Том 153

К ВОПРОСУ ОБ ОПТИМАЛЬНОМ УПРАВЛЕНИИ ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА С НЕЗАВИСИМЫМ ВОЗБУЖДЕНИЕМ

И. П. ТРОФИМУК

(Представлено научным семинаром электромеханического факультета)

Многие механизмы в металлургическом производстве имеют привод от двигателя постоянного тока с независимым возбуждением. Почти во всех случаях применения такого привода требуется обеспечить процесс отработки сигнала задания либо возмущения, оптимальный по быстродействию, или близкий к оптимальному. Примером подобных систем могут служить привод нажимного устройства, привод электродов дуговой сталеплавильной печи и т. п.

Вопросы синтеза управляющих устройств для подобных приводов

освещены в ряде работ 2, 3.

В данной статье рассмотрена более подробно задача синтеза оптимальной системы для случая, когда, кроме сухого трения, имеется нагрузка от избыточного веса неуравновешенных частей подъемных механизмов, как это имеет место в приведенных примерах. Кроме того, полагаем, что задание Х₀, или приведенное к нему возмущение, и текущая координата X подаются на управляющее устройство с передаточным коэффициентом а, который в отдельные периоды работы может изменяться. Будем считать, что редуктор не имеет люфта.

При рассмотрении задачи временно откажемся от обычного представления о замкнутой системе автоматического регулирования. Пола-

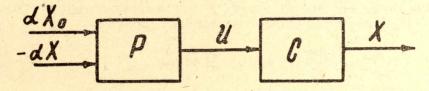


Рис. 1

гаем, что система состоит из неизменяемой части С и регулятора Р, как показано на рис. 1. Регулятор в нашем случае будем считать безынерционным, что близко к действительности, например, при ионном приводе. Учет инерционности регулятора может быть произведен. Однако это не входит в задачу данной статьи. Кроме того, как показывает ряд

1965

авторов 2, 5, удовлетворительные результаты иногда получают и без

такого учета путем подбора параметров при настройке.

Рассмотрим сначала случай, когда двигатель во время отработки задания не достигает максимально-допустимой скорости. Случаи, когда двигатель достигает максимальной скорости, а также случаи малых отклонений, будут рассмотрены в дальнейшем.

Остающееся естественное ограничение состоит в том, что ток двигателя не может превышать максимально-допустимого значения.

$$i \leqslant \sigma I_{M},$$
 где $\sigma = \pm 1.$ (1)

Очевидно, условие (1) можно переписать так:

$$\frac{\mathrm{U}}{\mathrm{r}} - \frac{\mathrm{K}_{\mathrm{e}}}{\mathrm{r}} \, \omega \leqslant \mathrm{\sigma} \mathrm{I}_{\mathrm{M}} \,, \tag{2}$$

U— напряжение на выходе регулятора;

r — полное сопротивление якорных цепей;

ω — угловая скорость двигателя;

 $e_{_{\rm Л}}$ — э. д. с. двигателя;

$$\kappa_{\rm e} = \frac{{\rm e}_{\scriptscriptstyle \Lambda}}{\omega}$$
 .

Уравнение движения для двигателя:

$$J \frac{d\omega}{dt} = M_{x} - M_{c} \operatorname{sign}\omega, \tag{3}$$

где Ј — момент инерции на валу двигателя;

М_д — момент двигателя;

 $M_{\rm c}$ — момент сопротивления на валу двигателя, который меняется в зависимости от направления движения.

Вводя $\kappa_{\rm M} = \frac{M_{\rm M}}{1}$, (3) можно переписать в виде:

$$J \frac{d\omega}{dt} = \kappa_{M} i - M_{c} sign\omega. \tag{4}$$

Известно, что процесс будет оптимальным по быстродействию, если в уравнение движения ввести значение максимально-ограниченной величины из (1). Произведя такую подстановку, получим:

$$J \frac{d\omega}{dt} = \kappa_{\rm M} \sigma I_{\rm M} - M_{\rm c} \, {\rm sign} \omega \,. \tag{5}$$

Вводя обозначения:

 $\xi_{\rm o}$ — передаточное число редуктора;

 $R_0 = \frac{x}{2\pi n}$ — коэффициент передачи от вращательного движения к поступательному;

Х — путь перемещения;

можем записать уравнение оптимального процесса в виде:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \sigma \frac{\kappa_{\rm M} R_{\rm o} I_{\rm M}}{J \xi_{\rm o}} - \frac{M_{\rm c} \cdot R_{\rm o}}{J \xi_{\rm o}} \operatorname{sign} \frac{\mathrm{d} x}{\mathrm{d}t}$$
 (6)

или

$$\frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}t^2} = \sigma \mathbf{A} - \mathbf{B} \operatorname{sign} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \tag{7}$$

Очевидно А>В.

(8)

Преобразуем (7) к виду:

$$\frac{\mathrm{d}^2 X}{\mathrm{d}t^2} = \sigma \left| A - B \frac{\mathrm{sign} \frac{\mathrm{d}X}{\mathrm{d}t}}{\sigma} \right| = \sigma I, \qquad (9)$$

где

$$I = A - B \frac{\operatorname{sign} \frac{dX}{dt}}{\sigma}$$
 (9a)

Рассмотрим вид оптимального процесса в фазовой плоскости

$$(x, y), rдe x = X_o - X$$

$$y = \frac{dx}{dt}$$
(10)

X₀ — эквивалентное изменение задания регулятора;

Х - текущая координата.

Полагаем, что эквивалентное изменение задания X_0 относится к классу допустимых возмущений вида $X_0 = A_0 + A_1 t$. В дальнейшем полагаем $X_0 = \text{const}$, что не изменит результата.

Очевидно,
$$y = \frac{dx}{dt} = -\frac{dX}{dt}$$
; sign $y = -$ sign $\frac{dX}{dt}$;
$$\frac{d^2x}{dt^2} = -\frac{d^2x}{dt^2}$$
; (11)

Тогда
$$\frac{d^2x}{dt^2} = -\sigma I = -\sigma A + B \frac{\text{sign y}}{\sigma}$$
 (12)

Для определения линии переключения σ в фазовой плоскости, рассмотрим оптимальные траектории, проходящие через начало координат. Для исследования их изменим счет времени в обратную сторону от момента t_0 отработки задания, вводя τ = t_0 —t.

Тогда
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}\tau} \cdot \frac{\mathrm{d}\tau}{\mathrm{d}t} = -\frac{\mathrm{d}x}{\mathrm{d}\tau}; \qquad \frac{\mathrm{d}^2x}{\mathrm{d}t} = \frac{\mathrm{d}^2x}{\mathrm{d}\tau^2}$$
 (13)

и (12) запишется в виде:

$$\frac{\mathrm{d}^2 \mathbf{x}}{\mathrm{d}\tau^2} = -\sigma \mathbf{I}.\tag{14}$$

Решая (14) при нулевых начальных условиях, получим:

$$y = -\frac{dx}{d\tau} = \sigma I \tau$$

$$\Rightarrow x = -\frac{\sigma I}{2} \cdot \tau^{2}$$
(15)

Таким образом

$$- \operatorname{sign} y = \operatorname{sign} \sigma = \sigma;
 \operatorname{sign} x = -\operatorname{sign} \sigma$$
(16)

и (9, а) можно записать в виде:

$$I = A + B \tag{17}$$

Исключая т из (15), получим уравнение оптимальной траектории

$$x = -\sigma \frac{y^2}{2I} = -\sigma \frac{y^2}{2(A+B)}$$
 (18)

Рассмотрим квадранты фазовой плоскости (x, y), см. рис. 2. В первом и втором квадрантах у>0, что соответствует движению вниз.

При этом

$$M_{\rm c} = M_2 = M_{\rm TP} - M_{\rm B}$$
, (19)

где М_{тр} — момент сухого трения;

М_в — момент избыточного веса.

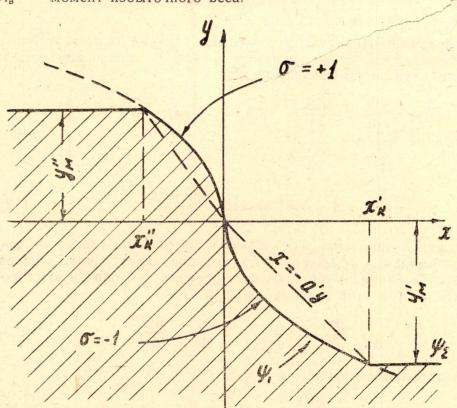


Рис. 2

Соответственно полагаем при у>0 B=B". В третьем и четвертом квадрантах у<0, что соответствует движению вверх. При этом

$$M_c = M_1 = M_{Tp} + M_B$$
 (20)
и $B = B'$, при y < 0.

Исследуем оптимальную траекторию при $\sigma = -1$; при этом у<0; х>0. то есть оптимальная траектория расположена в четвертом квадранте. Подставляя в (18) значение B=B', получим:

$$x = -\sigma \frac{y^2}{2(A+B')} = -\frac{y^2 \operatorname{sign} y}{2(A+B')}$$
 (21)

Вторая ветвь оптимальной траектории, при $\sigma = +1$, расположена во втором квадранте и ее уравнение, очевидно, будет:

$$x = -\sigma \frac{y^2}{2(A + B'')} = -\frac{y^3 \text{sign } y}{2(A + B'')}$$
 (22)

Подставив величину В в виде

$$B = \frac{B' + B''}{2} + \frac{B'' - B'}{2} \operatorname{sign} y \tag{23}$$

можем объединить (21) и (22) и записать уравнение оптимальной траектории:

$$x = -\frac{y^2 \operatorname{sign} y}{2\left(A + \frac{B' + B''}{2} + \frac{B'' - B'}{2} \operatorname{sign} y\right)}.$$
 (24)

Уравнение для линии переключения ψ_1 будет иметь вид $\psi_1 = 0$, где из (24);

$$\psi_1 = x + \frac{y^2 \text{sign y}}{2(A + B_1 + B_2 \text{sign y})};$$
 где $\frac{B' + B''}{2} = B_1; \frac{B'' - B'}{2} = B_2.$ (25)

Вместо управляющей величины $w = \psi_1$ на вход переключающего блока можно подавать равную ей по знаку величину w_1 :

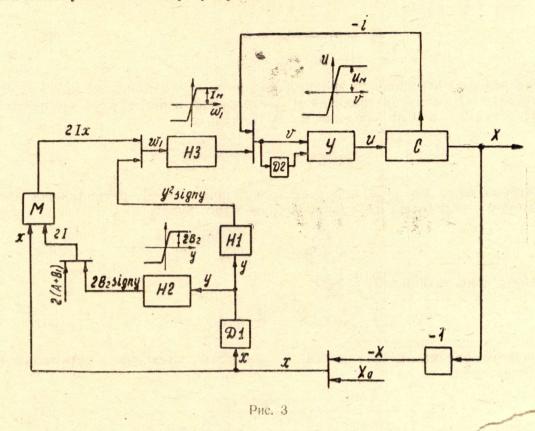
$$w_1 = 2I\omega = 2(A + B_1 + B_2 \text{ signy}) x + y^2 \text{signy}.$$
 (26)

Временно считая $\alpha = 1$ (см. рис. 1), можно произвести синтез структуры регулятора. Вариант структурной схемы, удовлетворяющей условиям (1) и (26), приведен на рис. 3.

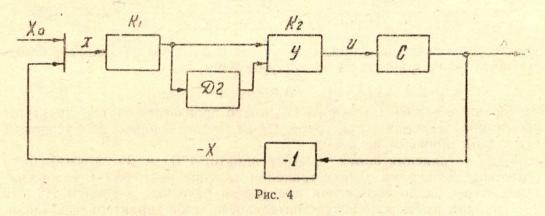
Для устранения помех дифференциаторы Д1 и Д2 должны быть снабжены фильтрами. Для устранения излишних колебаний изображающей точки около положения равновесия релейные элементы Н2, Н3 и У должны иметь зону нечувствительности, либо характеристики вида, приведенного на рис. 3. В схеме имеется множительное звено М. На вход переключающего устройства У подается величина v, определяемая знаком w₁, и условием (1).

Рассмотрим работу схемы при небольших возмущениях. В этом случае изображающая точка имеет незначительное отклонение от начала координат, и величины х и у малы. Тогда величинами y^2 и $2B_2x$, как малыми второго порядка, можно пренебречь, и эквивалентная схема для малых отклонений будет иметь вид, приведенный на рис. 4. Диф-

ференциатор Д2 введен для улучшения переходных характеристик данной замкнутой системы регулирования.



Теперь рассмотрим работу системы при таких отклонениях, когда двигатель достигает установившейся скорости. При этом оптимальные траектории изображающей точки в фазовой плоскости будут иметь горизонтальные участки, как показано на рчс. 2.



Уравнение линии переключения для этих участков запишем в виде $\psi_2 \! = \! 0$, где

$$\psi_2 = y + y_M \operatorname{sign} x, \qquad (27)$$

а величина $y_{\scriptscriptstyle M}$ максимально-допустимой скорости устанавливается из каких-либо соображений, например, конструктивных или технологических.

Так как допустимые скорости подъема и спуска могут быть различны, то полагаем

$$y_{M} = y_{M}' \quad \text{при} \quad \text{sign } x = +1$$

$$y_{M} = y_{M}'' \quad \text{при} \quad \text{sign } x = -1$$

$$(28)$$

Тогда (27) можем записать в виде

$$\psi_2 = y + y_1 + y_2 \operatorname{sign} x$$
, $y_1 = \frac{y' + y''}{2}$; $y_2 = \frac{y' - y''}{2}$. (29)

Вместо управляющей величины $w = \psi_2$ на вход переключающего элемента НЗ можно подавать равную ей по знаку величину w_2 :

$$w_2 = 2Iw = 2Iy + 2I(y_1 + y_2 \operatorname{sign} x).$$
 (30)

Таким образом, элемент НЗ должен управляться либо величиной w_1 , либо величиной w_2 , в зависимости от их соотношения. Из фазовой диаграммы рис. 2 видно, что при $x < x''_{\kappa}$ и при $x > x'_{\kappa}$ на вход элемента НЗ должна быть подана величина w_2 , а при $x''_{\kappa} < x < x'_{\kappa}$ величина w_1 . Для этого в структурную схему необходимо ввести дополнительное переключающее устройство. На вход этого устройства можно, например, подавать величину

$$\sigma = |x| - \frac{x'_{\kappa} + x''_{\kappa}}{2} - \frac{x'_{\kappa} - x''_{\kappa}}{2} \text{ sign}x.$$
 (31)

Тогда структурная схема примет вид, показанный на рис. 5.

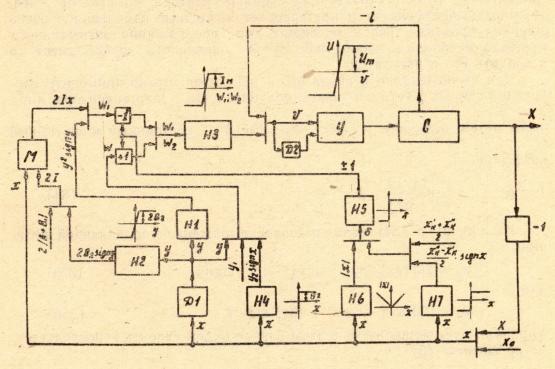


Рис. 5

Определим теперь величину $U_{\mathfrak{m}}$. Для этого введем обозначения $U_{\mathfrak{m}}$ — номинальное напряжение двигателя;

I_н — номинальный ток двигателя;

 $\omega_{_{\rm H}}$ — номинальная угловая скорость двигателя;

 $R_{\scriptscriptstyle \rm H} = \frac{U_{\scriptscriptstyle \rm H}}{I_{\scriptscriptstyle \rm H}}$ — номинальное сопротивление двигателя;

 $\rho = \frac{r}{R_{\scriptscriptstyle H}}$ — относительное сопротивление якорной цепи.

Полагая $I_{\rm M}\!\approx\!2I_{\rm H}$ и $U_{\rm H}\!\approx\!K_{\rm eH}\omega_{\rm H}$ и используя введенные обозначения, получим:

$$U_{m} \approx (K_{v} K_{\phi} + 2\rho) , \qquad (32)$$

где $\kappa_{\rm v} = \frac{\omega_{\rm \tiny Max}}{\omega_{\rm \tiny H}}$ — к-т превышения скорости;

$$\kappa_{\phi} = \frac{\kappa_{\rm e}}{\kappa_{\rm eH}}$$
 — к-т ослабления поля.

Так как обычно $ho \leqslant 0.3$ и $\kappa_{\varphi} \kappa_v \leqslant 1.4$, то $U_m \leqslant 2\,U_{\rm H}$.

Очень часто эквивалентное задание X_0 и координата X подаются на вход регулятора с коэффициентом преобразования масштаба α , то есть вместо рассогласования x подается величина αx . В этом случае для обеспечения регулирования по оптимальной траектории управляющие величины w_1 и w_2 должны иметь вид:

$$w_i = 2I\alpha(\alpha x) + (\alpha y)^2 \operatorname{sign} y \tag{33a}$$

$$w_2 = (\alpha y) + \alpha (y_1 + y_2 \text{ sign } x)$$
 (336)

При α =const, (26) и (30) отличаются от (33) только постоянным множителем, то есть структурная схема регулятора остается прежней. Но иногда коэффициент α претерпевает медленные изменения в очень широких пределах. Тогда, очевидно, для поддержания оптимального процесса необходимо каким-либо путем определять коэффициент α и вводить его в регулятор.

Для вычисления α и ввода его в регулятор можно применить следующий способ. Пусть мы можем получить либо с тахогенератора, либо

иным путем, величину $\beta \frac{\mathrm{d}x}{\mathrm{d}t} = -\beta y$; где β — постоянный масштабный коэффициент.

Тогда
$$\alpha = \left| \frac{(\alpha y)}{(\beta y)} \right| \cdot \beta$$
 (34)

Из (33, а) и (34) находим новое выражение управляющей величины:

$$\mathbf{w}_1 = 2\beta \mathbf{I}(\alpha \mathbf{x}) |(\alpha \mathbf{y})| + (\alpha \mathbf{y})^2 \cdot |(\beta \mathbf{y})| \text{ signy}$$
 (35a)

или

$$w_1 = 2\beta I(\alpha x) + |(\alpha y)| \cdot |(\beta y)| \operatorname{sign} y$$
(356)

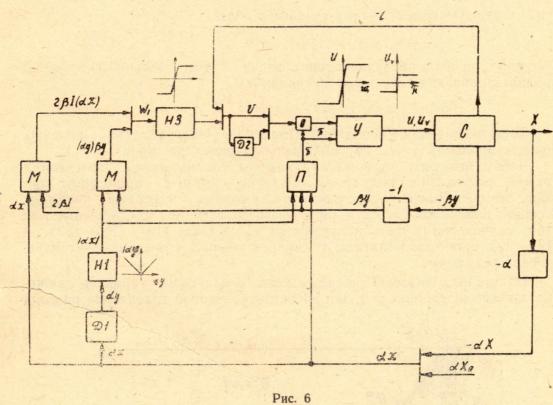
Управляющую величину w_2 в этом случае будем строить непосредственно по сигналу (β у).

$$w_2 = (\beta y) + \beta (y_1 + y_2 \text{ sign } x)$$
 (36)

Управляющая величина для переключающего блока — δ — будет иметь вид:

$$\delta = |\alpha_X| \cdot |\beta_Y| - \beta |\alpha_Y| \cdot \left(\frac{x'_K + x''_K}{2} + \frac{x'_V - x''_K}{2} \operatorname{sign} x \right)$$
 (37)

По (35б), (36) и (37) можно построить структурную схему регулятора. Недостатком этого регулятора является то, что при движении с установившейся скоростью возникнут автоколебания около линии пе-



реключения ψ_2 в фазовой плоскости. Эти автоколебания могут быть нежелательны. Если максимально-допустимая скорость строго не фиксирована, то для устранения автоколебаний управляющее устройство У должно работать в двух режимах: один для периода разгона и торможения и второй для движения с установившейся скоростью. Во втором режиме управляющее устройство У должно выдавать напряжение Uv=const, определяемое только требуемой скоростью перемещения. Переключение режимов работы должно производиться в зависимости от величины скорости и знака величины б. Пример структурной схемы такого регулятора приведен на рис. 6.

В заключение отметим, даже при переменном коэффициенте масштаба а схема регулятора может быть упрощена. Такое упрощение станет возможным, если заменить линию переключения ψ_1 в фазовой плоскости прямой, проходящей через начало координат. Запишем уравнение этой прямой:

$$x = -ay,$$
 (38) $a = a''$ при $y > 0$ $a = a'$ при $y < 0$

6*

Уравнение прямых с учетом (39) можно записать в виде:

$$\mathbf{x} = -\left(\frac{a'' + a'}{2} + \frac{a'' - a'}{2}\operatorname{sign}\mathbf{y}\right) \cdot \mathbf{y} \tag{40}$$

или

$$x = -a_1 y - a_2 |y| (40a)$$

где
$$a_1 = \frac{a'' + a'}{2}$$
; $a_2 = \frac{a'' - a'}{2}$:

Тогда управляющая величина w примет вид:

$$w = x + a_1 y + a_2 |y|.$$
 (41)

Очевидно, на вход переключающего блока вместо величины w можно подавать равную ей по знаку величину w₁:

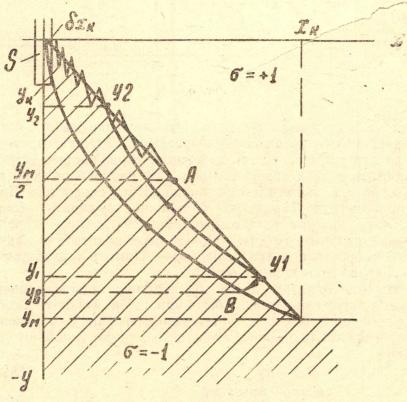
$$W_1 = (\alpha x) + a_1(\alpha y) + a_2|\alpha y|$$
 (42)

Торможение при управляющей величине (42) является, конечно,

более замедленным, чем при оптимальном регулировании.

Чтобы выяснить возможности замены оптимальной траектории прямой, рассмотрим подробнее движения, которые происходят при такой замене. Для определенности рассмотрим четвертый квадрант фазовой плоскости рис. 2 и рис. 7. Интересующие соотношения для этого случая могут быть получены из (11), (12), (18), (38), (39) и (42). Для простоты полагаем I=const, $\alpha=$ const, что не изменит качественно результат.

Из анализа фазовой диаграммы рис. 7 видно, что характер движения зависит от координат точки У1 встречи фазовой траектории разгона



PHC. 7

с прямой (38). При оптимальном регулировании дальнейшее движение от У1 происходит по траекториям У1 = B и B = 0, причем время этого движения минимально. При управлении по (42) движение от У1 до V2 происходит по «оптимальной» параболе, а от V2 до V3 по некоторой

ломанной кривой, лежащей на прямой х = - ау.

Если переключающий элемент НЗ имеет достаточно малую зону нечувствительности, можно приближенно считать, что движение от У2 до 0 происходит по прямой x=-ay, то есть является экспоненциальным во времени. Ясно, что при экспоненциальном движении точка 0 фазовой диаграммы может быть достигнута лишь через бесконечно большой промежуток времени. Однако стремление обязательно достичь точки (0,0) излишне и может быть даже вредно, так как при релейном режиме регулирования и сверхчувствительном регуляторе неизбежно возникновение автоколебаний вокруг этой точки, что часто нежелательно. Поэтому будем считать, что допустимо некоторое рассогласование $\delta x'_{\kappa} = \delta x_{\kappa}$, то есть в фазовой плоскости (x, y) около точки 0 имеется некоторая область S, так что при входе изображающей точки в эту область процесс регулирования можно считать законченным. Пусть эта область ограничена координатами:

$$x = \delta x_{\kappa}; \quad y = y_{\kappa},$$
 где $y_{\kappa} = -\sqrt{2\delta x_{\kappa} I}$ $\}$ (43)

Для выяснения соотношений координат y_1 и y_2 и для вычисления соотношения времен получим из (11) и (12) временные зависимости координат и уравнения траекторий движения в фазовой плоскости.

$$y = -\sigma It + y_{\text{Haq}} x = -\frac{\sigma It^{2}}{2} + y_{\text{Haq}}t + x_{\text{Haq}}$$
(44)

$$x = a \frac{y^2_{\text{Haq}} - y^2}{2I} + x_{\text{Haq}}$$
 (45)

При $\sigma = +1$ уравнение (45) определяет семейство парабол разгона, при $\sigma = -1$ — семейство парабол торможения.

Из совместного решения (18), (38) и (45) при $\sigma = -1$ получим координаты пересечения параболы торможения с прямой:

$$y_{1,2} = \frac{y_{M}}{2} \pm \sqrt{\frac{y_{M}}{2} + y_{Haq}^{2}} = y_{M} y_{Haq}$$
 (46)

То есть точки У1 и У2 расположены симметрично относительно точки А с координатами $\frac{x_\kappa}{2}$, $\frac{y_\text{м}}{2}$. В точке А производная $\frac{dy}{dx}$ и тангенс угла

наклона прямой х = — ау совпадают, и точки У1 и У2 сливаются в одну.

Таким образом, при попадании точки У1 ниже точки А рис. 7 при законе управления (41) дальнейшее движение изображающей точки складывается из движения по параболе и экспоненциального во времени движения по прямой в плоскости (x, y). При попадании У1 в точку А и выше дальнейшее движение изображающей точки будет только по прямой.

Если время оптимального движения t₀ от точки У1 до начала координат принять за базисное, то при движении с законом управле-

ния (41) через время to остается некоторое рассогласование бхк

$$\delta \mathbf{x}_{\scriptscriptstyle \mathrm{K}} = \frac{\mathbf{\Delta} \mathbf{x}_{\scriptscriptstyle \mathrm{K}}}{\exp\left\{2\sqrt{2(1-\mathbf{\Delta})^2+2(1-\mathbf{\Delta})+6\mathbf{\Delta}-4}\right\}}$$
, при $\mathbf{y}_1 \leqslant \frac{\mathbf{y}_{\scriptscriptstyle \mathrm{M}}}{2}$ (47)

Величина А для (47) определяется из соотношения

$$\mathbf{y}_1 = (1 - \mathbf{\Delta}) \, \mathbf{y}_{\scriptscriptstyle M} \,, \tag{48}$$

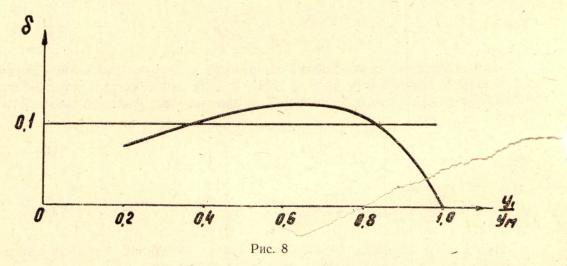
где у₁ — координата точки У1. или:

$$\delta x_{\scriptscriptstyle K} = \frac{\triangle x_{\scriptscriptstyle K}}{\exp\left\{4\sqrt{\frac{\triangle^2}{2} + \frac{\triangle}{2}} - 2\triangle\right\}}, \quad \text{при } y_{\scriptscriptstyle 1} \geqslant \frac{y_{\scriptscriptstyle M}}{2} \tag{49}$$

Величина Д для (49) определяется из соотношения:

$$y_1 = \triangle y_M, \tag{50}$$

где y_1 — координата точки У1. Точка У1 попадает на прямую x=-ay выше точки А. График зависимости $\delta\left(\frac{y_1}{y_M}\right)$ приведен на рис. 8. Из



графика видно, что значения δ не превышают величины $\delta = 0,124$. Если такое остаточное рассогласование является допустимым, то замена линии переключения (24) прямой кажется возможной.

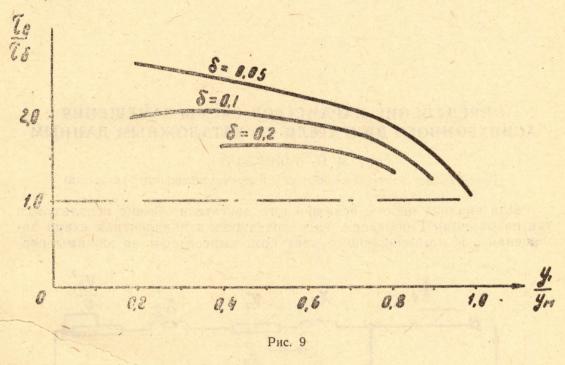
Необходимо, однако, заметить, что такое же конечное рассогласование δx_{κ} можно получить и при движении по оптимальным траекториям за время $t_{\delta} < t_0$. Соотношение между временем t_e движения при законе управления (41) до рассогласования δx_{κ} и временем t_{δ} движения по оптимальным траекториям до того же рассогласования определяется выражением:

$$\frac{\mathsf{t_e}}{\mathsf{t_\delta}} = \frac{1}{2} \cdot \frac{2(1 - 2\boldsymbol{\Delta}) + \ln\frac{\boldsymbol{\Delta}}{\delta}}{\sqrt{2(1 - \boldsymbol{\Delta})^2 + 2(1 - \boldsymbol{\Delta}) - (1 - \boldsymbol{\Delta}) - \sqrt{\delta}}}, \text{при } \mathbf{y_1} \leqslant \frac{\mathbf{y_M}}{2}$$
 (51)

$$\frac{t_{\rm e}}{t_{\rm g}} = \frac{1}{2} \cdot \frac{\ln \frac{\Delta}{\delta}}{2\sqrt{\frac{\Delta^2}{2} + \frac{\Delta}{2} - \Delta - \sqrt{\delta}}}, \quad \text{при } y_{\rm i} \geqslant \frac{y_{\rm m}}{2} \qquad (52)$$

Величины Δ для (51) и (52) определяются по (48) и (50) соответственно. Графики зависимостей $\frac{t_e}{t_\delta} = f\left(\delta, \frac{y_1}{y_{_{\rm M}}}\right)$ приведены на рис. 9. Из

этих графиков видно, что замена линии переключения прямой возможна далеко не всегда и должна быть достаточно тщательно обоснована в каждом отдельном случае, что в известной мере противоречит рекомендации 2.



Рассмотренные в этой статье вопросы построения структуры регуляторов при изменяющемся коэффициенте масштаба сигнала и возмущения; при различных статических нагрузках и скоростях для подъема и спуска. дают основу для проектирования оптимальных регуляторов при этих условиях. Особенно актуально создание подобного регулятора для привода электродов дуговой сталеплавильной печи, где имеют место все перечисленные особенности.

Приведенный анализ явлений, возникающих при замене оптимальной линии переключения прямой, позволяет оценить возможность такой замены, что часто желательно для упрощения структурной схемы регулятора.

ЛИТЕРАТУРА

- 1. Л. С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф. Мищенко. Математическая теория оптимальных процессов. Физматгиз, 1961.
- 2. А. А. Фельдбаум. Вычислительные устройства в автоматических системах, Физматгиз, 1959.
- 3. А. Я. Лернер. Введение в теорию автоматического регулирования. **Машгиз**, 1958.
- 4. Осисьы автоматического регулирования. Теория. Коллектив авторов под ред. В. В. Солодовникова. Машгиз, 1954.
- 5. А. Я. Лернер. Принципы построения быстродействующих следящих систем и регуляторов. Госэнергоиздат, 1961.