ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 156

1969

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЗАХВАТА ЧАСТИЦ В СИНХРОТРОНЕ

В. В. ЦЫГАНКОВ

В синхротроне со слабой фокусировкой изменение ускоренного до конечной энергии заряда от цикла к циклу вызывается в основном изменением таких параметров, как моменты включения инжекции и ускоряющего высокочастотного (ВЧ) напряжения, энергия инжекции, начальная частота генератора. Построение математической модели захвата является начальным этапом проектирования системы автоматической оптимизации условий захвата.

Рассматривается многооборотная инжекция частиц в синхротрон при следующих допущениях: не учитывается коллективное взаимодействие частиц при инжекции, показатель спада магнитного поля *n*, постоянный по радиусу и азимуту сектора электромагнита и одинаковый во всех секторах, поле внутри прямолинейных участков отсутствует, амплитуда ускоряющего ВЧ-напряжения устанавливается за время, которым можно пренебречь по сравнению с периодом радиально-фазовых колебаний.

Процесс инжекции разделяется на два этапа [1]. На 1-м этапе инжекции, который длится до момента включения ВЧ-поля, частицы инжектируются на мгновенную орбиту, сжимающуюся к центру из-за роста магнитного поля. В соответствии с протеканием 1-го этапа инжекции вычисляется функция распределения частиц $g_{\min}(u, \gamma)$ по координатам u и γ (где u — расстояние от внутренней пластины инфлектора до мгновенной орбиты, γ — угол между направлением вылета частиц из инфлектора и касательной к мгновенной орбите в месте, где установлен инфлектор). В отличие от функции распределения частиц по амплитудам бетатронных колебаний $\psi(A)$ [1] функция $g_{\min}(u, \gamma)$ дает возможность учесть в соотношениях захвата nизменение момента инжекции и энергии инжектируемых частиц.

Решение уравнения бетатронных колебаний на азимуте инфлектора с для ускорителей типа рейстрек имеет вид [1]:

$$\mathbf{x}_{\kappa} = F_{c}\left(\boldsymbol{\sigma}\right) \cdot \cos\left(4\boldsymbol{\mu}\boldsymbol{\kappa} + \boldsymbol{\alpha}\left(\boldsymbol{\sigma}\right)\right),\tag{1}$$

где

De

$$F_c(\sigma) = 2 \left(D \sin \sigma + d D \cdot \cos \sigma \right), \tag{2}$$

$$\alpha(\sigma) = \arg(D \cdot \sin \sigma + dD \cdot \cos \sigma),$$

$$D = \frac{\frac{x_1}{x} d^* - x_0}{d^* - d}, \quad d = \frac{c - e^{i_{,k}}}{s}, \quad d^* = \frac{c - e^{-i_{,k}}}{s},$$

107

$$c = \cos\frac{\pi}{2}x, \quad s = \sin\frac{\pi}{2}x, \quad \cos\mu = c - ps,$$
$$p = \frac{lx}{2R}, \quad \sigma = \frac{xS}{R}, \quad x = \sqrt{1 - n},$$

S — расстояние от края сектора до инфлектора по направлению движения частиц,

R — радиус равновесной орбиты,

l — длина прямолинейного промежутка,

 γ — угол между направлением вылета частицы и касательной к равновесной орбите на азимуте,

- *x*₀ начальное отклонение частицы от мгновенной орбиты,
- x_{κ} значение x на к-ом обороте ($\kappa = 0, 1, 2...$).

Выполняя операции (2) и подставляя выражения для $F_c(\sigma)$ и $\alpha(\sigma)$ в (1), получим:

$$x_{\kappa} = x_0 B(\kappa) + \frac{\gamma R}{\varkappa} A(\kappa), \qquad (3)$$

где

$$A(\kappa) = a\cos 4\mu\kappa + \frac{s(b+pa) + 2pbc}{\sin\mu}\sin 4\mu\kappa,$$

$$B(\kappa) = b\cos 4\mu\kappa - \frac{s(a+pb)}{\sin\mu}\cdot\sin 4\mu\kappa,$$

$$a = \sin\sigma, \ b = \cos\sigma.$$

В области и > 0 условие обхода инфлектора имеет вид:

$$(g+u)B(\kappa) + \frac{\gamma R}{\kappa}A(\kappa) \leqslant \Delta R_{\rm of} \kappa + u, \qquad (5)$$

где ΔR_{ob} — сжатие мгновенной орбиты за оборот,

- g расстояние от внутренней пластины инфлектора до частицы, *а*
- *и* от внутренней пластины до мгновенной орбиты в момент вылета частицы из инфлектора.
- Из (5) следуют два неравенства:

1)
$$g_1(\kappa) \leqslant \frac{1-B(\kappa)}{B(\kappa)} \cdot u - \frac{A(\kappa)}{B(\kappa)} \frac{R}{\varkappa} \gamma + \frac{\Delta R_{o6} \kappa}{B(\kappa)},$$
 (6)

если $B(\kappa) > 0$, и

2)
$$g_{2}(\kappa) \ge \frac{1-B(\kappa)}{B(\kappa)} \cdot u - \frac{A(\kappa)}{B(\kappa)} \cdot \frac{R}{\kappa} \gamma + \frac{\Delta R_{06} \kappa}{B(\kappa)},$$
 (7)

если $B(\kappa) < 0.$

В (б) и (7) для фиксированных значений $n, \Delta R_{ob}, \gamma, u$ и среди $\kappa = 1, 2, 3, ...$ найдем такое значение $\kappa = \kappa'$, при котором $g_1(\kappa')$ минимально, и такое значение $\kappa = \kappa''$, при котором $g_2(\kappa'')$ максимально. Тогда область инфлектора, вылетев из которой частицы будут захвачены в 1-й этап инжекции, равна:

$$0 \leqslant g_2(\kappa'') \leqslant g_1(\kappa') \leqslant g_1, \tag{8}$$

где g₁ — ширина инфлектора.

Аналитические методы исследования функции $g(\kappa)$ дискретного аргумента κ отсутствуют, поэтому операцию нахождения κ' и κ'' приходится выполнять численно.

В первый момент после включения ВЧ-поля частицы распределяются по фазам φ_0 ускоряющего напряжения. Область фаз (φ_1, φ_2), 108 ограниченная сепаратрисой, представляет геометрическое место точек синхротронных орбит, вокруг каждой из которых частицы распределены по положениям мгновенной орбиты в соответствии с первым этапом инжекции. Через четверть периода радиально-фазовых колебаний синхротронная орбита, имеющая начальную фазу φ_0 , будет на расстоянии $y \sim \varphi(\varphi_s)$ от равновесной орбиты, поэтому область интегрирования по *и* для данной синхротронной орбиты равняется $(0, u_1, -y)$ (φ_s — равновесная фаза, u_1 — расстояние от внутренней пластины инфлектора до центра рабочей области). Если энергия инжектируемых частиц изменилась на величину $+\Delta E$, то азимутальный размер сгустка в плоскости (φ, φ) будет равен $y_{02} - y_{01} = \varphi(\Delta E)$, а нижний предел интегрирования по *у* равен $y_0 = \frac{R_s \Delta E}{\beta^2 (1-n) E}$. В случае, когда область интегрирования по *и* не зависит от γ , заряд, захваченный в ускорение с учетом двух этапов инжекции, равен:

$$Q = \int_{\gamma_1}^{\gamma_2} \int_{0}^{y_{01}} \int_{\varphi_{01}}^{\varphi_{02}} \int_{y_0}^{y_1} \int_{0}^{u_1 - y} \int_{0}^{g_{\min}(u_1\gamma)} q(\gamma, y_0, \varphi_0, y, u, g) \times \\ \times dg du dy d\varphi_0 dy_0 d\gamma,$$
(9)

 $q - функция распределения инжектируемых частиц по углу ү, энергии <math>y_0$, начальной фазе φ_0 ВЧ-напряжения, амплитудам радиально-фазовых колебаний $y \sim \varphi(\varphi_s)$ без учета бетатронных колебаний, длительности импульса инжекции u, ширине инфлектора g;

у₁ — радиальный полуразмер сепаратрисы;

$$g_{\min}(u,\gamma) = g_{1}(\kappa') = \frac{1 - B(\kappa')}{B(\kappa')} \cdot u - \frac{A(\kappa')}{B(\kappa')} \frac{R}{\kappa} \gamma + \frac{\Delta R_{o6} \cdot \kappa'}{B(\kappa')} \cdot$$
(10)

Далее положим, что соотношение между координатами φ_0 и у линейное, т. е. если распределение частиц по фазам φ_0 равномерное, то распределение частиц по у (без учета бетатронных колебаний) можно также считать равномерным. Такое допущение можно сделать, если в выражении [1]

$$\varepsilon_{1,2} = \frac{2(1 - \varphi_s \operatorname{ctg} \varphi_s)^{1/2}}{\pi} \frac{y}{y_1} \left[1 + \kappa_{1,2} \left(\frac{y}{y_1} \right)^2 \right], \quad (10)$$

устанавливающем связь между амплитудами радиальных и фазовых колебаний, пренебречь членом $\kappa_{1,2} \left(\frac{y}{y_1}\right)^2 (\kappa_{1,2} = 0, 2 \div 0, 25; \quad 0 \leqslant y \leqslant y_1)$, который "дает небольшую поправку" [1]. Для случая равномерного распределения заряда

$$q(\gamma, y_0, \varphi_0, y, u, g) = \frac{1}{g_1 \cdot \left| \frac{dR}{dt} \right| \cdot y_1 \cdot 2\pi y_{01} (\gamma_2 - \gamma_1)}, \qquad (11)$$

где *I* — ток инжектора.

Область интегрирования по φ_0 при $\Delta E \neq 0$ можно определить, если в выражении [2]

$$\varepsilon_{y_{0}}(y = y_{1}) = \frac{\varphi_{02} - \varphi_{01}}{\pi} = \frac{2 \left(1 - \varphi_{s} \cdot \operatorname{ctg} \varphi_{s}\right)^{1/2}}{\pi} \left(\sqrt{1 - \left(\frac{y_{0}}{y_{1}}\right)^{2}} + \kappa_{1,2} \left[\sqrt{1 - \left(\frac{y_{0}}{y_{1}}\right)^{2}}\right]^{3}\right)^{2} \right)$$
(12)

109

пренебречь членом $\kappa_{1,2} \left[\sqrt{1 - \left(\frac{y_0}{y_1}\right)^2} \right]^3, \quad 0 \leqslant y_0 \leqslant y_1.$ Подставляя

(10), (11), (12) в (9), легко вычислить интегралы (9).

Помимо вышеуказанных допущений относительно вида функций $\varepsilon_{1,2}$ и ε_{y_0} , которые не носят принципиального характера, в формуле (9) не учтено изменение функции $g_{\min}(u, \gamma)$ в области мгновенных орбит, близких к синхротронной. Действительно, если мгновенная орбита совпадает с синхротронной, отстоящей от равновесной на расстоянии y, то $g_{\min}(u, \gamma)$, так как период синхротронных колебаний много больше периода бетатронных колебаний. Для каждой мгновенной орбиты максимальная амплитуда бетатронных колебаний (для ускорителя

без прямолинейных промежутков) равна $A = \sqrt{[u+g_{\min}(u, \gamma)]^2 + \left(\frac{\gamma R}{\varkappa}\right)^2}$.

Рис. 1. Функция распределения по и и у и ее изменение на 2-м этапе инжекции

Если $A < u_1 - y$, то распределение частиц по *и* находится согласно (10), если же $A > u_1 - y$, то функция распределения равна:

$$g_{\min}(u,\gamma) = g_{\min}(u,\gamma) - \{A - (u_1 - y)\}.$$
(13)

Таким образом, область интегрированил по *и* разбивается на две: (0, *u'*) и (*u'*, *u''* \approx *u*₁ — *y*), *u'* находится из условия равенства фигурной скобки нулю, а *u''* из условил $g_{\min}(u, \gamma) = 0$. На рис. 1 представлен график функции $g_{\min}(u, \gamma)$ (10), (13), расчитанный для параметров синхротрона 1,5 Гэв ТПИ. Из рис. 1 видно, что погрешность формулы (9), которая вызвана тем, что не учитывается изменение $g_{\min}'u, \gamma$) в области мгновенных орбит, близких к синхротронным, одного порядка для параллельного пучка с $\gamma = 0$ и $\gamma \neq 0$. Коэффициент захвата 110

во второй этап инжекции для параллельного моноэнергетического пучка, расчитанный по формуле (9), равен:

$$\eta_{2} = \frac{Q}{Q_{1}} = \frac{\varphi_{2} - \varphi_{1}}{2\pi} \cdot \frac{1}{2} \quad (\Pi \rho \mu \quad y_{1} = u_{1}),$$

$$\eta_{2} = \frac{\varphi_{2} - \varphi_{1}}{2\pi} \cdot \frac{3}{4} \quad \left(\Pi \rho \mu \quad y_{1} = \frac{1}{2} \quad u_{1} \right),$$
(14)

где Q₁ — заряд, захватываемый на первом этапе инжекции, $\varphi_2 - \varphi_1 = f(y_1) -$ азимутальный размер сепаратрисы.

Рис. 2. Зависимость захваченного заряда от энергетического разброса $y_{01} \sim \Delta E_{\max}$

С учетом изменения $g_{\min}(u, \gamma)$ (при $\gamma = 0$)

$$\eta_{2}^{'} = \frac{\varphi_{2} - \varphi_{1}}{2\pi} \left(\frac{1}{2} - \frac{g_{1}}{u_{1}} + \frac{3}{2} \frac{g_{1}^{2}}{u_{1}^{2}} \right) (\Pi \mu \ y_{1} = u_{1})$$

$$\eta_{2}^{'} = \frac{\varphi_{2} - \varphi_{1}}{2\pi} \left(\frac{3}{4} - \frac{g_{1}}{u_{1}} \right) (\Pi \mu \ y_{1} = \frac{1}{2} u_{1}).$$

$$(15)$$

И

_

Так как $g_1 \ll u_1$, то погрешность формулы (9) незначительна. Потери частиц за счет энергетического разброса можно оценить по формуле, которая получается из (9) при $\gamma = 0$, $y_1 = u_1$, $y_{01} = u_1 x$:

$$\frac{Q(y_{01} \neq 0)}{Q(y_{01} = 0)} = \frac{2\left[\frac{5}{16}x\sqrt{1-x^2} + \left(\frac{1}{3} - \frac{x}{8}\right)\sqrt{(1-x^2)^3} - \frac{1}{3} + \frac{5}{16}\arcsin x\right]}{x}$$
(16)

В квадратной скобке 0 < x < 1. На рис. 2 представлены следующие графики функции $\frac{Q(y_{01} \neq 0)}{Q(y_{01} = 0)}$: цифрой 1 обозначен график, рассчитанный без учета, а 1' — с учетом изменения $g_{\min}(u)$ на втором этапе инжекции для параметров синхротрона 1,5 Гэв ТПИ ($g_1 = 1,5 c m$, $u_1 = 10 cm$) и $y_1 = u_1$; цифрой 2 — график без учета, а 2' — с учетом изменения $g_{\min}(u)$ для параметров синхрофазотрона 10 Гэв ОИЯИ

г. Дубна (
$$g_1 = 3 cm$$
, $u_1 = 50 cm$) и $y_1 = \frac{1}{2} u_1$.

Рассмотрим захват параллельного моноэнергетического пучка при неоптимальных условиях захвата. Введем обозначения:

- R₁ радиус мгновенной орбиты в момент включения импульса
- инжекции; $R_2^{}$ радиус мгновенной орбиты в момент включения ВЧ-поля; $R_2^{'}$ радиус мгновенной орбиты в момент окончания импульса инжекции:

*R*_{инф} — радиус, на котором установлен инфлектор;

 $R_1 - R'_2 = u_{\mu} = \left| \frac{dR}{dt} \right| \Delta \tau_{\mu}, \quad \Delta \tau_{\mu} - длительность импульса инжекции$

 $\overline{R_s}$ — средний радиус камеры ускорителя; R_s — радиус равновесной орбиты;

- $\Delta u_{\mu} = \left| \frac{dR}{dt} \right| \Delta \tau_{\mu}, \ \Delta \tau_{\mu}$ ошибка в моменте инжекции; $\Delta u_{\rm BY} = \left| \frac{dR}{dt} \right| \Delta \tau_{\rm BY}, \Delta \tau_{\rm BY} -$ ошибка в моменте включения ВЧ-поля:

 $\Delta u_{\omega} = \frac{R_s}{\beta^2(1-n)F} \cdot \frac{\Delta \omega}{\omega_s}, \Delta \omega$ дрейф начальной частоты генератора;

$$F = 1 - \frac{1}{(2\pi R_s + L) [n + \beta^2 (1 - n)]}, \quad L = 4l;$$

$$\Delta u_E = \frac{R_s}{\beta^2 (1-n)E} \Delta E, \Delta E - дрейф энергии инжекции.$$

Изменения вышеуказанных параметров рассматриваются от цикла к циклу. На рис. З представлен частный случай: $R_1 < R_{uh\phi}$, $R_s = R_s > R_2$. Каждому положению мгновенной орбиты и соответствует область инфлектора $g_{\min}(u)$, вылетев из которой частицы не столкнутся с инфлектором. Если возвращать мгновенную орбиту электронов после того, как они совершат κ' оборотов, на прежнее место, то получим график функции gmin (u), нарисованный сплошной линией. Так как фактически мгновенная орбита двигается, то график функции $g_{\min}\left(u
ight)$ изображается штриховой линией. Из рис. З видно, что область интегрирования по и равна $[(R_{ин\phi} - R_1), u_1 - y],$ по $y - [\overline{R_s} - R_2, y_1],$ ази-

(мутальный размер сгустка: $(\varphi_{02} - \varphi_{01}) = (\varphi_2 - \varphi_1) \sqrt{1 - \left(\frac{R_s - R_2}{v_1}\right)}$. Таким образом,

$$Q = \frac{I(\varphi_{2} - \varphi_{1})}{g_{1} \left| \frac{dR}{dt} \right| \cdot y_{1} \cdot 2\pi} \sqrt{1 - \left(\frac{R_{s} - R_{2}}{y_{1}} \right)^{2}} \int_{R_{s} - R_{2}}^{y_{1}} \int_{R_{s} - R_{2}}^{y_{1}} \int_{R_{s} - R_{1}}^{y_{1} + (R_{HH\varphi} - R_{1}) - y} \times \int_{0}^{g_{\min}(u)} dg du dy.$$
(17)

Рис. 3. К расстановке пределов интегрирования по *u*, *y*, ϕ_0 при неоптимальных условиях захвата

В общем случае зависимость захваченного заряда от вышеуказанных параметров имеет вид:

$$Q = \frac{I \cdot 2 \left(1 - \varphi_{s} \cdot \operatorname{ctg} \varphi_{s}\right)^{1/2}}{g_{1} \left| \frac{dR}{dt} \right| y_{1} \cdot \pi} \sqrt{1 - \left(\frac{|R_{s} - R_{2}|}{y_{1}}\right)^{2}} \left(\int_{|R_{s} - R_{2}|}^{|R_{HH\phi} - R_{1}| - |R_{s} - R_{s}|} \times \int_{|R_{s} - R_{2}|}^{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|} \times \int_{|R_{s} - R_{2}|}^{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|} \times \int_{|R_{s} - R_{s}|}^{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|} \int_{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|}^{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|} \int_{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|}^{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|} \left(R_{HH\phi} - R_{1}| - R_{1}| - R_{1} - R_{1}|} \right) \right) \times \int_{0}^{|R_{HH\phi} - R_{1}| - |R_{s} - \bar{R}_{s}|} \int_{|R_{HH\phi} - R_{1}| - R_{1} - R_{1} - R_{1} - R_{1} - R_{1}|} \left(R_{HH\phi} - R_{1}| - R_{1} - R$$

где:

$$R_{1} - R_{\text{инф}} = \Delta u_{E} - \Delta u_{\text{и}}, R_{s} - \overline{R}_{s} = \Delta u_{\omega}, R_{2} - \overline{R}_{s} = \Delta u_{E} - \Delta u_{\text{BY}} \\ |R_{2} - R_{s}| = |(R_{s} - \overline{R}_{s}) - (R_{2} - \overline{R}_{s})| = |\Delta u_{E} - \Delta u_{\text{BY}}|$$

$$(19)$$

Подставляя (19) в (18), получим зависимость захваченного заряда от $\Delta u_{\rm BY}$, Δu_{μ} , Δu_E , Δu_{ω} . Из (18) видно, что при неравномерном распределении захваченного заряда по *и* зависимость от Δu_{μ} и Δu_E несимметрична относительно нуля. Из (18) легко показать, что для компенсации дрейфа энергии инжекции желательно сделать моменты инжекции и включения ВЧ-поля связанными. На рис. 4 представлена блок-схема моделирования соотношения (18) при $g_{\min}(u) = g_1$.

ЛИТЕРАТУРА

1. М. С. Рабинович. Основы теории синхрофазотрона. Труды ФИАН СССР, т. 10, 1958.

2. И. С. Данилкин, М. С. Рабинович. Захват частиц в синхрофазотронный режим ускорения. ЖТФ, т. 28, вып. 2, 1958.