1966

ПО ПОВОДУ РЕЗЕРВОВ СОВЕРШЕНСТВОВАНИЯ ТРАНСФОРМАТОРОВ

(К статье инж. И. С. Калиниченко. «Электротехника», № 3, 1964).

И. Д. КУТЯВИН, Л. И. ВОРОНОВА

Инж. И. С. Калиниченко в своей статье затронул очень важную народнохозяйственную задачу использования резервов совершенствования трансформаторов и повышения их предельной мощности. Он показал влияние увеличения коэффициентов заполнения медью площади окна и сталью площади сечения стержня на повышение предельной мощности трансформаторов.

Наряду с этим большое значение приобретает повышение использования самых активных материалов (меди, стали) за счет снижения потерь электроэнергии в трансформаторах и улучшения их охлаждения.

Для трансформаторов большой мощности значительную долю общих потерь составляют так называемые добавочные потери. К ним относятся добавочные потери в меди обмоток, в стали сердечника, в прессующих кольцах и балках и в баке трансформатора.

В настоящей статье рассматривается вопрос снижения потерь в прессующих деталях и в баке (в стенках, крышке, днище и несущих конструкциях), которые достигают для крупных трансформаторов (30-40%) от потерь короткого замыкания [2].

Потери в прессующих деталях и в баке создаются магнитными полями рассеяния трансформатора, замыкающимися через эти элементы. В связи с этим можно наметить следующие способы снижения рассматриваемых потерь:

- 1. Применение броневых сердечников с расщепленными ярмами.
- 2. Применением для прессующих деталей и бака немагнитных материалов.
 - 3. Применением экранов.

Броневые сердечники с расщепленными ярмами, применяемые фирмой Броун Бовери для мощных трансформаторов [1], изготавливаются радиальной шихтовкой, благодаря чему снижаются добавочные потери в стали сердечника. Сектора однофазного сердечника и ярма скрепляются на торцах стяжками, поэтому нет здесь и потеры прессующих устройствах. Значительная доля потоков рассеяния у таких трансформаторов замыкается по расщепленным ярмам и не проникает в стенки бака, что снижает в нем потери.

Потери в стальных конструкциях трансформатора от полей рассеяния состоят из потерь на перемагничивание и вихревые токи. Потери на перемагничивание можно исключить применением для рассматриваемых конструкций немагнитных материалов. Потери на вихревые токи, как известно [3], пропорциональны удельной электропроводности материала (при пренебрежении полем реакции вихревых токов):

 $p = k B^2_{\rm p} \sigma , \qquad (1)$

где

 $B_{\rm p}$ — индукция поля рассеяния в детали, в которой выделяются потери,

удельная электрическая проводимость материала.

Следовательно, снижения потерь от вихревых токов можно достигнуть применением для прессующих устройств и бака материала с малой удельной электропроводностью. Кроме того, материал для этих изделий должен обладать прочностью стали и доступной стоимостью. Такими свойствами обладают сплавы алюминия.

Снижение потерь в рассматриваемых конструкциях, изготовленных из другого материала, можно определить пока только косвенно, так как аналитическое определение этих потерь затруднено ввиду сложности. Для этих целей можно использовать результаты очень простого эксперимента. В область магнитного поля с частотой 50 ги и с индукцией, близкой к таковой для поля рассеяния, помещаются по очереди одинаковые по размерам пластины из разного материала с простейшей тепловой изоляцией. Для каждой из пластин снимается зависимость приращения температуры нагрева над окружающей средой τ от времени опыта t и на основании наблюдений строятся кривые $\tau(t)$, изображенные на фиг. 1. Здесь кривая C построена для стали, а кривая D — для сплава алюминия Д-ІАТ. Касательные, проведенные в начало каждой кривой, дают закон роста приращения температуры $\tau(t)$ для случая без отдачи теплоты в окружающую среду. Каждая точка, лежащая на этих прямых (касательных), в некотором масштабе соответствует количеству тепла, сообщенного пла-

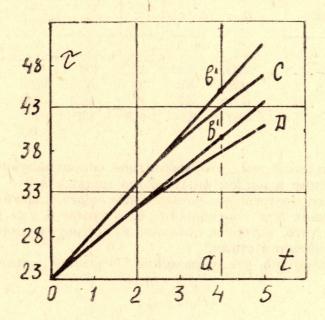


Рис. 1.

стине магнитным полем за прошедшее с начала опыта время. Это количество тепла определяется выражением:

$$Q = C \gamma v \tau, \tag{2}$$

где

С — удельная теплоемкость материала,

у — удельный вес,

v — объем пластины (одинаков для всех опытных пластин).

Приращение температуры нагрева пластины гравно отрезку

ав (фиг. 1) в зависимости от материала.

Если количество тепла, выделенного магнитным полем в стальной пластине, принять за 100%, то количество тепла в процентах, поглощенного пластинами из других материалов, можно определить из выражения:

$$Q_1 = Q_2 \frac{C_1 \tau_1 \gamma_1}{C_2 \tau_2 \gamma_2} = 100 \frac{C_1 \tau_1 \gamma_1}{C_2 \gamma_2 \tau_2},$$
 (3)

где

 $C_2, \ \gamma_1, \ \tau_1$ — для исследуемого материала,

 $C_2, \ \gamma_1, \ \tau_2, \ -$ для стали.

В табл. 1 приведено соотношение потерь в процентах, найденное из (3) для стали, меди, алюминия и дюраля (Д-IAT). Для этой цели были получены также кривые $\tau(t)$ для меди и алюминия, аналогичные зависимостям фиг. 1. Размеры пластин $0.5 \times 10 \times 20~cm$.

В таблице показаны также э. д. с., индуктируемые в измерительной рамке, помещенной у поверхности пластины со стороны источника магнитного поля E_1 (графа 6), и с противоположной стороны E_2 (графа 7). Для выяснения влияния реакции вихревых токов на поле рассеяния в последнем пункте таблицы приведены э. д. с. E_1 и E_2 для гетинаксовой пластины.

Как видно из приведенной таблицы, потери в стальной пластине, при одинаковых условиях, почти в два раза больше, чем в меди, алюминии и дюрале.

Таблица 1

Материал пластин	C	ı	7	Q %	$\left \begin{array}{c}E_1\\\text{вольт}\end{array}\right $	E_2 вольт	σ
1 1	2	3	4	5	6	7	8
Сталь	0,112	7,8	22	100	1,10	0,054	10
Медь	0,091	8,9	13	53	0,217	0,193	57
Алюминий	0,210	2,7	17	48,7	0,284	0,252	36
Дюраль	0,203	2,8	15,8	45,5	0,355	0,270	17
Гетинакс		_	-	-	0,385	0,330	

Это объясняется тем, что магнитное сопротивление пути через стальную пластину в нашем опыте было меньше в 3-4 раза, а поток рассеяния соответственно больше, чем через пластины из немагнитного материала (см. соотношение E_1 в графе 6 для разных материалов). Кроме того, потери в стальной пластине увеличены еще и за счет перемагничивания стали.

Из таблицы видно, что выражение (1) в виде соотношения

$$\frac{P_a}{P_M} = \frac{\sigma_a}{\sigma_M} \tag{4}$$

не соблюдается, так как реакцией вихревых токов на поле рассеяния пренебрегать нельзя. Тем не менее потери остаются в какой-то мере

пропорциональными электропроводности материала. Отсюда следует, что все прессующие и крепежные детали, а также баки трансформаторов (это можно распространить и на электрические машины и аппараты), следует изготовлять из немагнитного материала с наимень-

шей удельной электропроводностью.

Определим экономическую выгодность замены стали дюралем Д-IAT. По данным [2], добавочные потери в трансформаторах большой мощности составляют: в стали магнитопровода (10-12%), в меди обмоток (5-8%), в баке (15-25%) и в прессующих кольцах и балках (40-50%) от общих добавочных потерь, которые, в свою очередь, могут составлять (40-50%) от потерь короткого замыкания. Примем потери в баке трансформатора ТДГ-60000/100, равными 10%, от потерь короткого замыкания, составляющих $300~\kappa e \tau$, вес бака 29~ тонн [4]. Стоимость стали примем 100~ руб. за тонну и дюраля -700~ руб. Затраты дюраля по объему равны объему стали.

Тогда перерасход на устройство бака из дюраля:

$$29\left(\frac{\gamma_a}{\gamma_c} 700-100\right) = 29\left(\frac{2.8}{7.8} 700-100\right) = 4350 \ py6. \tag{5}$$

Здесь не учтено удорожание технологии, которое может оказаться не в пользу дюраля. Согласно позиции 4 (табл. 1) добавочные потери в баке снижаются до 45,5%. Расчетная стоимость потерь мощности, по данным проф. П. Г. Грудинского [5], порядка 500 руб/квт. Тогда экономия на потерях электроэнергии:

$$\frac{10}{100} \ 300 \ \frac{100 - 45,5}{100} \ 500 = 8170 \ \text{py6}. \tag{6}$$

Для изготовления бака можно использовать и более легированные сорта дюраля, что увеличит экономию на потерях. Потери в прессующих устройствах больше, а вес их меньше; поэтому экономия от применения немагнитных материалов для них будет больше, чем для бака. Для трансформатора ТДГ-60000/110 потери мощности в прессующих устройствах достигают 20% от потерь короткого замыкания. Тогда экономия от снижения потерь в прессующих деталях, если их выполнить из дюраля Д-1АТ вместо стали,

$$\frac{20}{10}300\left(\frac{100-54,5}{100}\right)500 = 16340 \ py6. \tag{7}$$

Перерасход средств на выполнение прессующих деталей из дюраля будет небольшой ввиду их малого веса.

Изложенное указывает на экономическую целесообразность замены стали высоколегированным дюралем для устройства бака и прессующих деталей.

В пределах настоящей статьи вопрос экранирования частей бака и прессующих деталей не рассматривается.

ЛИТЕРАТУРА

- 1. Энергетика за рубежом. Трансформаторы, вып. 1, Госэнергоиздат, 1958.
- 2. В. В. Бондар. Требования трансформаторостроения к материалам и комплектующим изделиям. Трансформаторостроение. Сборник статей. Москва, 1961.
- 3. К. А. Круг. Основы электротехники, 1936.
- 4. Электротехнический справочник под редакцией профессоров МЭИ. Издание 3. Госэнергоиздат, 1962.
- 5. П. И. Тихомиров. Расчет транеформаторов. Госэнергоиздат, 1963.