устраняются как деформацией, так и отжигом при 320 °C. Все обнаруженные изменения наблюдаются в поперечном сечении по всей глубине образцов, многократно (примерно в 10° раз) превышающей проективные пробеги

ются в поперечном сечении по всей глубине образцов, многократно (примерно в 10° раз) превышающей проективные пробеги ионов. Низкие температуры (<170 °C) и дозы облучения, начиная с 0,6 10° см⁻² (время облучения – 1 с), а также большая глубина воздействия свидетельствуют о существенной роли радиационно-динамических эффектов

Роль алюминиевых сплавов в качестве конструкционных материалов современной техники постоянно возрастает, это касается практически всех отраслей промышленности, в том числе направлений, связанных с развитием энергосберегающих и других наукоемких технологий, а также решением экологических проблем [1, 2]. В последнее время, кроме высоких требований к статической прочности, коррозионной стойкости, трещиностойкости, высокой стабильности свойств алюминиевых сплавов, жесткие требования предъявляются к стоимости полуфабрикатов, а также к уровню производственных затрат [1]. Это стимулирует разработку принципиально новых алюминиевых сплавов и технологий их обработки.

Для улучшения физико-механических свойств сплавов на основе алюминия помимо хорошо известных методов, таких как пластическая деформация, термическая и термомеханическая обработка, все чаще предлагаются новые нетрадиционные методы внешнего воздействия. Некоторые виды воздействия позволяют влиять на распад пересыщенного твердого раствора, формировать особую дефектную структуру, состояние межфазных границ и т.д. Это может быть высокое статическое давление, закалка из жидкого состояния, ультразвуковая деформация [3] или использование концентрированных потоков энергии, включая потоки плазмы, СВЧ-излучения, пучков заряженных частиц (в частности, ионных пучков) [4–6].

Как показали исследования последних десятилетий, использование ионных пучков является одним из наиболее перспективных направлений современной технологии обработки материалов. Структурное состояние и физические свойства веществ, подвергнутых ионно-лучевому воздействию, существенно отличаются от соответствующего состояния и свойств веществ после обычной термической обработки или других традиционных видов воздействия [7–9]. В ряде случаев удается получить уникальные электрические, магнитные и механические, трибологические, контактно-химические и др. свойства материалов [8, 9].

В ряде работ [10–12] для модификации свойств промышленных алюминиевых сплавов использована высокоэнергетическая ионная имплантация ($E \ge 10 \text{ М} \Rightarrow \text{B}$). Интерес к ней обусловлен совершенно необычными возможностями воздействия на структуру и, соответственно, физико-механические свойства металлов и сплавов.

В частности, вследствие передачи энергии в электронную подсистему (и последующей ее перекачки в атомную подсистему), происходит быстрый разогрев микроскопических объемов материала вокруг треков высокоэнергетических ионов, вплоть до $T > T_{плавл}$ с последующей сверхбыстрой закалкой, что способствует образованию дефектов, протеканию фазовых превращений и др. процессов.

В работах [10, 11] исследовалось влияние высокоэнергетической имплантации ионов неона на структуру и свойства алюминиевых сплавов. Было показано, что в термически неупрочняемых сплавах АМг2 и АМц происходит радиационно-индуцированное упрочнение, обусловленное увеличением угла разориентации блоков вплоть до трансформации структуры в мелкозернистую. Изменение прочностных характеристик стареющих сплавов Д16, АК-4 контролируются как процессами динамического возврата во время имплантации, так и радиационно-стимулированными процессами фазового старения. Дозовая зависимость прочностных свойств этих сплавов имеет немонотонный характер и первоначальное разупрочнение имплантированных сплавов, связанное с полигонизацией или рекристаллизацией, при последующем росте дозы имплантации сменяется значительным упрочнением в результате появления мелкодисперсных выделений упрочняющих фаз.

Благодаря большой величине пробега высокоэнергетических ионов с энергией десятки и сотни МэВ в веществе, толщина модифицированного слоя достигает нескольких десятков микрометров. Следует, однако, отметить, что высокая энергоемкость, сложность, большие размеры ускорителей, повышенные требования к радиационной безопасности создают крайне серьезные проблемы в отношении возможностей промышленного использования высокоэнергетической ионной имплантации с целью обработки конструкционных материалов. Установки для высокоэнергетической ионной имплантации применяются, как правило, лишь в технологических процессах микроэлектронной промышленности, где можно ограничиться низкими и средними плотностями ионного тока и ионными пучками малого сечения при относительно низких дозах облучения ($D=10^9...10^{16}$ см⁻²) [6].

В силу отмеченных технических сложностей, основой, так называемой, имплантационной металлургии [6] являются установки, позволяющие получать мощные пучки ионов низких и средних энергий (как правило, в диапазоне 10...100 кэВ) для имплантации высоких доз ионов (10¹⁶...10¹⁸ см⁻²) с целью модификации свойств конструкционных материалов. В связи с этим в свете возможных практических приложений, особый интерес представляют исследования изменений структуры и свойств промышленных алюминиевых сплавов при имплантации ионов средних и низких энергий. К сожалению, число таких исследований, особенно на массивных образцах промышленных сплавов крайне ограничено.

В работах [13, 14] при имплантации ионов Sb и В с энергиями 20...100 кэВ наблюдалось разупрочнение стареющих сплавов алюминия, при этом с ростом дозы имплантации этот эффект усиливался.

Авторами настоящей работы была начата серия исследований процессов распада в твердых растворах Al-Cu, результаты которых частично опубликованы [15, 16]. Было установлено, что облучение газовыми (Ar⁺) и металлическими (Al⁺, Cu⁺) ионами низких и средних энергий (дозы облучения от 2·10¹⁵ до 2·10¹⁸ см⁻²) пересыщенного твердого раствора сплава Al + 4 мас. % Cu [15], вызывает его распад с выделением частиц вторых фаз (θ', θ) при низких температурах <60 °С (при которых в отсутствие облучения протекает лишь зонная стадия старения). При этом глубина, на которой происходит выделение фаз, многократно превышает глубину проникновения ионов в этот сплав. На несколько порядков возрастает скорость старения (по сравнению с обычным термостимулированным старением даже при более высоких температурах ~ 200 °C).

В настоящей работе в качестве объекта исследования был выбран сплав АМг6 системы алюминиймагний, относящийся к группе сплавов, не упрочняемых термообработкой, несмотря на сильную температурную зависимость предельной растворимости магния в алюминии [15].

Ценность сплавов системы Al-Mg определяется сочетанием удовлетворительной прочности, высокой пластичности, очень хорошей коррозионной стойкости и свариваемости. Указанные характеристики позволяют успешно использовать эти сплавы в качестве конструкционного материала в строительстве, транспортном машиностроении и многих других отраслях промышленности, а также в военной технике [2, 18].

Особенно важное значение имеет сплав АМг6, наиболее прочный из числа термически неупрочняемых алюминиевых сплавов [2]. Недостатком же сплавов системы Al-Mg является относительно низкий предел текучести. Чтобы повысить его, сплавы AMr5 и AMr6 подвергают холодной деформации на 20...30 % [15]. Холодная нагартовка – основной способ повышения механических свойств этих сплавов [19].

Материалы и методика эксперимента

Исследовались образцы сплава АМг6, размером 1,5×1,5 см², вырезанные из плакированных листов толщиной 3 мм — продукции Каменск-Уральского металлургического завода. Химический состав сплава приведен в табл. 1.

Таблица 1. Химический состав сплава АМгб

Содержание компонента, %								
Mg	Mn	Si	Fe	Cu	Zn	Ti	Li	Al
6,4	0,69	0,1	0,1	<0,1	<0,1	0,04	0,0008	OCH.

Было изучено изменение структуры нагартованного сплава АМг6 под воздействием пучков ускоренных ионов Ar⁺ с энергией 40 кэВ при плотностях ионного тока j=100, 200, 300 и 400 мкA/см² и дозах облучения 10^{15} и 10^{16} см⁻².

Облучение непрерывными пучками ионов Ar⁺ проводилось на установке для ионно-лучевой имплантации ПУЛЬСАР, оснащенной ионным источником на основе тлеющего разряда с холодным полым катодом [20], разработанным в Институте электрофизики УрО РАН. Режимы обработки образцов сплава АМг6 толщиной 3 мм (с плакирующими слоями алюминия), а также образцов толщиной 1 мм без плакировки¹ приведены в табл. 2.

Контроль температуры мишени в ходе облучения осуществлялся с помощью термопары. Температура образцов не превышала 170 °С (табл. 2).

Значения плотности ионного тока и дозы облучения варьировали так, чтобы образцы в ходе имплантации существенно не нагревались, и была бы, соответственно, сведена к минимуму роль термостимулированных процессов. При облучении образца без плакировки толщиной 1 мм плотность ионного тока была наименьшей, чтобы избежать его сильного нагрева.

Электронно-микроскопическое исследование методом тонких фольг осуществляли на просвечивающем электронном микроскопе JEM-200 CX. Структура облученных образцов анализировалась в двух сечениях — параллельном и перпендикулярном поверхности образца.

Таблица 2.	Параметры	облучения	образцов	нагартованного			
сплава АМг6 при энергии ионов 40 кэВ							

	Плотность	Доза. D.	Время	Температу-
Образцы	ионного тока,	(αu^2)	облуче-	ра образ-
	<i>j</i> , мкА/см²	ион/см	ния, <i>t</i> , c,	ца, <i>T</i> , °C
	400	2,5·10 ¹⁵	1	<140
Плакированные	200	1·10 ¹⁶	8	<170
	300	1·10 ¹⁶	5	<170
Без плакировки	100	0,6.1015	1	<100

Фольги изготавливали из массивных образцов: на электроискровом станке вырезали пластинки толщиной 0,3 мм, параллельные поверхности образца (со стороны облучаемой поверхности, при этом плакирующий слой снимался), а также перпендикулярные этой поверхности. Далее их механически утоняли на наждачной бумаге до толщины 0,1 мм. Окончательное утонение образцов до толщины, пригодной для просвечивания пучком электронов (~0,1 мкм) осуществляли электролитически при напряжении 20...40 В в хлорно-уксусном электролите 23 % HClO₄ и 77 % CH₃COOH. Температура электролита не превышала 5 °C.

Результаты эксперимента и их обсуждение

На электронно-микроскопических снимках исходного нагартованного сплава АМгб наблюдается развитая ячеистая структура с широкими границами между отдельными ячейками (рис. 1, *a*). Этими границами являются плотные сплетения дислокаций. Рис. 1, δ , демонстрирует дислокационную структуру границ ячеек. Ширина границ соизмерима со свободными от дислокаций центральными областями. Видно, что ячейки имеют равноосную или вытянутую форму. Диаметр равноосных ячеек составляет 1...2 мкм.

¹Плакирующие слои удалялись электроискровым методом

В сплаве присутствует большое количество интерметаллидов округлой или эллипсоидальной формы со средним диаметром ~0,5...1 мкм (рис. 1, e). На основании расчета соответствующих электронограмм, одна из которых приведена на рис. 1, e, удалось установить, что интерметаллиды имеют состав Al₆(Fe, Mn).

Отжиг нагартованного сплава АМг6 при температурах 310...325 °С в течение 2 ч приводит к формированию равномерной рекристаллизованной структуры. Равновесные тройные стыки рекристаллизованных зерен приведены на рис. 2, а. Диаметр зерен превышает 10 мкм. Внутри зерен наблюдается высокая плотность дислокаций.

На рис. 2, *a*, видно, что в отожженном сплаве сохраняется большое количество интерметаллидов, которые наблюдались в исходном состоянии после холодной деформации. Согласно расчету электронограмм (рис. 2, *в*), они имеют тот же состав: Al_6 (Fe, Mn). Темнопольное изображение интерметаллидов в рефлексе фазы приведено на рис. 2, *б*.

Рис. 2. Микроструктура отожженного сплава АМг6: а) изображение тройных стыков рекристаллизованных зерен; ×15000; б) темнопольное изображение интерметаллидов АІ₆(Fe, Mn); ×75000; в) электронограмма, отмечены рефлексы от интерметаллидов АІ₆(Fe, Mn)

Исследование параллельного облучаемой поверхности сечения образцов, облученных дозой $2,5 \cdot 10^{15} \, \text{сm}^{-2} \, \text{с}$ плотностью ионного тока 400 мкА/см² показало, что после облучения в сплаве наблюдается хорошо развитая ячеистая структура, в целом, подобная той, которая характерна для деформированного состояния. Однако детальное сопоставление структур облученного и деформированного образцов позволяет сделать вывод о том, что в результате облучения в сплаве произошла хорошо наблюдаемая трансформация ячеистой структуры. Это проявляется, главным образом, в том, что она стала более регулярной (рис. 3, a), и, кроме того, произошло сужение границ ячеек (их средняя ширина составляет ~0,3 мкм), заметно увеличился диаметр свободных от дислокаций центральных областей ячеек, который колеблется в интервале 1,5...3 мкм. Установлено также, что в облученном сплаве уменьшилось количество интерметаллидов кристаллизационного происхождения, которые были замечены в нем после деформации и отжига. Диаметр интерметаллидов преимущественно составляет 0,1...0,2 мкм (рис. 3, δ). Незначительное количество интерметаллидов длиной до 0,4 мкм сохранилось только в отдельных участках образца. На основании анализа электронограмм, одна из которых приведена на рис. 3, θ , установили, что интерметаллиды имеют состав Al₆(Fe, Mn).

После облучения более высокой дозой (10^{16} см⁻²) при плотности ионного тока 200 мкА/см² в сплаве наблюдается неравномерная ячеистая структура (рис. 4, *a*, *б*). На представленных рисунках видно, что ячейки имеют как равноосную, так и вытянутую форму. Диаметр свободных от дислокаций центральных областей ячеек составляет 1...2 мкм. Ширина их границ колеблется в интервале от 0,2 до 1 мкм и более.

В облученных образцах зарегистрировано наличие интерметаллидов Al₆(Fe, Mn), но, как показал качественный анализ, их становится меньше, чем в деформированном и отожженном состояниях. Средний диаметр интерметаллидов составляет 0,1...0,5 мкм.

На поперечном сечении в областях, прилегающих к облученной поверхности, обнаружена равноосная ячеистая структура (рис. 4, e). Средний диаметр свободных от дислокаций центральных областей ячеек достигает 2 мкм. Ширина границ ячеек, являющихся очень плотными сплетениями дислокаций, составляет 0,3...0,5 мкм. По мере удаления от облученной поверхности начинают выявляться полосы скольжения (рис. 5, e). В центральной части образца их ширина достигает 0,7 мкм (рис. 5, d). При приближении к необлученной поверхности происходит сужение полос до 0,3 мкм. На представленных рисунках видно, что внутри полос присутствуют сплетения дислокаций, которые разбивают их на отдельные блоки.

После облучения нагартованного сплава АМгб дозой 10^{16} см⁻², но с более высокой плотностью ионного тока (300 мкА/см²) в нем сохраняется ячеистая структура (рис. 5, *a*), но она становится более равномерной — хорошо сформированные ячейки наблюдаются практически во всем объеме образца. Средняя ширина свободных от дислокаций областей достигает 2 мкм при ширине границ не более 0,5 мкм. Основным отличием наблюдаемой структуры от структуры сплава после облучения с более низкой плотностью ионного тока (200 мкА/см²) является уменьшение количества интерметаллидов. В ряде областей они вообще не были обнаружены.

В поперечном сечении образца наблюдается ячеистая структура с вытянутыми ячейками (рис. 5, *б*). Полосы скольжения четко не выявляются. Такая структура сохраняется по всей глубине образца.

Таким образом, установлено, что облучение сплава АМг6 с использованием различных режимов не приводит к принципиальному изменению его дислокационной структуры по сравнению с характерной для деформированного состояния. Обнаружена лишь ее заметная трансформация после облучении дозой 10¹⁶ ион/см² с плотностью ионного тока до 300 мкА/см².

Рис. 4. Изображение ячеистой структуры в образце сплава АМГ6, облученного ионами Ar⁺ с E=40 кэВ, j=200 мкА/см², D=10¹⁶ ион/см²; а, б) сечение, параллельное облучаемой поверхности; ×30000; в, д) поперечное сечение; ×15000: в) вблизи облучаемой поверхности; г) в центральной части образца; д) вблизи необлученной поверхности.

Чтобы оценить, как зависит эффект воздействия от наличия плакирующего слоя, было проведено облучение образцов толщиной 1 мм после того, как этот слой был снят электроискровым методом. Параметры облучения выбирались так, чтобы температура образца в ходе облучения не превышала температуры, зарегистрированной в предыдущих экспериментах.

Рис. 5. Изображение ячеистой структуры образца сплава АМГ6, облученного ионами Аr⁺, E=40 кэВ, j=300 мкА/см², D=10[™] ион/см², a) сечение, параллельное облучаемой поверхности; ×30000; б) поперечное сечение; ×30000

Рис. 6. Изображение субзёренной структуры образца сплава АМг6, облученного ионами Ar+ без плакированного слоя, E=40 кэВ, j=100 мкА/см², D=0,6·10¹⁵ см²; ×30000

Облучение нагартованного образца после удаления с него плакирующего слоя дозой $0,6\cdot10^{15}$ см⁻² (время облучения 1 с) при плотности ионного тока 100 мкА/см² вызвало образование в нем развитой субзеренной структуры. Средний размер субзерен составил 0,5...2 мкм (рис. 6, *a*, *б*). Внутри субзерен обнаружены сплетения дислокаций.

Таким образом, при воздействии ускоренных ионов на нагартованный сплав без плакирующего слоя в нем сформировалась полигональная структура, подобная образующейся на начальных стадиях рекристаллизационного отжига. Другим различием структурных состояний сплава AMr6, формирующихся после отжига и после облучения ускоренными ионами Ar⁺ (при удаленном плакирующем слое), является отсутствие в облученном сплаве грубых интерметаллидов Al₆(Fe, Mn) кристаллизационного происхождения. Это можно видеть на представленных рисунках.

Полученные данные свидетельствуют о том, что плакирующий слой заметно уменьшает действие облучения на структуру сплава АМг6, но не подавляет его полностью.

Интересным является тот факт, что при имплантации ионов Ar⁺ вышеуказанной энергии уже при низких дозах облучения, начиная с 10^{15} см⁻² (время облучения 1 с), происходит растворение интерметаллидов Al₆(Mn, Fe) кристаллизационного происхождения на глубине, в десятки тысяч раз превышающей проективные пробеги ионов (расчетная величина проективного пробега ионов Ar⁺ с энергией 40 кэВ в сплаве AMr6 составляет 40 нм).

Известно, что наиболее сильное влияние на свойства термически неупрочняемых сплавов оказывают интерметаллиды кристаллизационного происхождения, которые образуют атомы элементов, вводимых с целью модификации литой структуры и повышения температуры рекристаллизации [2]. К ним относятся железосодержащие интерметаллиды с примесями дополнительных элементов, которые практически нерастворимы в алюминии. Такие фазы, особенно Al₆(Mn, Fe), кристаллизуются в виде грубых пластин и отрицательно влияют на свойства сплавов, в частности, снижают их пластичность [2]. Авторы работы [21] пришли к выводу, что уменьшение плотности таких интерметаллидов после гомогенизации способствует возрастанию показателя пластичности сплава АМг6 примерно в 2 раза.

В работе [22] с помощью метода электронной микроскопии было установлено, что после стандартного режима гомогенизационного отжига при 500 °C, 12 ч, в сплаве 5083 (сплав системы Al-Mg с 4,6 % Mg) присутствуют различные интерметаллиды кристаллизационного происхождения, в том числе Al₆(Mn, Fe) в форме плоских игл. Повышение температуры отжига от 500 до 535 °C способствует растворению таких фаз, как Al₁₈Cr₂Mg₃ и Mg₂Si, тогда как для интерметаллидов Al₆(Mn, Fe) характерно лишь изменение исходной морфологии: часть частиц приобретает преимущественно равноосную или близкую к ней форму. При этом общая плотность интерметаллидов сохраняется неизменной.

Растворение грубых частиц интерметаллидов $Al_{18}Cr_2Mg_3$ и Mg_2Si происходит также и в процессе горячей деформации. В то же время, деформация не приводит к растворению частиц $Al_6(Mn, Fe)$, а лишь способствует некоторому их измельчению.

Данные, полученные в настоящей работе, свидетельствуют о том, что растворение интерметаллидов Al₆(Mn, Fe) происходит при облучении ионами Ar⁺ (40 кэВ) в течение 1 и 10 с, при этом температура образцов не превышает 170 °C.

Необходимо отметить, что трансформация ячеистой структуры, проявляющаяся в сужении границ ячеек и увеличении диаметра их центральных областей, свободных от дислокаций, а также измельчение и растворение интерметаллидов Al₆(Mn, Fe) в исследуемом сплаве в результате облучения ускоренными ионами происходит не только в поверхностном слое, но и на глубине 2...3 мм, на несколько порядков величины превышающей проективные пробеги ионов. Попытки теоретического объяснения аномально большой глубины воздействия пучков ионов низких и средних энергий на структуру и свойства метастабильных сред, т.е. сред с высокой запасенной энергией, предпринята в работе [24, 25].

Растворение интерметаллидов ранее наблюдалось только при облучении высокоэнергетическими ионами. Так в работе [12] установлено, что облучение высокоэнергетическими ионами криптона сплава Д16 в состаренном состоянии приводит к частичному растворению метастабильных выделений, что увеличивает их дисперсность, и последующему достариванию сплава. Эффект диспергирования упрочняющих фаз наблюдался также при облучении ионами ксенона с энергией 10 МэВ сплава CuAl₂₅, содержащего 0,25 вес. % мелкодисперсных включений Al₂O₃ [23].

Заключение

Установлено, что облучение нагартованного плакированного сплава АМг6 ионами аргона (Е=40 кэВ, $D=2,5\cdot10^{15}$ и 10^{16} см⁻², j=200...400 мкА/см²) не приводит к принципиальному изменению его структуры по сравнению с существующей в деформированном состоянии: сохраняется ячеистая дислокационная структура. Наблюдается лишь частичная трансформация структуры, проявляющаяся в сужении границ ячеек и увеличении диаметра их центральных областей, свободных от дислокаций. С увеличением плотности ионного тока и дозы облучения ячеистая структура становится более регулярной – хорошо сформированные ячейки наблюдаются практически во всем объеме образца. Средняя ширина свободных от дислокаций областей достигает 2 мкм при ширине границ не более 0,5 мкм.

Воздействие ускоренных ионов Ar⁺ (E=40 кэВ, *j*=100 мкА/см²) на сплав без плакирующего слоя уже при дозе 0,6·10¹⁵ см⁻² (время облучения 1 с) приводит к формированию в исходно деформированном сплаве развитой субзеренной структуры. Средний размер субзерен, внутри которых наблюдаются сплетения дислокаций, колеблется в интервале 0,5...2 мкм. Иначе говоря, в сплаве формируется полигональная структура, подобная образующейся на начальных стадиях рекристаллизационного отжига.

Приведенные факты свидетельствуют о том, что плакирующий слой уменьшает воздействие облучения на структуру сплава АМг6, но не подавляет его полностью.

Установлено, что при облучении ионами Ar⁺ сплава AMr6, как с плакирующим слоем, так и без него, в нем происходит измельчение и растворение грубых интерметаллидов Al₆(Fe, Mn) кристаллизационного происхождения, которые наблюдаются в исходном деформированном состоянии и не устраняются обычным отжигом.

Анализ поперечного сечения образцов показал, что трансформация ячеистой структуры, а также измельчение и растворение интерметаллидов Al₆(Mn, Fe) при облучении происходит не только в тонком приповерхностном слое сплава AMr6, т.е. в зоне внедрения ионов и ее ближайшей окрестности, но и на глубине, существенно превышающей проективные пробеги ионов. Если при облучении дозой 10^{16} см⁻² с плотностью ионного тока 200 мкA/см² структура по глубине образца изменяется неравномерно, то при увеличении плотности ионного тока до 300 мкA/см² хорошо сформированные ячейки наблюдаются по всей глубине образца (~3 мм). Полученные результаты свидетельствуют о том, что при выборе тех или иных параметров облучения можно различным способом воздействовать на структуру сплава: дислокационную, субзеренную, а также на его фазовый состав, что открывает новые возможности воздействия на служебные свойства алюминиевых сплавов — такие как прочность, пластичность, коррозионная стойкость и др. Формируемые при этом состояния и свойства материала в ряде случаев принципиально не могут быть получены при помощи традиционных методов обработки.

Проведенные в настоящей работе исследования, а также и другие работы [8, 9] показывают, что низко- и среднеэнергетическая ионная имплантация, так же как и высокоэнергетическая, приводит к модификации субмиллиметровых приповерхностных слоев материалов (при пробегах ионов,

СПИСОК ЛИТЕРАТУРЫ

- Давыдов В.Г. О некоторых актуальных проблемах разработки алюминиевых сплавов и технологий для авиакосмического применения // Известия вузов. Цветная металлургия. – 2001. – № 4. – С. 32–36.
- Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов. – М.: МИСИС, 2001. – 416 с.
- Фридляндер И.Н., Чуистов К.В., Березина А.Л., Колобнев Н.И. В кн.: Алюминий-литиевые сплавы. Структура и свойства. – Киев: Наукова думка, 1992. – 192 с.
- Модифицирование и легирование поверхности лазерными, ионными и электронными пучками. / Под ред. Дж.М. Поута и др. – М.: Машиностроение, 1987. – 424 с.
- Риссел Х., Руге И. Ионная имплантация / Под ред. М.И. Гусевой. – М.: Наука, 1983. – 360 с.
- Диденко А.Н., Шаркеев Ю.П., Козлов Э.В., Рябчиков А.И. Эффекты дальнодействия в ионно-имплантированных металлических материалах. – Томск: Изд-во НТЛ, 2004. – 328 с.
- Kreindel Yu.E., Ovchinnikov V.V. Structural Transformations and Long-Range Effects in Alloys Caused by Gas Ion Bombardment // Vacuum. – 1990. – V. 42. – № 1–2. – P. 81–83.
- Ovchinnikov V.V., Chernoborodov V.I., Ignatenko Yu.G. Cnange of electrical properties of alloys and excitation of low-temperature atom mobility by ion bombardment // Nucl. Instrum. and Meth. in Phys. Res. B – 1995. – V. 103. – C. 313–317.
- Goloborodsky B.Yu., Ovchinnikov V.V., Semenkin V.A. Long range effects in FePd₂Au Alloy under Ion Bombardment // Fusion Technology. – 2001. – V. 39. – № 5. – P. 1217–1228.
- Анищик В.М., Жукова С.И., Васильева Л.А. Эволюция микроструктуры стареющих алюминиевых сплавов при высокоэнергетической ионной имплантации // Физика и химия обработки материалов. – 1998. – № 6. – С. 9–14.
- Анищик В.М., Васильева Л.А., Жукова С.И. Влияние высокоэнергетических ионов неона на структуру сплава алюминиймарганец // Физика и химия обработки материалов. – 1998. – № 1. – С. 5–8.
- Анищик В.М., Жукова С.И., Поляк Н.И. Микротвердость сплавов системы алюминий-медь-магний, имплантированных высокоэнергетическими ионами криптона // Физика и химия обработки материалов. – 1999. – № 6. – С. 9–12.
- Goltsev V.P., Zhukova S.I. The loss of strength of Al alloy after Sb⁺ implantation // Phys. Stat. Sol. (a). – 1988. – V. 108. – P. K1–K4.

составляющих единицы и десятки нм). В особенности это относится к метастабильным средам. Но механизм модификации здесь качественно иной. Предположительно, ускоренный ион служит "спусковым крючком", освобождающим запасенную метастабильной средой энергию и порождающим самораспространяющиеся вглубь вещества процессы структурных изменений, внешне подобные явлениям горения и детонации.

Сказанное позволяет надеяться, что детальное изучение воздействия пучков ионов средних энергий на структуру и фазовый состав промышленных алюминиевых сплавов может послужить основой для разработки уникальных методов модификации их свойств. Тем более, что ионно-лучевые технологии уже позволили совершить прорыв в реализации целого ряда технических проектов.

- Жукова С.И., Анищик В.М. Эффекты ионной имплантации в сплавах алюминия // Тез. докл. XXVI Междунар. конф. по физике взаимодействия заряженных частиц с кристаллами. – М.: Изд-во Московского ун-та, 1996. – С. 95.
- Гущина Н., Овчинников В.В., Голобородский Б., Mücklich A., Wieser E. Радиационно-динамические эффекты в сплаве Al – 4 вес. % Си при ионном облучении // Труды XII Междунар. конф. по радиационной физике и химии неорганических материалов (РФХ-12). – Томск, 23–27 сентября 2003. – С. 192–195.
- Gushchina N.V., Ovchinnikov V.V., Goloborodsky B., Mücklich A., Wieser E., Farber V.M. Acceleration of Processes of Solid Solution Al – 4 wt. % Cu Volume Decomposition at Low-Dose Ion Irradiation // Proc. 7th Intern. Conf. on Modification of Materials with Particle Beams and Plasma Flows. – Tomsk, 25–30 July 2004. – P. 209–210.
- Фридляндер И.Н. Алюминиевые деформируемые конструкционные сплавы. – М.: Металлургия, 1979. – 208 с.
- Алюминий. Свойства и физическое металловедение. Справочник / Под ред. Дж.Е. Хэтча. – М.: Металлургия, 1989. – 421 с.
- Оводенко М.Б., Копнов В.И., Гречников Ф.В. Прокатка алюминиевых сплавов. – М.: Металлургия, 1992. – 270 с.
- Гаврилов Н.В., Никулин С.П., Радковский Г.В. Источник интенсивных широких пучков ионов газов на основе разряда с полым катодом в магнитном поле // Приборы и техника эксперимента. – 1996. – № 1. – С. 93–98.
- Палазова С.В. Влияние гомогенизации на структуру и свойства сплава АМг6 // Тезисы докл. научн.-техн. конференции. – Минск, 29–30 марта 1990. – С. 20.
- Кайгородова Л.И., Замятин В.М., Попов В.И. Влияние условий гомогенизации на структуру и свойства сплава Al-Mg // ФММ. – 2004. – Т. 98. – № 4. – С. 75–82.
- Kehrel A., Zhong Y., Shumacher G., Wanderka N. Mechanical properties of 10 MeV Xe³⁺ irradiated Cu and CuAl₂₅ // J. Nucl. Mater. - 1993. - V. 207. - P. 153–158.
- Ovchinnikov V.V. Self-popagating phase transformations in metastable media indused by ion bombardment // Proc. XVI Intern. Simp. on Discharges and Electrical Insulation in Vacuum. – Moscow-St.Petersburg, 1994. – SPIE – V. 2259. – P. 605–608.
- Овчинников В.В., Эркабаев М.А. Структурные фазовые переходы в метастабильных средах на фронте инициируемых ионной бомбардировкой детонационных ударных волн // Радиационная физика твердого тела: Труды VII Межнац. совещ. (Севастополь, 29 июня–4 июля 1998 г.). – М.: НИИ ПМТ при МГИЭМ(ТУ), 1998. – С. 22–24.