ИМПУЛЬСНЫЕ СИСТЕМЫ РЕГУЛИРОВАНИЯ СКОРОСТИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ С ФАЗОВЫМ РОТОРОМ

А. И. ЗАЙЦЕВ, Ю. П. КОСТЮКОВ

(Рекомендована научным семинаром электромеханического факультета)

Основным направлением технического прогресса в области автоматизированного электропривода становится применение полупроводниковой техники и в первую очередь тиристорных устройств — наиболее экономичных и обладающих повышенной надежностью [1].

Развитие полупроводниковой техники позволяет пересмотреть вопрос о применении импульсного метода для регулирования скорости асинхронных двигателей с фазовым ротором. При применении этого метода управления можно регулировать скорость в довольно широких пределах и получать требуемые механические характеристики. Большим его достоинством является простота схем управления, быстродействие. Импульсные системы достаточно полно удовлетворяют требованиям некоторых общенромышленных механизмов (насосы, вентиляторы, компрессоры и т. д.) в отношении глубины и плавности регулирования скорости.

Как известно, регулирование скорости асинхронных двигателей с фазовым ротором осуществляется изменением сопротивления в роторной цепи и по каскадным схемам, в которых энергия скольжения через преобразовательное устройство вентильного или машинного типа возвращается в сеть [2]. Импульсный метод регулирования скорости можно применять как в том, так и другом случае. При этом в роторную цепь постоянного тока параллельно преобразовательному устройству или добавочному сопротивлению вводится схема искусственного выключения на тиристорах. Для чисто вентильных систем такая схема обладает некоторыми преимуществами с точки зрения коэффициента мощности питающей сети [3]. Рекуперируемая в сеть энергия зависит от диапазона регулирования и характера нагрузки. Преобразовательное устройство может быть общим для нескольких каскадов.

Для схем с импульсно-регулируемым сопротивлением устраняется основной недостаток реостатного способа — ступенчатость регулирования.

При импульсном методе регулирование скорости осуществляется изменением относительной продолжительности включения силового тиристора, которая равна

$$\gamma = \frac{T - t_u}{T},$$


где: Т — период повторения импульсов;

 t_n — длительность импульса, соответствующая времени, в течение которого преобразователь (или добавочное сопротивление) проводит ток.

При импульсном регулировании скорости асинхронных двигателей с фазовым ротором наиболее целесообразно применять закон коммутации с постоянным временем отключенного состояния силового тиристора и переменной частотой [4].

Для уменьшения пульсаций тока желательно выбирать t_u минимально возможным, руководствуясь предельным значением рабочей частоты силового тиристора. Так как коммутационные потери в тиристорах прямо пропорциональны частоте и току, то для получения малых значений γ при вентиляторной нагрузке вполне допустимо завышать рабочую частоту силового тиристора по сравнению с паспортной. Обычно t_u лежит в пределах $500 \div 2000$ мксек, где большие значения относятся к приводам с постоянной нагрузкой.

На рис. 1 представлена простейшая схема, в которой используется импульсно-регулируемое сопротивление для контроля скорости двигателя с фазовым ротором (АД). Дроссель Р служит для сглаживания пульсаций тока в цепи ротора.

Puc. 1.

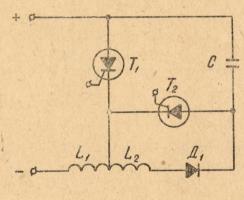
Нижний предел регулирования скорости при данной нагрузке определяется величиной добавочного сопротивления $R_{\rm d}$. При $\gamma = 0$ ток ротора замыкается через $R_{\rm d}$ и энергия скольжения рассеивается в этом сопротивлении.

Работа на большой скорости достигается увеличением относительной продолжительности включения. При =1 ротор асинхронного двигателя через выпрямительный трехфазный мост (В) закорачивается силовым тиристором схемы искусственного выключения (ИВ). Остаточное скольжение двигателя определяется падением напряжения в его роторе, выпрямительном мосте и тиристоре. Механическая характеристика почти совпадает с естественной, установка эксплуатируется при наибольшем к. п. д.

При произвольных относительных продолжительностях $(0 < \gamma < 1)$ схема искусственного выключения позволяет как бы плавно изменять значение активного сопротивления от величины $R_{\rm L}$ до 0.

Регулирование скорости введением сопротивления в роторную цепь не экономично и может применяться только для двигателей мощностью до 100 квт.

Схемы искусственного выключения на тиристо-


рах. Энергетические показатели и надежность работы импульсных систем зависят от правильного выбора частоты коммутации и схемы искусственного выключения.

Асинхронный двигатель с фазовым ротором может работать в установившемся режиме при кратковременных перегрузках и в переходном процессе, потребляя значительный пусковой ток; также возможна работа двигателя в режиме прерывистых токов; для расширения верхнего и нижнего диапазонов регулирования необходимы пределы изменения / порядка 0,05 \div 0,95. При больших токах и малых напряжениях величина коммутирующего конденсатора оказывается значительной. Все это предъявляет определенные требования к схемам искусственного выключения. Очевидно, следует отдать предпочтение схемам, у которых энергия, накопленная в коммутирующем конденсаторе, повышается с ростом тока нагрузки, что значительно облегчает процесс отключения силового тиристора. Это достигается включением индуктивности ${f L}_1$, работающей в режиме прерывистых токов. При наличии индуктивности L₁ конденсатор заряжается до напряжения большего. чем среднее значение выпрямленного напряжения (7=0). Величина эгой индуктивности выбирается небольшой (десятки микрогенри), чтобы ограничить максимум прямого напряжения на силовом тиристоре.

Величина емкости конденсатора определяется максимальной величиной коммутируемого тока, напряжением на конденсаторе и временем

восстановления управляемости силового тиристора (T_1) .

Ниже рассматриваются некоторые схемы, которые отличаются способом перезарядки конденсатора и его подключением к зажимам силового тиристора для обеспечения запирания последнего. Для упрощения рисунков цепи управления и двигателя опускаются.

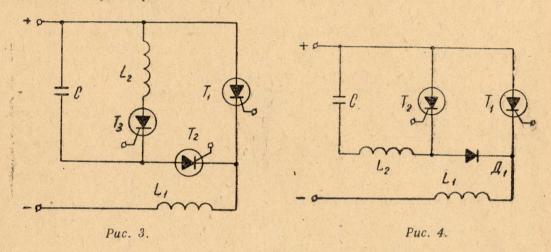
Pur 2

На рис. 2. приведена автотрансформаторная схема искусственного выключения [5, 6]:

Будем считать, что тиристор T_2 был включен. При включении T_1 нижняя обкладка конденсатсра резонансно заряжается через L_2 домаксимума положительного напряжения, котсрое удерживается блокирующим диодом \mathcal{A}_1 . Тем временем ток ротора проходит через T_1 и L_1 . После включения T_2 тиристор T_1 оказывается смещенным в обратном направлении и запирается, конденсатор перезаряжается и одновре-

менно воспринимает на себя ток нагрузки; схема искусственного вы-

ключения возвращается в исходное состояние и т. д.


Автотрансформаторная схема по принципу действия аналогична схеме, описанной в [7], за исключением того, что магнитная связь меж-

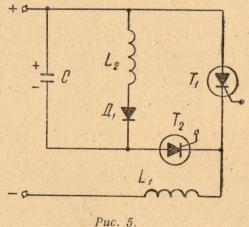
ду катушками индуктивности в последней отсутствует.

Так как конденсатор заряжается выше среднего значения напряжения двигателя при $\gamma=0$, то возможен разряд конденсатора через Π_1 , L_2 , L_1 и преобразователь или добавочное сопротивление, которые на рисунке не показаны. Уменьшение начального напряжения конденсатора зависит от параметров разрядной цепи и может быть незначительным, в противном случае эффективность коммутационной цепи резко снижается. Этот недостаток проще всего устранить заменой блокирующего диода Π_1 тиристором Π_2 , работающим синхронно с Π_1 .

На рис. З приведена модернизированная автотрансформаторная схема, в которой габариты силового тиристора не приходится завышать, так как перезаряд конденсатора происходит только через Тз. Замыкание тока нагрузки одновременно через Т3 и Т2 практически ис-

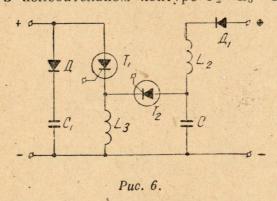
Очевидно, данные схемы целесообразно применять при частотах до 500 гц, при этом элементы конденсаторной коммутации могут иметь небольшие размеры.

Основной недостаток рассмотренных схем и аналогичных [5] трудно получить малую у при высокой частоте коммутации, так как конденсатор C перезаряжается при проводящем силовом тиристоре T_1 .


Указанных недостатков в некоторой степени лишена схема рис. 4 [8], в которой конденсатор C заряжается через вентиль \mathcal{I}_1 . После включения T_2 возникает колебательный процесс в контуре L_2 —C. Когда перезаряд конденсатора закончится, вентиль \mathcal{I}_1 начинает проводить ток и оба тиристора выключаются. Полупериод собственных колебаний контура не должен быть больше 30:40 мксек, иначе габариты конденсатора приходится увеличивать [8].

Номинальная мощность вспомогательного тиристора выбирается из соображений, что наибольший пик тока, проходящий через T_2 , превышает двойное значение тока нагрузки. Хотя T_2 проводит ток короткий промежуток времени, его габариты и стоимость будут большими при частоте модулятора равной 1000 гц и постоянной нагрузке.

Возможны и другие модификации схемы рис. 4. Так, комбинацией


вспомогательных тиристоров и насыщающихся дросселей получаются более экономичные схемы при частотах 1 кгц и менее [8].

Предлагаемая схема (рис. 5) выгодно отличается от предыдущих меньшими размерами элементов конденсаторной коммутации при частоте 1 кец и более. Когда на T_2 подается пусковой импульс, конденсатор С заряжается до напряжения указанной полярности. Резонансный перезаряд коммутирующего конденсатора происходит через катушку индуктивности L2 и блокирующий

диод Д₁ в интервале отключенного состояния силового тиристора Т₁. С приходом очередного импульса на Т₂ конденсатор С разряжается и примерно в течение времени восстановления управлямости силового тиристора воспринимает на себя ток двигателя, после этого конденсатор заряжается и все процессы повторяются. В данной схеме предъявляются определенные требования к величине индуктивности L₂, которая выбирается из условия, чтобы полупериод собственных колебаний перезарядного контура не превышал минимальной длительности периода повторения импульсов и был достаточным для восстановления управляемости вспомогательного тиристора. Таким образом, данная схема применима только при законе коммутации с постоянным временем отключенного состояния силового тиристора и переменной частотой. В схеме рис. 5 легко получить требуемую минимальную у.

Рассмотренные схемы искусственного выключения (рис. 2—5) обеспечивают надежную коммутацию в области непрерывного тока ротора и не предназначены для работы в области прерывистых токов. Этого недостатка лишена схема с зарядом конденсатора от дополнительного источника (рис. 6). Конденсатор C заряжается через катушку индуктивности L_2 и блокирующий диод \mathcal{I}_1 примерно до двойного напряжения источника питания. Минимальная длительность периода вовторения импульсов должна с небольшим запасом превышать полупериод собственных колебаний зарядного контура. Когда отпирается T_2 конденсатор C разряжается через индуктивность L_3 и на катоде T_1 ноявляется положительное напряжение, что приводит к запиранию силового тиристора. Вспомогательный тиристор запирается, когда ток в колебательном контуре T_2 — L_3 —C изменяет свое направление. Ус-

ловие нормальной работы схемы — амплитуда тока в колебательном контуре должна превышать максимальное значение тока через силовой тиристор. Для получения малого времени восстановления силового тиристора необходимо, чтобы через прибор в период восстановления протекал достаточно высокий обратный ток. С этой целью параллельно преобразовательному устройству (на рис. 6 не показано) вклю-

чается конденсатор C_1 достаточно большой емкости $(C_1 \ge C)$. Импульс обратного тока проходит в контуре $T_2 - T_1 - \mathcal{A} - C_1$ в течение нескольких микросекунд. При этом элементы коммутирующей цепи имеют небольшие размеры, по сравнению со схемой без C_1 . Основной недостаток схемы рис. 6 — наличие дополнительного источника.

В заключении отметим, что рассмотренные схемы искусственного выключения могут применяться и для других целей импульсного регулирования.

ЛИТЕРАТУРА

1. Четвертая Всесоюзная конференция по автоматизированному электроприводу. Решение. ВНИИЭМ, 1965.

2. Д. А. Завалишин, В. А. Прозоров. Основные направления и перспективы развития регулируемого электропривода переменного тока. В сб.: «Автоматизированный электропривод», Наука, 1964.

3. K. Heumann. Pulse Control of D-C and A. C. Motors by Silicon -- Controlled Rectifiers. IEEE Transactions on Communication and Electronics, 1964, V. 83,

4. А. И. Зайцев, Ю. П. Костюков. Асинхронный вентильный каскад с им-пульсным управлением. Известия ТПИ, т. 153, 1965.

5. Кремниевые управляемые вентили-тиристоры, Технический справочник (пер. с анг.), Энергия, 1964.
6. Neville W. Mapham, John C. Heu. The control of Battery Powered DC Motors Using SCR'S in the Jones circuit. IEEE International Convention Record, 1964,

No T-4.

7. Gurwicz D. Apulsed d. c. motor control system. Electrical Review, 1964, No 175, № 19.

8. R. E. Morgan. Time Ratio Control with combined SCR and SR Commutation. IEEE Transactions on Communication and Electronics, 1964, № 83, № 73.