ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 161

СТАТИЧЕСКИЕ СВОЙСТВА ПРИВОДОВ МУС-Д ПРИ РАЗЛИЧНЫХ СПОСОБАХ ВВЕДЕНИЯ ОБРАТНЫХ СВЯЗЕЙ ПО ТОКУ

В. А. СЕВАСТЬЯНОВ, А. П. ИНЕШИН

(Представлено научным семинаром кафедры Электропривод и автоматизация промышленных установок УПИ)

В [1] показано, что статические показатели привода во многом зависят от схемных решений Одним из требований, предъявляемых к приводу подачи, является постоянство статической ошибки по диапазону [2], которая не должна выходить за пределы допустимой $\pm (5 \div 10)\%$.

Аналитическое выражение статической ошибки (Δ %) для типовой разомкнутой САР МУС-Д в соответствии со схемой рис. 1 [3] и блок схемой рис. 1, а может быть представлено в виде:

$$\Delta_{\rm p}^{0/_{0}} = \frac{I_{\rm sH}(R_{\rm s} + R_{\rm \phi})}{\alpha U_{\rm H} K_{\rm MV}} \ 100, \tag{1}$$

где Un — напряжение питания обмоток управления МУС;

К_{му} — коэффициент усиления МУС по напряжению;

а — установка скорости;

*R*_я, *R*_ф — соответственно, сопротивления якоря двигателя и фиктивное сопротивление МУС;

I_{ян} — номинальное значение тока якоря двигателя.

Здесь в общем случае R_{ϕ} и $K_{\rm му}$ являются сложными функциями α , а R_{ϕ} зависит, кроме того, от тока нагрузки I_{π} .

Полагая пока, для упрощения анализа, что $K_{MY}(\alpha) = \text{const}, R_{\Phi}(\alpha) = R_{\Phi \text{ cp.}} = \text{const}$ и не зависит от I_{π} , можно считать, что

$$\Delta_{\rm p}^{0/0} = \frac{A}{\alpha},$$

где

$$A = \frac{I_{_{\rm SH}} (R_{_{\rm S}} + R_{_{\oplus}})}{U_{_{\rm I}} K_{_{\rm MY}}} \ 100 = \text{const.}$$

Видим, что $\Delta_{\rm p}^{0/0}(\alpha)$ изменяется примерно по гиперболическому закону. На рис. 2 построена зависимость $\Delta_{\rm p}^{0/0}(\alpha)$ для ПМУ9М. Из анализа этой кривой следует, что в разомкнутой САР, с учетом принятых допущений, $\Delta_{\rm p}^{0/0}(\alpha)$ изменяется по диапазону в больших пределах и выходит за рамки допустимых.

121

В реальном приводе $R_{\phi}(\alpha) \neq \text{const}$, а изменяется согласно проделанным расчетам от 23 до 2 *ом*, что приводит к перераспределению $\Delta_p^{0/0}(\alpha)$ по диапазону (рис. 2, кривая 1 пунктиром): возрастанию ее при $\alpha < 0,5$ и уменьшению при $\alpha > 0,5$. Причем при $\alpha = 1$, $\Delta_p^{0/0} = 400\%$, при $\alpha = 0,1$. $\Delta_0^{0/0} = 400\%$.

Рис. 1. Блок-схемы.

Очевидно такой привод не обеспечивает необходимого диапазона регулирования скорости и не удовлетворяет требованиям предъявляемым механизмом подачи станков.

Для повышения жесткости механических характеристик и расширения диапазона регулирования скорости в глубокорегулируемых приводах МУС-Д применяют обратные связи по напряжению, току якоря, скорости двигателя и др. Выявим влияние обратной связи по напряжению якоря $U_{\rm s}$ на статическую ошибку.

Статическая ошибка САР замкнутой единичной жесткой отрицательной обратной связью по напряжению якоря (ж. о. о. с. н.), в соответствии с блок схемой рис. 1, **б** будет:

$$\Delta_{36}^{0/0} = \frac{I_{_{\rm SB}} \left(R_{_{\rm S}} + \frac{R_{_{\oplus}}}{1 + K_{_{\rm My}}} \right)}{\alpha U_{_{\rm I}} K_{_{\rm My}}} \ 100.$$
 (2)

Здесь $U_{\rm n} = \frac{U_{\rm n}'}{1+K_{\rm My}}$, где $U_{\rm n}'$ — напряжение питания в замкнутой САР. Из (2) следует, что ж. о. о. с. н. в системе МУС-Д уменьшает R_{ϕ} в (1+ $K_{\rm My}$) раз, а следовательно и $\Delta_3^{0/0}$. Так как все величины входящие в (2) могут иметь только

положительные значения, то при всех значениях а соблюдается условие $\Delta_{36}^{0_{10}} > 0$. Принимая те же допущения, на рис. 2 показана зависимость $\Delta_{36}^{\prime 0}(\alpha)$ (кривая 2), рассчитанная согласно уравнению (2) для тех же прочих равных условий. Из них следует, что при введении ж. о. о. с. н. в закон регулирования Дзб также изменяется в функции а по убывающему примерно гиперболическому закону, однако при одном и том же а, $\Delta_{35}^{0/0}$ имеет меньшее значение, чем в разомкнутой САР. Здесь же для сравнения (пунктиром) приведена эта зависимость с учетом изменения $R_{\phi}(\alpha)$ по диапазону. Из нее

1-для разомкнутой САР, 2-для САР с обратной связью по напряжению.

следует, что снижение $\Delta_{36}^{0/0}$ существенно сказывается лишь на больших скоростях при $\alpha = 1$, то есть при небольших R_{ϕ} (здесь $\Delta = 20\%$), в то время как внизу диапазона, ввиду малого $K_{\rm My}$ и большого $R_{\phi}(\alpha) \gg R_{\rm R}$, действие ж. о. о. с. н. оказывается недостаточным и $\Delta_{36}^{0/0}$ остается недопустимо большой. Следовательно, в системах МУС-Д ввиду нелинейности $R_{\phi}(\alpha)$ и $K_{\rm My}(\alpha)$, ж. о. о. с. н. может обеспечивать необходимую жесткость механических характеристик лишь на больших скоростях, а ее действие внизу диапазона оказывается недостаточным.

Статическая ошибка САР при наличии жесткой положительной обратной связи по току (ж. п. о. с. т.) в соответствии с блок-схемой рис. I, в имеет вид:

$$\Delta_{3B}^{0/0} = \frac{I_{\rm SH} (R_{\rm S} + R_{\rm \phi} - K_{\rm ot} R_{\rm T})}{a U_{\rm n} K_{\rm MV}} 100,$$

где $K_{or} = 0.82 \frac{W_1}{W_2}$ — коэффициент обратной связи по току,

(3)

*R*_т — сопротивление выделения сигнала обратной связи по току.

Из анализа (3) следует, что здесь $\Delta_{3B}^{0/0}$ может принимать как положительные, так и отрицательные значения. Причем, при $R_{\phi} = \text{const}$ знак $\Delta_{3B}^{0/0}$ определяется величиной $K_{\text{от}} R_{\tau}$ и не зависит от уставки скорости α . Действительно, при $K_{\text{от}} R_{\tau} > R_{\phi}$. $\Delta_{3B}^{0/0}$ имеет положительное значение при всех значениях α и наоборот, при $K_{\text{от}} R_{\tau} < R_{\phi}$, $\Delta_{3B}^{0/0}$ принимает отрицательное значение. Уменьшение $\Delta_{3B}^{0/0}$ по диапазону происходит обратно пропорционально α , поэтому существенное снижение $\Delta_{3B}^{0/0}$ наблюдается на больших скоростях ($\alpha \approx 1$).

В реальном приводе при $\alpha \to 1$, $R_{\phi}(\alpha)$ резко уменьшается. Это приводит к возрастанию $\Delta_{3B}^{0/0}$ внизу и уменьшению ее вверху диапазона. Причем, так как $K_{\text{от}} R_{\text{т}} = \text{const}$, $\alpha U_{\text{п}} K_{\text{му}} \neq \infty$ и $I_{\text{ян}} \neq 0$, $\Delta_{3B}^{0/0}$ меняет знак при $R_{\text{я}} + R_{\phi}(\alpha) = K_{\text{от}} R_{\text{т}}$, что следует из семейства кривых $\Delta_{3B}^{0/c}$, рис. 3 (пунктиром), рассчитанных согласно уравнению (3) для различных значений $K_{\text{от}}$.

Из них также следует, что в системах МУС-Д ввиду нелинейности $R_{\phi}(\alpha)$ введение ж.п.о.с.т. способствует существенному снижению статической ошибки лишь на верхнем пределе диапазона регулирования скорости (при α≈1). Причем при соответствующих значениях Кот, действие ж.п.о.с.т. может оказаться избыточным, что приводит к перекомпенсации на больших скоростях, эффективности недостаточной действия внизу диапазона при α=0,1 и общей неравномерности распределения $\Delta_{3B}^{0/0}$ по диапа-**30HV**.

Следовательно, в системах МУС-Д, ж.п.о.с.т. дает положительный эффект внизу диапазона только при условии перекомпенсации на больших скоростях. Из сопоставления характеристик рис. 3 (пунктирных и сплошных) видно, что все они пересекаются в одной зоне ($\alpha = 0,5 \div 0,6$), соот-

ветствующей среднему фиктивному сопротивлению, принятому при расчете постоянным и равным 14 ом.

Для устранения перекомпенсации на больших скоростях ($\alpha = 1$) необходимо, чтобы действие ж.п.о.с.т. ослаблялось с ростом уставки скорости. Этого можно достигнуть схемным решением, как показано на рис. 1,6 [3], когда ОТ вводится последовательно с потенциометром.

Уравнение статической ошибки в этом случае в соответствии с блок-схемой рис. 1, с имеет вид;

$$\Delta_{3\kappa}^{0/0} = \frac{\alpha U_{\Pi} + I_{\Pi H} \left[-\frac{\Phi_{\mu}}{\sigma} - K_{\text{or}} R_{\tau} \left(1 - \alpha \right) \right]}{\alpha U_{\Pi} K_{\text{My}}} 100.$$

Здесь при a=0 выражение (4) аналогично (3) и эффективность действия ж.п.о.с.т. постоянна и не зависит от уставки скорости α. При $\alpha = 1, \ \Delta_{3\pi}^{0/0} = \Delta_{p}^{0/0},$ что равносильно отсутствию обратной связи. Знак ошибки по-прежнему определяется величиной K_{or} , но зависит

ot a.

На рис. 4 приведено семейство кривых $\Delta_{3\kappa}^{0}$, рассчитанных по уравнению (4) для различных $K_{\rm or}$ и $R_{\phi} = R_{\phi \, cp}$. Из них следует, что при α<0,5 они ничем не отличаются от таковых, приведенных на рис. 3. При $\alpha = 1$ они все пересекаются в одной характерной точке «а», соответствующей разомкнутой САР (рис. 2 кривая 1):

$$\Delta_{3\pi}^{0/0}(1) = \Delta_{p}^{0/0} = \frac{I_{_{\rm SH}}(R_{_{\rm S}} + R_{_{\rm \Phi}})}{{}_{a}U_{_{\rm I}}K_{_{\rm My}}} 100.$$

В реальном приводе ввиду нелинейности R_φ (α) точка «а» сдвигается вниз (точка a'), что вызывает уменьшение ошибки при a=1 ввиду малости $R_{\phi}(\alpha)$.

При a<0,5, ввиду большого R_ф. ошибка соответственно возрастает. Это приводит к ухудшению неравномерности разпределения $\Delta_{3\pi}^{0/0}$ по диапазону.

Рис. 4. Зависимость $\Delta_{3x}^{0/o} = f(\alpha)$ для раз-личных значений K_{or} : сплошные — для $R_{\phi} = R_{\phi cp}$, штриховые — дла $R_{\phi} = f(\alpha)$. Рис. 5. Зависимость $\Delta_{3r}^{0/0} = f(\alpha)$ для раз-личных значений K_{or} : сплошные — для $R_{\phi} = R_{\phi} c_{p}$, штриховыми — для $R_{\phi} = f(\alpha)$.

Знак $\Delta^{0/0}_{3*}$ определяется из условия:

$$R_{\pi} + R_{\Phi}(\alpha) \geq K_{\text{or}} R_{\tau} (1 - \alpha)$$
(5)

и зависит от интенсивности изменения членов. $R_{\phi}(\alpha)$ и $K_{\text{от}} R_{\tau} (1-\alpha)$ неравенства (5) по диапазону. Причем, так как в реальном приводе при $\alpha \rightarrow 1, K_{\text{от}} R_{\text{т}} (1 - \alpha)$ уменьшается, обычно, быстрее, чем $R_{\pi} + R_{\phi} (\alpha)$, то

125

(4)

всегда соблюдается условие $\Delta_{3,\mathbf{x}}^{0,\prime_0} > 0$. Из кривых рис. 4 также видно, что введение одной ж. п. о. с. т. с ослаблением при возрастании с ввиду $R_{\Phi} \gg R_{\pi}$ может обеспечить необходимое значение $\Delta_{3,\mathbf{x}}^{0,\prime_0}$ только вверху диапазона и оказывается обычно недостаточной при $\alpha = 0,1$. Поэтому применение в приводах МУС-Д одной ж. п. о. с. т. с ослаблением при изменении скорости не целесообразно.

Положительный эффект дает применение единичной ж.о.о.с.н. в сочетании с ж.п.о.с.т. В этом случае выражение статической ошибки в соответствии со схемой рис. 1,*a* [3] и блок-схемой рис. 1,*г* будет:

$$\Delta_{3r}^{0/0} = \frac{I_{\rm sH} \left(R_{\rm s} + \frac{R_{\rm b}}{1 + K_{\rm My}} - \frac{K_{\rm or} R_{\rm T} K_{\rm My}}{1 + K_{\rm My}} \right)}{\alpha U_{\rm n} K_{\rm My}} 100.$$
(6)

Из (6) следует ,что в замкнутой САР при наличии ж.о.о.с.н. и ж.п.о.с.т. знак ошибки определяется алгебраической суммой членов входящих в числитель и зависит от их величины. Причем, так как то единицей в знаменателе можно пронебречь. Тогда при $K_{\rm MV} \gg 1$, знак ошибки определяется также величиной Кот Rт и не $R_{\rm db} = {\rm const}$ зависит от установки скорости а. Однако наличие ж.о.о.с.н. уменьшает член содержащий R_ф в K_{му} раз, поэтому снижение ошибки до допустимого значения достигается теперь при меньших значениях Кот по сравнению с предыдущим вариантом. Это снижает неравномерность распределения $\Delta_{3r}^{0/0}$ по диапазону, что видно из зависимостей $\Delta_{3r}^{0/0}$ (α), рассчитанных по уравнению (6) для различных значений Кот и приведенных на рис. 5. В реальном приводе ввиду нелинейности $R_{\phi}(\alpha)$ про-исходит перераспределение $\Delta_{3r}^{0/0}$ по диапазону, так как эти характеристики пересекаются соответственно в зоне $R_{\phi} = R_{\phi cp}$. Однако теперь направление перераспределения $\Delta_{3r}^{0/0}$ по диапазону, по отношению к ее среднему значению ($R_{\Phi} = 14_{\rm om}$), зависит от знака ошибки, которая определяется величиной $K_{\rm or}$ и $R_{\Phi}(\alpha)$. Так, например, при небольших $K_{\rm or}$ (область положительных $\Delta_{3r}^{0/0}$) для значений $\alpha > 0.5$, $\Delta_{3r}^{0/0}$ возрастает, что приводит к увеличению неравномерности распределения $\Delta_{3r}^{0/0}$ по диапазону, требует уменьшения ее при $\alpha = 0,1$ и увеличения на больших скоростях. При больших Кот (область отрицательных $\Delta_{3r}^{(0)}$ для $\alpha < 0.5$ ошибка уменьшается, что приводит, как и раньше, к некоторому выравниванию ее по диапазону, что могло бы быть полезным, однако практически работа привода при перекомпенсации не применяется.

Условием положительности ошибки является:

$$R_{\pi} + \frac{R_{\phi}}{K_{\text{my}}} > K_{\text{or}} R_{\text{T}} .$$
(7)

Сравнивая (5) и (7) видим, что при прочих равных условиях перекомпенсация получается теперь при меньших значениях $K_{or} R_{\tau}$, так как $\frac{R_{\Phi}}{K_{my}} < R_{\Phi}$.

Из кривых рис. 6 также следует, что при небольших значениях K_{or} ($K_{or} \approx 0.5$) можно получить достаточно равномерное распределение ошибки и, следовательно, жесткие механические характеристики в небольшом диапазоне (5÷8). При этом $\Delta_{3r}^{9/o}$ не выходит за пределы допустимой ($\Delta = \pm 10$). Для получения более широкого диапазона необходимо увеличивать K_{or} . Однако при больших K_{or} (0,1 и выше) наблю-126 дается перекомпенсация вверху диапазона, что приводит к возрастающему характеру механических характеристик (— $\Delta_{3\Gamma}^{0/0}$).

Более равномерное распределение ошибки по диапазону может быть получено для блок-схемы рис. 1, ∂ , составленной в соответствии со схемой рис. 1,б [3] и уравнением (8), когда ж.п.о.с.т. с ростом уставки скорости ослабляется за счет множителя (1— α), а действие ж.о.о.с.н. остается постоянным. В этом случае статическая ошибка при принятых допущениях может быть представлена в виде:

$$\Delta_{3\mu}^{0/0} = \frac{I_{\rm gH} \left[R_{\rm g} + \frac{R_{\rm \phi}}{1 + K_{\rm My}} - \frac{K_{\rm oT} R_{\rm r} K_{\rm My}}{1 + K_{\rm My}} (1 - \alpha) \right]}{\alpha U_{\rm ff} K_{\rm My}} 100.$$
(8)

Здесь при $\alpha = 1$ выражение (8) ничем не отличается от (2), что равносильно отсутствию ж.п.о.с.т., а при $\alpha = 0$ приобретает вид уравнения (6), со всеми вытекающими из него особенностями.

Поэтому структура такой САР, в смысле изменения ее параметров, является переменной по диапазону и занимает промежуточное значение между вариантами рис. 1 a и b [3]. Знак ошибки при фиксированном значении R_{ϕ} по-прежнему определяется величиной K_{or} и зависит, кроме того, от a.

На рис. 6 приведено семейство кривых $\Delta_{3\pi}^{0/0}(\alpha)$, расчитанных согласно уравнению (8) для различных значений $K_{\text{от}}$ и $R_{\phi} = \text{const.}$ При малых значениях α они ничем не отличаются от таковых, приведенных

на рис. 5 и знак ошибки определяется величиной K_{or} . Однако при $\alpha = 1$, они пересекаются все в одной характерной точке «б», независимо от величины K_{or} , соответствующей:

$$\Delta_{3A}^{0/0}(1) = \Delta_{36}^{0/0} =$$

$$= \frac{I_{gH} \left(R_{g} + \frac{R_{\phi}}{1 + K_{MY}} \right)}{U_{\Pi} K_{MY}} 100,$$

что имело место при отсутствии ж. п. о. с. т. рис. 2 (кривая 2).

В реальном приводе ввиду нелинейности $R_{\phi}(\alpha)$ точка «б» смещается вниз (точка б'), то есть $\Delta_{3\pi}^{0/0}$ уменьшается, а при $\alpha < 0.5$ ввиду большего $R_{\phi} \gg R_{\pi}$ возрастает.По-прежнему характеристики пересекаются, соот-

Рис. б. Зависимость $\Delta_{3\mu}^{0/0} = f(a)$, для различных значений $K_{\text{то}}$: сплошные — для $R_{\phi} = R_{\phi}$ ср. штриховыми — для $R_{\phi} = f(a)$.

ветственно, в зоне $R_{\phi} = R_{\phi \ cp} = 14 \ omegamma,$ что вызывает увеличение неравномерности распределения $\Delta_{3\pi}^{0/0}$ по диапазону ввиду нелинейности $R_{\phi}(\alpha)$. Однако в этом случае введение ж. о. о. с. н. приводит к уменьшению R_{ϕ} в $(1 + K_{MY})$ раз, что обеспечивает при соответствующем выборе K_{oT} вполне допустимую ошибку при $\alpha = 1$, а ж. п. о. с. т. ввиду эффективности действия при $\alpha = 0,1$ компенсирует несколько возрастание $\Delta_{3\pi}^{0/0}$ внизу диапазона (где ввиду малости α в знаменателе (8) и $R_{\phi} \gg R_{\pi}$

 $\Delta_{3\pi}^{0/0}$ имеет большие значения) не оказывая практического воздействия при $\alpha = 1$. В результате происходит некоторое выравнивание $\Delta_{3\pi}^{0/0}$ в диапазоне 1:10, что является вполне приемлемым для приводов подачи тяжелых станков.

Вполне удовлетворительное распределение ошибки в диапазоне 1:30 дает вариант схемного решения рис. 1, г [3]. Статическая ошибка для этого случая согласно блок-схеме рис. 1, з может быть представлена в виде:

$$\Delta_{33}^{0/0} = \frac{I_{_{\mathrm{H}\mathrm{H}}} \left[R_{_{\mathrm{H}}} + \frac{R_{_{\oplus}}}{1 + (1 - \alpha) K_{_{\mathrm{M}\mathrm{y}}}} - \frac{K_{_{\mathrm{OT}}} R_{_{\mathrm{T}}} (1 - \alpha) K_{_{\mathrm{M}\mathrm{y}}}}{1 + (1 - \alpha) K_{_{\mathrm{M}\mathrm{y}}}} \right]}{\alpha U_{_{\mathrm{H}}} K_{_{\mathrm{M}\mathrm{y}}}} 100.$$
(9)

Пренебрегая единицей в знаменателе ввиду $K_{\rm My} \gg 1$ получим:

$$\Delta_{33}^{0} = \frac{I_{\rm SH} \left[R_{\rm S} + \frac{R_{\rm \phi}}{(1-o) K_{\rm My}} - K_{\rm or} R_{\rm T} \right]}{a U_{\rm H} K_{\rm My}} 100.$$

Здесь при $\alpha \to 1$ ввиду $R_{\phi} \gg R_{\pi}$ слагаемое $\frac{R_{\phi}}{(1-\alpha) K_{My}}$ принимает большое численное значение, которое, однако, при выборе $K_{\text{от}}$ из условий нижнего предела диапазона, может быть скомпенсировано до желаемого величиной $K_{\text{от}} R_{\tau}$.

В связи с тем, что при принятых допущениях вычитаемое $K_{\text{от}} R_{\text{т}} = \text{const}$, а слагаемое $\frac{R_{\phi}}{(1-\alpha) K_{\text{му}}}$ при $\alpha \to 0$ ввиду нелинейности R_{ϕ} с ростом α уменьшается, то $\Delta_{33}^{0/0} \to 0$ и при соответствующем $K_{\text{от}}$ может принимать отрицательные значения.

Условием $\Delta_{33}^{0/0} = 0$ является:

$$R_{\pi} + \frac{R_{\phi}}{(1-\alpha) K_{\rm MV}} = K_{\rm or} R_{\rm T}.$$

При $\alpha > 0.8$, $R_{\phi} \approx \text{const}$, поэтому дальнейшее уменьшение члена $(1 - \alpha) K_{\text{му}}$ приводит к возрастанию $\Delta_{33}^{0/0}$. Наконец, при $\alpha = 1$, $(1 - \alpha) K_{\text{му}} \rightarrow 0$, а $\Delta_{33}^{0/0} \rightarrow \infty$. Однако, ввиду наличия единицы в знаменателе, которой ранее пренебрегали, $\Delta_{33}^{0/0}(1) = \Delta_{p}^{0/0}$, (единицей можно пренебрегать только при небольших α).

В результате ошибка колеблется по диапазону в допустимых пределах $\pm 10\%$, а при $\alpha = 1$, $\Delta_{33}^{0/0} = \Delta_p^{0/0}$.

На рис. 7 показаны кривые $\Delta_{33}^{0/0}(\alpha)$, построенные согласно (9) для различных значений $K_{\text{от}}$: сплошная для $R_{\phi} = \text{const}$, пунктиром для $R_{\phi}(\alpha) = Var$. Все кривые пересекаются в точках «а» и (a') при $\alpha = 1$, соответствующих разомкнутой САР.

$$\Delta_{33}^{0/9}(1) = \Delta_{p}^{0/0} = \frac{I_{_{\rm HH}}(R_{_{\rm H}} + R_{_{\rm C}})}{\alpha U_{_{\rm H}}K_{_{\rm MV}}} 100.$$

Пунктирные и сплошные характеристики пересекаются по-прежнему, соответственно, в зоне $R_{\phi} \equiv R_{\phi \ cp} = 14$ ом. При небольших значениях K_{or} (0,05 \div 0,1) — положительна. При $K_{or} > 0,1$, $\Delta_{33}^{0/0}$ в основном диапазоне отрицательна и положительное значение приобретает только на больших скоростях. Соответствующим подбором K_{or} можно подобрать вполне допустимое значение $\Delta_{33}^{0/0}$ по диапазону.

Статическая ошибка для варианта схемного решения рис. 1, в [3] в соответствии с блок-схемой рис. 1, е имеет вид:

$$\Delta_{3e}^{0/0} = \frac{I_{gH} \left[R_{g} + \frac{R_{\phi}}{1 + (1 - \alpha) K_{My}} - \frac{K_{oT} R_{T} K_{My}}{1 + (1 - \alpha) K_{My}} \right]}{\alpha U_{\Pi} K_{My}} 100.$$
(10)

Пренебрегая единицей ввиду . К_{му} » 1 получим:

$$\Delta_{3e}^{0/0} = \frac{I_{g_{H}} \left[R_{g} + \frac{R_{\phi} - K_{o_{T}} R_{T} K_{My}}{(1 - o) K_{My}} \right]}{a U_{\Pi} K_{My}} 100.$$

Здесь при небольших а ввиду большого $K_{\rm My} \gg 1$ и соизмеримого с ним внизу диапазона $K_{\rm My}(1-\alpha)$ знак ошибки определяется величиной $K_{\rm or}$ и в зависимости от его величины может принимать как положительное, так и отрицательное значения. При $\alpha \to 1$, $R_{\phi}(\alpha)$ резко уменьшается, а $K_{\rm or} R_{\rm T} K_{\rm My} = {\rm const}$, поэтому $\Delta_{3e}^{0/0}$ принимает положительное значение, которое ввиду одновременного уменьшения $K_{\rm My}(1-\alpha) \to 0$ может достигать большой величины. Поэтому такое решение практического применения не нашло.

Распределение ∆ по диапазону в варианте рис. 1, г [3] может быть улучшено при комбинированном введении ж. о. с. т., как показано на рис. 1, г (пунктиром) [3]. Статическая ошибка в этом случае в соответствии с блок-схемой рис. 1, з [3] будет:

$$\Delta_{33k}^{0/0} = \frac{I_{\text{RH}} \left\{ R_{\text{R}} + \frac{R_{\phi}}{1 + (1 - \alpha) K_{\text{My}}} - \frac{K_{\text{or}} [R_{\text{T}} + R_{\text{T}} (1 - \alpha)] K_{\text{My}}}{1 + (1 - \alpha) K_{\text{My}}} \right\}}{\epsilon U_{\text{R}} K_{\text{My}}} 100.$$
(11)

Пренебрегая по-прежнему единицей (внизу диапазона) получим:

$$\Delta_{33\kappa}^{0/0} = \frac{I_{_{\mathrm{H}\mathrm{H}}} \left[R_{_{\mathrm{H}}} + \frac{R_{_{\mathrm{\Phi}}} - K_{_{\mathrm{OT}}} R_{_{\mathrm{T}}}' (1 - \sigma) K_{_{\mathrm{M}\mathrm{y}}}}{(1 - \alpha) K_{_{\mathrm{M}\mathrm{y}}}} - K_{_{\mathrm{OT}}} R_{_{\mathrm{T}}}'' \right]}{\alpha U_{_{\mathrm{H}}} K_{_{\mathrm{M}\mathrm{y}}}} 100.$$
(12)

Из (12) следует, что в этом случае имеет место постоянно действующая составляющая $K_{\text{от}} R_{\text{т}}^{"}$, не зависящая от α . Это приводит к сдвигу кривых в область отрицательных $\Delta_{33}^{9/0}$ пропорционально значению величины $R_{\text{т}}^{"}$.

На рис. 8 приведены кривые $\Delta_{3'^{0}}^{0',0}$, построенные по уравнениям (8 и 9) для $K_{0T} = 0,115$ вариантов схем рис. 1, б и г [3]. Здесь же показаны (пунктиром) для комбинированного варианта для значений $R_{\tau}^{"} = 1, 2, 3 \text{ ом.}$ Из сравнения кривых следует, что вариант комбинированного введения ж. п. о. с. т. способствует выравниванию $\Delta_{3'^{0}}^{0',0}$ при a=1 по диапазону в схеме рис. 1, г [3] (кривая 2) и ухудшает в варианте рис. 1,б [3] (кривая 1). При остальных значениях α схемы примерно эквивалентны.

На рис. 9 (пунктиром) показаны кривые $\Delta_{3}^{0/0}(\alpha)$ для всех рассмотренных случаев введения обратных связей, рассчитаных для $K_{or} = 0,1$ и прочих равных условий. Из них следует, что наиболее благоприятное распределение ошибки по диапазону наблюдается в схеме рис. 1 б и рис. 1 г [3]. Злесь же для сравнения (сплошными линиями) нанесены кривые $\Delta_{3}^{0/0}(\alpha)$ для вариантов рис. 1, г [3] (кривая 9) и рис. 1, б [3] (кривая 7), рассчитанных при $K_{or} = 0,115$ и 0,125. Из сопоставления кривых 9—7791

Рис. 7. Зависимости $\Delta_{33}^{0/0} = f(\tau)$, для различных значений $K_{\text{от}}$: сплошные — для $R_{\phi} = R_{\phi \text{ ср}^{\bullet}}$ штриховыми — для $R_{\phi} = f(\tau)$. Рис. 8. Зависимость $\Lambda_{3}^{0/0} = f(\tau)$, для различных значений $K_{0\tau}$: сплошные — для $R_{\tau} = 0$, штриховыми — для $R_{\tau}'' = 1$; 2; 3 ом.

видно, что вариант (7) при обеспечивании более равномерного распределения ошибки по скоростям ($\Delta_{3\pi}^{0}$ имеет положительное значение в заданных пределах) неизбежно сопровождается перекомпенсацией на низких

Рис. 9. Зависимости $\Delta_{3}^{0/0} = f(r)$, для различных схемных решений.

скоростях ($\alpha \approx 0,1$). Вариант (9) освобожден от этого недостатка, однако в средине диапазона ($\alpha = 0,5 \div 0,8$) в варианте (9) $\Delta_{33}^{0/0}$ меняет знак, а при $\alpha = 1$, $\Delta_{33}^{0/0} = \Delta_p^{0/0}$, что нельзя отнести к недосгаткам, но в чем нет необходимости.

Здесь же для сравнения кривой (5) представлена зависимость $\Delta_{33}^{0',0}\kappa$ для варианта рис. 1, *г* [3] скомбинированным введением ж. п. о. с. т. для $K_{\rm or} = 0,115$, $R_{\rm T} = 32$ ом и $R_{\rm T}^{''} = 3$ ом. Из нее видно, что $\Delta_{33}^{0',0}\kappa$ не выходит за пределы $\pm 7\%$ с незначительной перекомпенсацией при $0,8 > \alpha > 0,5$.

Итак, схемным решением и соответствующим подбором параметров в вариантах (7), (9) и (комбинированном) можно добиться вполне удовлетворительного распределения ошибки по диапазону. Причем, по нашему мнению, предпочтение следует отдать варианту (9) с комбинированным введением ж. п. о. с. т.

ЛИТЕРАТУРА

1. В. А. Севастьянов, А. П. Инешин. Системы электропривода с магнитнополупроводниковыми преобразователями (МУС-Д с ППУ), Призолжское книжное из-во, 1966 г.

2. М. Е. Верхолат, Ю. Я. Морговский. Усовершенствованный электропривод подачи металлорежущих станков с диапазоном изменения скорости Д-2000, Ленинград, ЛДНТП, 1964.

3. В. А. Севастьянов, А. П. Инешин, А. П. Рыбакова. К вопросу улучшения стабилизации электропривода МУС-Д, Известия ТПИ, том. 161, 1966.