УДК 621.317.1

СПЕКТРАЛЬНЫЙ АНАЛИЗ ТОКОВ (НАПРЯЖЕНИЙ) В ОДНОФАЗНЫХ И ТРЕХФАЗНЫХ ЦЕПЯХ С ПОМОЩЬЮ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК

Е.И. Гольдштейн, А.О. Сулайманов, Н.Л. Бацева

Томский политехнический университет E-mail: sao@tpu.ru

Обобщаются результаты исследований по разработке процедур определения спектральных портретов многочастотных сигналов с помощью вольт-амперных характеристик. Площадь вольт-амперной характеристики исходного и опорного сигналов минимальна при совпадении частот этих сигналов, а при совпадении фаз площадь стремится к нулю.

1. Общие соображения

Широкое использование в энергосистемах цифровых регистраторов аварийных событий объясняет большой интерес к теории и практике анализа установившихся процессов в одно- и трехфазных цепях по исходным данным в виде цифровых массивов мгновенных значений токов и напряжений.

Использование геометрической трактовки реактивной мощности Q позволило профессору О.А. Маевскому получить связь этой мощности с площадью вольт-амперной характеристики (BAX) F_{BAX} [1]:

$$Q = \pm \frac{1}{2\pi} F_{BAX},\tag{1}$$

где знак «+» соответствует перемещению рабочей точки по ВАХ против часовой стрелки (индуктивная нагрузка); знак «—» соответствует емкостной нагрузке.

В [2] показана целесообразность использования формулы (1) в виде

$$Q = \pm \frac{1}{4\pi} \sum_{i=1}^{N} [u(t_j) - u(t_{j+1})] \cdot [i(t_j) + i(t_{j+1})].$$
 (2)

Здесь: $i(t_j)$, $i(t_{j+1})$, $u(t_j)$, $u(t_{j+1})$ — отсчеты мгновенных значений тока и напряжения в моменты времени t_j , $t_{j+1} = t_j + \Delta t$, $t_{j+2} = t_{j+1} + \Delta t$...; Δt — шаг дискретизации; T — период сигнала; $N = T/\Delta t$ — число разбиений на периоде сигнала.

Заслуживает внимания тот факт, что при расчетах по формуле (2) принципиально не учитывается взаимодействие разных по частоте гармоник тока и напряжения, поэтому формулы (1, 2) могут быть использованы для спектрального анализа.

В приведенных ниже результатах исследований будем использовать обозначения, принятые для точечного исчисления. Расчетные формулы примут вид:

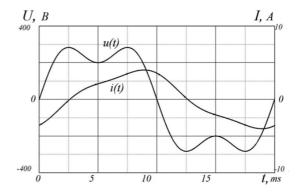
• для действующих значений тока и напряжения

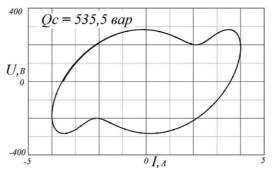
$$I = \sqrt{\frac{1}{N} \sum_{j=1}^{N} \left\| i^{2}(t_{j}) \right\|_{j=1}^{N}}; \quad U = \sqrt{\frac{1}{N} \sum_{j=1}^{N} \left\| u^{2}(t_{j}) \right\|_{j=1}^{N}};$$

• для активной и реактивной мощностей

$$P = \frac{1}{N} \sum_{j=1}^{N} \left\| p(t_j) \right\|_{j=1}^{N} = \frac{1}{N} \sum_{j=1}^{N} \left\| u(t_j) i(t_j) \right\|_{j=1}^{N};$$

$$Q = \frac{1}{4\pi} \sum_{j=1}^{N} \left\| [u(t_j) - u(t_{j+1})][i(t_j) + i(t_{j+1})] \right\|_{j=1}^{N}.$$


2. Определение реактивной мощности сдвига в однофазных цепях

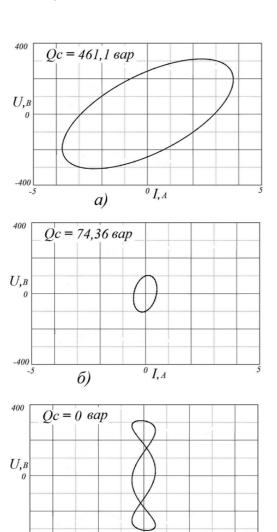

На рис. 1 показаны графики тока и напряжения, а также ВАХ для случая:

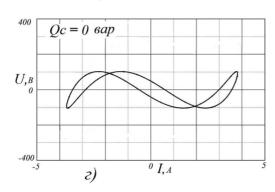
$$u(t_j) = u_1(t_j) + u_2(t_j) = 300 \sin \omega t_j + 100 \sin 3\omega t_j;$$

$$i(t_j) = i_1(t_j) + i_2(t_j) =$$

$$= 3.8 \sin(\omega t_j - 54^\circ) + 0.513 \sin(3\omega t_j - 75.1^\circ).$$

Рис. 1. Графики $u(t_i)$, $i(t_i)$ и ВАХ i(u) для однофазной цепи


Легко видеть, что $Q_{C2}=Q_c^a+Q_c^b=535,46$ вар, тогда как мощности сдвига, обусловленные взаимодействием разных по частоте гармоник тока и напряжения, равны нулю $Q_c^a+Q_c^b=0$.


3. Спектральный анализ многочастотных сигналов с помощью вольт-амперных характеристик

В ходе детального исследования методики расчета реактивной мощности по ВАХ была выявлена возможность проведения на ее основе спектрального анализа многочастотного сигнала $a(t_i)$ с помощью опорного одночастотного сигнала $b(t_i)$ [5]:

$$a(t_j) = \sum_{k=1}^{\infty} A_{mk} \sin(\omega_k t_j + \varphi_k);$$

$$b(t_j) = B_m \sin(\omega_0 t_j + \varphi_0),$$

здесь: $A_{\it mk}$, $\omega_{\it k}$, $\varphi_{\it k}$ — амплитуда, круговая частота и фаза $\it k$ -ой гармоники исследуемого сигнала; $\omega_{\it 0}$ =var, $\varphi_{\it 0}$ =var — частота и фаза опорного сигнала.

B)

-400

Рис. 2. ВАХ (при N=1000) для случаев: a) $u_1(t_j)$ и $i_1(t_j)$; б) $u_2(t_j)$ и $i_2(t_j)$; в) $u_1(t_j)$ и $i_2(t_j)$; г) $u_2(t_j)$ и $i_1(t_j)$

Для примера в таблице приведены ВАХ для случая, когда в сигнале имеется составляющая частотой ω_k =314,159 рад/с (f_k =50 Гц) при фазе φ_k =0 и амплитуде A_{mk} =320 В.

Изменяя значения частоты и фазы опорного сигнала и контролируя площадь ВАХ, находим $F_{\mathit{BAX}\min}$: $f_0 = f_k$ при $\phi_0 = \phi_k$.

Таблица. Процедура поиска частоты анализируемого сигнала

$f_{\scriptscriptstyle 0}$, Гц	$arphi_{\scriptscriptstyle 0}$, град	$F_{{\scriptscriptstyle \it BAX}{ m min}}$	Вид ВАХ
49	0	6243,51	200 U, B 0 -200 -400 -3 -2 -1 0 I, A 1 2 3
	120	82820,69	200 U, B 0 -200 -400 -3 -2 -1 0 1, A 1 2 3
	180	-6243,51	200 U, B 0 -200 -400 -3 -2 -1 01, A 1 2 3
50	0	6,21:10 ⁻¹²	200 U. B 0 -400 -3 -2 -1 0 1, A 1 2 3
	120	87048,05	200 U, B 0 -200 -400 -3 -2 -1 0 1, A 1 2 3
	180	4,1·10 ⁻⁵	200 U, B 0 -200 -400 -3 -2 -1 01, A 1 2 3
	90	100514	200 U, B 0 -200 -400 -3 -2 -1 0 I, A 1 2 3

Как видно из таблицы, в случае, когда опорный сигнал $b(t_j)$ не совпадает по частоте с анализируемым сигналом, BAX получается не замкнутой. При совпадении частот BAX замкнута, либо вырождается в прямую в случае совпадения фазы.

Для определения амплитуды гармоники частотой 50 Гц используем тот факт, что площадь ВАХ и реактивная мощность сдвига максимальны, что соответствует максимальному значению реактивной мощности при $\varphi_k' = \varphi_k \pm 90^\circ$. Амплитуда k-той составляющей сигнала найдется по формуле

$$A_{mk} = \frac{\frac{1}{2\pi} F_{BAX \max}}{\frac{1}{2} B_{mk}}$$

СПИСОК ЛИТЕРАТУРЫ

- Маевский О.А. Энергетические показатели вентильных преобразователей. – М.: Энергия, 1978. – 320 с.
- Функциональный контроль и диагностика электромеханических и электротехнических устройств и систем по цифровым отсчетам мгновенных значений токов и напряжений / Под ред. Е.И. Гольдштейна. Томск: Печатная мануфактура, 2003. 240 с.
- Пат. на ПМ 41373 РФ. МПК⁷ G01R 21/00. Устройство для измерения реактивной мощности сдвига в трехфазной трехпровод-

и будет равна 319,95 для приведенных в таблице значений.

4. Заключение

Полученная методика определения спектра многочастотного сигнала с помощью вольт-амперной характеристики является законченной и вполне работоспособной для широкого спектра сигналов. Все формулы методики легко трансформируются для обработки массивов цифровых отсчетов.

- ной цепи переменного тока / Е.И. Гольдштейн, А.О. Сулайманов. Заявлено 07.06.2004.
- Пат. на ПМ 41158 РФ. МПК⁷ G01R 25/00. Устройство для измерения коэффициента мощности в трехфазной трехпроводной цепи переменного тока / Е.И. Гольдштейн, А.О. Сулайманов. Заявлено 31.03.2004.
- Пат. 2229725 РФ. МПК⁷ G01R 23/16. Способ спектрального анализа периодического многочастотного сигнала / Е.И. Гольдштейн, Н.Л. Бацева. Заявлено 12.11.2002; Опубл. 27.05.2004; Бюл. № 15. — 11 с.: ил.

УДК 621.317.1

ОПРЕДЕЛЕНИЕ НЕАКТИВНОЙ МОЩНОСТИ И ЕЕ СОСТАВЛЯЮЩИХ ПО МАССИВАМ МГНОВЕННЫХ ЗНАЧЕНИЙ ТОКОВ И НАПРЯЖЕНИЙ

А.О. Сулайманов, Е.И. Гольдштейн

Томский политехнический университет E-mail: sao@tpu.ru

Для определения неактивной мощности предложено использовать интегралы обратной мощности за четверть периода, для определения мощности сдвига – площадь вольт-амперной характеристики, а мощность искажения находить как разность между неактивной мощностью и мощностью сдвига. Показана работоспособность предложенных методик для одно- и трехфазных цепей переменного тока.

При рассмотрении методик определения неактивной мощности и ее составляющих в несинусоидальных режимах авторами была проведена ревизия известных и предложены новые алгоритмы для одно- и трехфазных цепей [1–6].

Ниже кратко рассматриваются основные расчетные формулы (п. 1), результаты экспериментальных исследований однофазных (п. 2) и трехфазных (п. 3) цепей, а также выводы и рекомендации (п. 4).

1. Основные понятия и расчетные формулы

В ходе исследований авторы использовали следующие понятия:

- мощность сдвига Q_C (реактивная мощность сдвига) часть реактивной мощности, которая характеризует процессы, обусловленные взаимодействием одинаковых по частоте гармоник тока и напряжения;
- мощность искажения $Q_{\it H}$ часть реактивной мощности, которая характеризует процессы, обусловленные взаимодействием разных по частоте гармоник тока и напряжения;
- неактивная мощность Q_H (полная реактивная мощность) реактивная мощность, которая характеризует процессы взаимодействия всех без исключения гармоник тока и напряжения.