1968 г.

МЕТОДЫ ОЦЕНКИ ТЕПЛООБРАЗОВАНИЯ В ОБЪЕМЕ НАМАГНИЧИВАЮЩИХ ОБМОТОК БЕТАТРОНОВ

г. ф. ШИЛИН

(Представлена научным семинаром кафедры ТОТ)

Одним из основных вопросов при решении задачи распределения температуры в обмотках бетатронов является знание закона распределения тепловыделения q_v по всему объему этой обмотки, который позволит выделить самый нагруженный в тепловом отношении участок. Задача усложняется тем, что выделение тепла в намотке обусловлено не только током, протекающим в ней (активные потери в меди), но и вихревыми токами, возникающими из-за очень больших магнитных полей рассеяния в окне бетатрона [1].

Теоретически решить поставленную задачу сложно и возможно только при наличии специальных экспериментальных исследований [2]. Ниже предлагаются инженерные методы оценки тепловыделений в обмотках как действующих, так и вновь проектируемых бетатронов.

1. Тепловыделение по всему объему намотки — величина постоянная

Подобный случай имеет место в тех участках намагничивающих обмоток бетатронов, которые удалены от его полюсов [1] на довольно значительные расстояния (ближе к стойкам). В этом случае абсолютное значение тепловыделения q_v от намагничивающего тока значительно превосходит тепловыделение от вихревых токов.

Если при этом рассматриваемый участок обмотки надежно теплоизолирован, то распределение температуры в нем при разогреве будет описываться дифференциальным уравнением

$$\frac{1}{a} \frac{\partial t(\tau)}{\partial \tau} = \frac{q_v}{\lambda}$$

или

$$q_v = c \cdot \rho \frac{\partial t \left(\tau\right)}{\partial \tau},\tag{1}$$

где $a=\frac{\lambda}{c\rho}$ — коэффициент температуропроводности обмотки бе-

с и р — соответственно теплоемкость и плотность материала обмотки.

Из этого уравнения вытекает, что если из опыта замерить скорость изменения температуры по времени $\frac{\partial t(\tau)}{\partial \tau}$ на этом участве обмотки, то можно определить тепловыделение q_v в нем, по крайней мере, с достаточным приближением.

2. Тепловыделение по всему объему намотки — линейная функция температуры

Если электрическое сопротивление материала обмотки зависит от температуры, то есть

$$R_t = R_0 (1 + \gamma \cdot t)$$
, om,

где R_0 — сопротивление материала обмотки при 0°C; γ — коэффициент пропорциональности,

то в случае теплоизоляции этой обмотки нестационарное температурное поле в ней описывается системой уравнений:

$$\frac{1}{a}\frac{\partial t\left(\tau\right)}{\partial \tau} = \frac{q_{vo}\left[1 + \gamma \cdot t\left(\tau\right)\right]}{\lambda};\tag{2}$$

$$t(0) = 0. (3)$$

Решение (2) — (3) дается зависимостью [3]:

$$t(\tau) = \frac{1}{\gamma} \left[\exp\left(\frac{q_{vo} \cdot a}{\lambda} \gamma \cdot \tau\right) - 1 \right]. \tag{4}$$

Из эксперимента можно снять кривую изменения температуры во времени для исследуемого (теплоизолированного) участка обмотки. Для какого-либо фиксированного промежутка времени τ^* по этому графику можно найти соответствующее значение температуры $t^*(\tau^*)$. Подставив эти величины в (4), получим

$$q_{vo} = c \cdot \rho \cdot \frac{\ln\left[t^*\left(\tau^*\right) \cdot \gamma + 1\right]}{\gamma \cdot \tau^*}.$$
 (5)

3. Теплообразование в объеме намотки есть линейная функция от одной координаты

Рассмотрим нестационарное температурное поле в бесконечном прямоугольном брусе $2R_1 \times 2R_2$, когда его грани теплоизолированы. Внутри бруса действует источник тепла, линейно зависящий от координаты X, то есть

$$q_v = q_{vo} + \beta \cdot X.$$

Закономерность изменения и распределения температуры описывается системой уравнений:

$$\frac{\partial t(X, \text{ Fo})}{\partial \text{ Fo}} = \frac{\partial^2 t(X, \text{ Fo})}{\partial X^2} + B \cdot X + A; \tag{6}$$

$$\frac{\partial t (1, \text{ Fo})}{\partial X} = 0; \quad \frac{\partial t (0, \text{ Fo})}{\partial X} = 0; \tag{7}$$

$$t(X, 0) = 0.$$
 (8)

Решение этой системы приведено в [3]:

$$t(X, \text{ Fo}) = \text{Fo}(A + 0.5B) + \sum_{m=1}^{\infty} B \left[\frac{2\cos \mu_m X}{\mu_m^2} \cdot \frac{\cos \mu_m - 1}{\mu_m^2} \right] \times \times [1 - \exp(-\mu_m^2 \text{ Fo}].$$
(9)

Здесь:

Здесь: $t(X, \text{ Fo}) = \frac{t(X, \text{ Fo}) - t_0}{t_0} - \text{безразмерная температура;} \\ t_0 - \text{фиксированное значение температуры;} \\ \text{Fo} - \text{критерий Фурье;}$

$$A = 4R_1^2 q_{\text{vo}}/\lambda t_0$$
; $B = 4R_1^2 \beta/\lambda t_0$; $X = \frac{x}{2R_1}$; $\mu_m = m \cdot \pi_m m = 1, 2, 3...$

Для какой-либо фиксированной точки бруса с координатой X^* , учитывая 1 член ряда (m = 1), получаем:

$$t(X^*, \text{ Fo}) = \text{Fo}(A + 0.5B) + B \times [1 - \exp(-\pi^2 \text{ Fo})],$$
 (10)

где

$$x = -\frac{4\cos\pi X^*}{\pi^4}.$$

Графически зависимость (10) представлена на рис. 1 (кривая 1). При достаточно больших критериях Фурье (Fo ≥ 0,3) кривая I переходит в прямую. Если из начала координат провести прямую II,

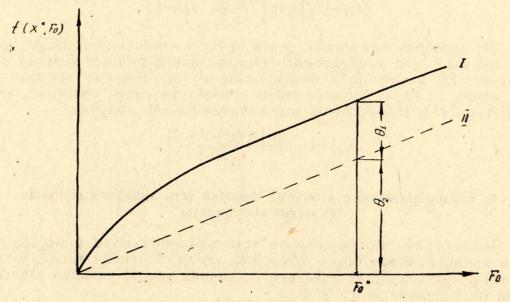
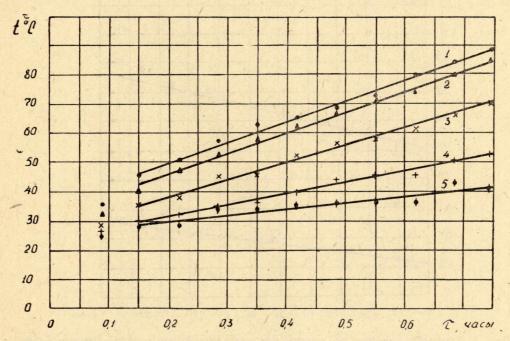


Рис. 1. К вопросу оценки теплообразования в объеме обмотки бетатрона, когда оно линейно зависит от одной координаты.

параллельную последней, то уравнение ее будет $\Theta = \text{Fo}(A + 0.5B)$. Для какого-то фиксированного Fo* > 0,3 (рис. 1) можно записать, что

 $\Theta_1 = B \cdot x \text{ if } \Theta_2 = \text{Fo}^* (A + 0.5B).$

Откуда


$$A = -\frac{\Theta_1 - 2\Theta_2 \cdot x \cdot \frac{1}{\text{Fo}^*}}{2x}, \quad B = \frac{\Theta_1}{x}. \tag{11}$$

Следовательно, определив Θ_1 и Θ_2 для фиксированного значения Fo* (рис. 1), можно по (11) определить A и B, а значит, тепловыделение как функцию от координаты X.

4. Приближенный метод оценки закона теплообразования

Как известно [4], намагничивающие обмотки бетатронов выполняются в виде спирали из прямоугольных изолированных шинок. Вертикальные ряды щинок разделяются охлаждающими каналами.

Эксперименты показали, что тепловыделение в вертикальных рядах шинок можно считать функцией только от одной вертикальной координаты x по высоте ряда. В этом случае может быть использован метод нахождения $q_v(x)$, описанный в п. 1. Для этого нужно замерять температуры стенок в нескольких точках по высоте вертикальных рядов шинок при этсутствии теплообмена с окружающей средой, то есть при закрытых охлаждающих каналах (рис. 2). Полученные кривые разгона

Рис. 2. Кривые изменения температуры по высоте вертикального ряда шинок обмотки бетатрона в точках с 1 по 5.

(рис. 2) позволяют определить для каждой из них тангенс угла наклона к оси времени, то есть

$$\left[\frac{\partial t\left(\tau\right)}{\partial \tau}\right]_{x_{i}}$$

для фиксированных координат x_i точек поверхности ряда шинок, и подсчитать тепловыделение по (1) в каждой исследуемой точке. Полученные значения тепловыделений в каждой точке наносятся на график (рис. 3), откуда находится уравнение кривой

$$q_v = f(x).$$

На рис. З нанесены результаты обработки данных теплового испытания намагничивающей обмотки бетатрона Б-25-2. Из него видно, что

тепловыделение q_v в различных ее частях по высоте изменяется практически по линейному закону.

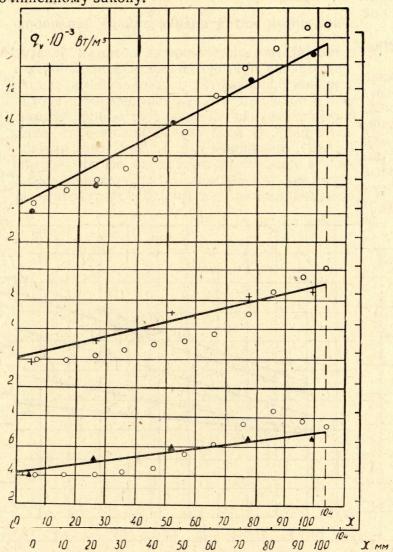


Рис. 3. Теплообразования по высоте вертикальных рядов шинок обмотки бетатрона Б-25-2:

— данные тепловых испытаний для ряда № 3 по счету от полюса;

— то же для ряда № 5;

— то же для ряда № 7;

— данные моделирования на электропроводящей бумаге.

5. Определение добавочных потерь на вихревые токи методом математического моделирования

Как уже отмечалось, значительные магнитные поля рассеяния полюсов [1] вызывают очень сильный местный разогрев обмотки на участках с большей плотностью магнитных силовых линий.

Простым экспериментальным путем нахождения потерь тепла от вихревых токов является моделирование поля рассеяния бетатрона на электропроводящей бумаге, описанный в [5].

Из листа электропроводной бумаги с известным электросопротивлением вырезается фигура, геометрически подобная сечению окна бетатрона (рис. 4). Полученная фигура накладывается на тонкий лист диэлектрика. В месте модели, соответствующем воздушному зазору в по-

люсе бетатрона по высоте галет, накладывается медная шинка 4, к которой подводится ток. На другую сторону диэлектрика (стекла) в местах, соответствующих вертикальным рядам шинок, наклеиваются силикатным клеем электроды из алюминиевой фольги. Электроды выполняются в масштабе модели. Модель питается от источника напряжения звуковой частоты.

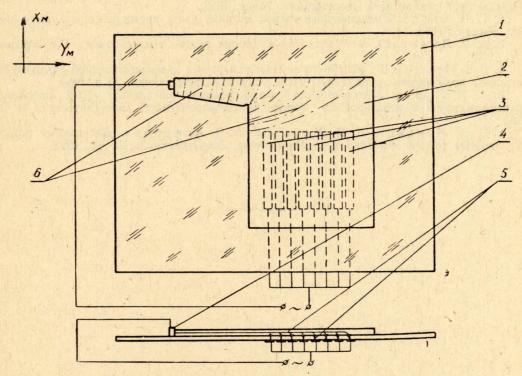


Рис. 4. Установка для моделирования вихревого поля рассеяния бетатронов: 1 — лист стекла; 2 — электропроводная бумага; 3 — электроды из алюминиевой фольги, соответствующие намагничивающей обмотке бетатрона; 4 — медный электрод, соответствующий немагнитному зазору; 5 — линии тока; 6 — эквипотенциальные линии.

Связь между электрическими величинами модели и электромагнитными величинами бетатрона, а также коэффициенты моделирования приведены в [5].

В результате обмера поля напряжений на модели получают картины распределения составляющих вектора индукции B_x и B_y по высоте вертикальных рядов шинок обмотки, которые позволяют оценить по [6] теплообразование в обмотке от вихревых токов.

Указанным методом были определены тепловыделения в вертикальных рядах шинок N 3, 5, 7 по счету от полюса бетатрона Б-25-2. Эти данные нанесены на рис. 3 кружками. На этом же рисунке нанесены данные, полученные по п. 4.

Выводы

1. Для теплового расчета обмоток бетатронов необходимо знание закона теплообразования по всему объему обмотки. Предложенные в п. 1—4 методы позволяют экспериментально только на уже изготовленных бетатронах получить эти законы.

2. Метод моделирования вихревого поля рассеяния бетатрона (п. 5) может быть использован также для оценки теплообразования при проектировании бетатронов.

JINTEPATYPA

1. И. В. Шипунов. Исследование нагревания и охлаждения электромагнитов индукционных ускорителей. Диссертация. Томск, 1959.
2. Г. И. Бабат. Индукционный нагрев металла и его промышленное применение.

Изд. Энергия, 1965.

3. А. В. Лыков, Ю. А. Михайлов. Теория тепло- и массообмена. Госэнергоиздат, 1963

4. В В. Иванов, Г. Ф. Шилин. Тепловой расчет намагничивающей обмотки бе-

татрона с воздушным охлаждением. Изв. вузов-Электромеханика, № 8, 1964.

5. С. И. Лурье. Математическое моделирование магнитных полей рассеяния трансформаторов и реакторов на электропроводящей бумаге. Электричество, № 10, 1965.

6. Э. А. Манькин, Д. Н. Морозов, А. В. Алферова. Добавочные потеры на вихревые токи в обмотках трансформаторов. Электротехника, № 10, 1965.

want of the second of the second of the second