О КОМПЛЕКСООБРАЗОВАНИИ СУЛЬФАМИДНЫХ ПРОИЗВОДНЫХ С ХИНОНОМ

Б. В. ТРОНОВ, Н. Д. СТРЕЛЬНИКОВА, Л. Т. ЩЕГЛОВА

При изучении химических свойств органических соединений, в частности при выяснении закономерностей взаимного влияния атомов в молекулах, в настоящее время внимание обращают на определение типа реакционноспособности вещества. Для этой цели наиболее удобно использовать реакции, идущие без глубокой перестройки молекул. Такому требованию удовлетворяют реакции комплексообразования [1]. Лучше всего брать комплексообразующие реагенты с сильным преобладанием какогонибудь одного типа активности-электронодонорного или электроноакцепторного. Из органических соединений сильными электронодонорами являются амины, более слабыми простые эфиры. К электроноакцепторным реагентам принадлежат кислоты и полинитросоединения бензольного ряда, например, м-динитробензол и в еще большей степени 1, 3, 5 — тринитробензол. Хиноны также известны как сильные комплексообразователи, удобные еще в том отношении, что у них процессы комплексообразования сопровождаются резким изменением окраски. Однако до сих пор нет твердо установившегося мнения о типе реакционной способности хинонов. Некоторые авторы считают, что в комплексах хингидронной группы хинон играет роль электронодонора, а фенол или гидрохинон действуют как электроноакцепторы, образуя водородную связь. Высказывается также мнение, что хингидрон и подобные ему комплексы имеют ионное строение [2].

В одной из прежних работ томских органиков отмечено, что при некоторых реакциях комплексообразования, именно при взаимодействии с карбонильными соединениями и иодистыми солями [3], хинон ведет себя подобно ароматическим полинитросоединениям, проявляя даже большую активность, чем динитробензол. Это указывает на преобладание электроноакцепторных свойств. К такому же выводу приводит сравнение активности фенолов по отношению к хинону [4]. Фенол или гидрохинон, имея сравнительно слабые кислотные свойства образуют с хиноном прочные комплексы. Хинонные комплексы трихлорфенола и трибромфенола, где активность гидроксильного водорода повышена, удалось получить только топохимическим методом [5], причем эти продукты легко теряют хинон на воздухе. Еще более кислые фенолы и динитрофенолы, как и бензойная кислота, совсем не присоединяются к парабензохинону. Пикриновая кислота снова реагирует.

Перечисленные факты можно объяснить только тем, что хинон проявляет по преимуществу электроноакцепторные свойства. Вероятно, он реагирует при этом карбонильными углеродами, имеющими довольно большой эффективный положительный заряд [6], за счет которого могут притягиваться неподеленные электронные пары фенольных кислородов. При комплексообразовании с очень сильными кислотами, к которым принадлежит пикриновая кислота, хинон, надо думать, реагирует как электронодонор.

21

За изложенное здесь понимание строения большей части комплексов хингидронного типа говорит и резкое углубление окраски по сравнению с компонентами этих комплексов. Аналогичное изменение окраски происходит и при комплексообразовании нитросоединений в тех случаях, когда последние функционируют как электроноакцепторы, например, с аминами.

Все сказанное заставляет нас отнести хиноны к реагентам с довольно сильной электроноакцепторной активностью. В качестве такого реагента хинон может быть использован при определении типа реакционноспо-

собности других органических соединений.

В настоящей работе мы применили парабензохинон при изучении комплексообразования лекарственных веществ сульфамидной группы. Было взято 12 сульфамидных препаратов, смеси которых с хиноном исследовались колориметрически. Растворителями служили этиловый спирт и диоксан. При этом было замечено, что сами растворители при продолжительном стоянии реагируют с хиноном. При спирте заметное изменение окраски начинается через 2 часа, при диоксане через 8 часов. Поэтому нам пришлось проводить измерения со свежеприготовленными растворами; задержка была не более 1 часа. Серьезное неудобство вносила плохая растворимость препаратов, которая заставляла пользоваться растворами с концентрацией не более 1/4000, а иногда и 1/16000 моля. Для сравнения были поставлены опыты с давно изученными системами: анилин-нитробензол (слабое взаимодействие) и бензидин-мета динитробензол (взаимодействие значительно более сильное). В первой системе, например, возникновение комплекса становится уже заметным при концентрации в 1/400 моля. Таким образом, наличие в наших условиях положительного результата в системах хинон-сульфамидный препарат при концентрациях в 1/16000 и даже 1/32000 моля указывает уже на значительную активность компонентов по отношению друг к другу.

По результатам наших измерений наибольшую реакционноспособность при взаимодействии с хиноном показал сульфанил-ацетамид (альбуцид), который дал резкий максимум оптической плотности при молекулярном составе 1 М сульфамида на 2 молекулы хинона, притом в обоих растворителях и при концентрации 1/16000 моля. Сульфаниламинопиридин (сульфидин) заметно реагировал только в диоксане, 2-сульфанил-амино-5-этил, 3, 4-тиодиазол (глобуцид) дал положительный результат только в этаноле и так же сульфанил-цианамид; впрочем последний в диоксане почти нерастворим.

Простейший из сульфаниламидных препаратов — белый стрептоцид, 2— сульфаниламинотиазол (норсульфазол), 2— сульфаниламинометил— 4—тиазол (сульфазол), 2—сульфаниламино—4, 6—диметил-пиримидин (сульфодилизин), сульфанилгуанидин (сульгин), сульфанилмочевина (уросульфан), 2—фталил-сульфаниламинотазол (фталазол), 4—сульфанил-сульфаниламид (дисульфан) дали отрицательные или слишком не-

определенные результаты.

Механизм образования комплексов с хиноном, по-видимому, может быть различным у разных сульфамидных препаратов. Так у сульфидина наиболее вероятно присоединение молекул хинона к азотным атомам аминогруппы и пиридинового кольца, но из двух азотов альбуцида только у одного в аминогруппе можно ожидать достаточной для комплексообразования электронодонорной активности. Аминная группа находится между серой и карбонилом и должна иметь кислотные свойства, тем более, что здесь более вероятен переход водорода к одному из кислородных атомов. Не исключена возможность, что одна молекула хинона присоединяется к аминогруппе по электроноакцепторному типу, а вторая за счет образования водородной связи, т. е. как электронодонор. У сульцимида есть очень

активная циангруппа. Две молекулы этого вещества могут присоединяться к разным атомам хинона — одна к углероду, другая к кислороду, а может быть и обе к кислородным атомам. Сульцимид имеет настолько сильные кислотные свойства, что реагирует даже с двууглекислыми солями щелочных металлов.

Экспериментальная часть

Для работы брались сульфамидные препараты перекристаллизованные из этилового спирта. Чистота взятых веществ проверялась по температуре плавления. Хинон очищался возгонкой, очищенный хинон имел т. пл. 115.2°.

Для колориметрического исследования готовились растворы в 96%-этиловом спирте, метиловом спирте и диоксане. Измерения проводились чаще через 10 молекулярных процентов в более интересных местах диаграмм через 5 и 2,5 молекулярных процентов. Суммарные концентрации компонентов были различны, они зависели от растворимости взятых для исследования веществ — от 1/200 до 1/3200 моля.

Опыты велись при температуре $20-21^\circ$. Оптическая плотность растворов измерялась фотоэлектрическим колориметром модель $\Phi \ni K-M$ в кювете длиной 50 мл с синим светофильтром. Каждая система колориметрировалась три раза. Результаты измерений представлены на рис. 1 и 2.

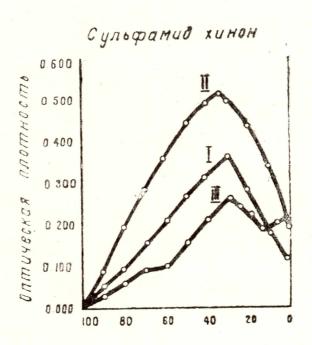
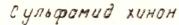



Рис. 1. Оптическая плотность системы: сульфамид хинон. І. Альбуцид-хинон в диоксане 1/1600 М. ІІ. Альбуцид-хинон в этаноле 1/600 М. ІІІ. Альбуцид-хинон в диоксане 1/600 М.

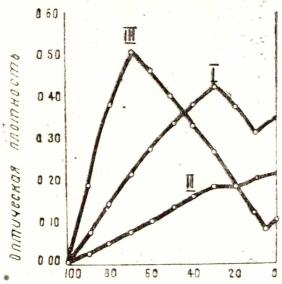


Рис. 2. Оптическая плотность системы сульфамид хинон. I. Глобуцид-хинон в этаноле 1/400 М. II, Глобуцид-хинон в дноксане 1/400 М. III. Сульцимид-хинон в этаноле 1/400 M.

1. В работе дано обоснование использования хинона в качестве довольно активного комплексообразователя с преобладанием электроноакцепторной реакционноспособности.

2. Изучены колориметрически 12 систем, в состав которых входили хинон и лекарственные препараты, сульфаниламидной группы. В четырех

системах обнаружено химическое взаимодействие.

3. Высказаны соображения о строении найденных комплексов.

ЛИТЕРАТУРА

1. Тронов Б. В. и Стрельникова Н. Д. Известия ТПИ, 71, стр. 63, Томск, 1952.

2. Грагеров И. П. и Миклухин Г. П. ХФХ, 24, стр. 582, 1950. 3. Тронов Б. В., Дьяконова-Шульц Л. Н. и Зонова Е. А. ЖРХО,

59, стр. 333, 1927. 4. Соколович В. Б. Известия ТПИ, 77, стр. 164, Томск, 1953. 5. Тронов Б. В. и Соколович В. Б. Известия ТПИ, 83, стр. 91, Томск, 1956.

6. Состояние теории химического строения в органической химии. Доклад комиссии отделения химических наук АН СССР, 1954.

ИСПРАВЛЕНИЯ И ОТМЕЧЕННЫЕ ОПЕЧАТКИ

CTF.	Стр•ка	Напечатано	Следует читать
7	11 сн.	электроноакцепторные	электронодонорные
21	11 сн.	кислые фенолы	кислые нитрофенолы, фе- нолы
22	15 сн.	сульфодилизин	сульфодимезин
33	22 св.	азопроизводимых	азопроизводных
33	7 cH.	акильных	алкильных
37	3 св.	-11-ацетаминобензальде- гину	п-ацетаминобензальдегида
38	23 сн.	сукциноксидизы	сукциноксидазы
39	21 св.	интенсивные	интенсивно
48	16 cb.	метаборнокислотного	метаборнокислого
49	12 ch.	анилинуксусная	анилин+уксусная кислота
79	6 сн.	хнояновый	яновый
93	2 сн.	до трех почти	до трех часов почти
103	4 сн.	с формальдегидом:	с формальдегидом,
104	9 сн.	Сульфат	Сульфит
118	11 сн.	ПН	AH
126	15 сн.	20-30	20 - 23
127	1 св.	углем	угля
127	6 св.	приведенных	проведенных
129	16 сн.	при температурах	при различных температурах
132	12 сн.	разделенный	раздельный
164	4 сн.	Летучие горючие	Летучие на горючую массу
169	9 сн.	давления и максимум»	давления» и максиму м
169	10 сн.	исходящую	нисходящую