ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 164

1967

ЗАВИСИМОСТЬ КОНСТАНТЫ АНОДНОГО ПИКА В МЕТОДЕ. АПН ОТ РАДИУСА РТУТНОЙ КАПЛИ И СКОРОСТИ ИЗМЕНЕНИЯ ПОТЕНЦИАЛА. П. ОПЫТНАЯ ПРОВЕРКА

А. Г. СТРОМБЕРГ, Б. Ф. НАЗАРОВ, В. Е. ГОРОДОВЫХ

(Представлена научно-методическим семинаром ХТФ)

В предыдущей статье [1] нами сделано численное решение полученного в работе [2] теоретического уравнения для константы анодного пика К при обратимом анодном процессе растворения металла из ртутной капли радиусом *r* (*см*) при линейном изменении потенциала (со скоростью *w* вольт/сек) в зависимости от параметра є:

$$\varepsilon = \frac{1}{r} \left(\frac{D}{z \omega} \right)^{1/2},\tag{1}$$

где

D — коэффициент диффузии металла в ртути, см²/сек;

z — число электронов, участвующих в анодном процессе растворения одного атома металла.

Зависимость относительной величины $\xi = \frac{K_0}{V}$ константы анодного

пика от параметра є (в интервале вычисленных значений от 0 до 5,0) может быть удовлетворительно представлена с помощью двух приближенных формул [1]:

$$1g \,\xi = 0.29 \,\varepsilon, \tag{2}$$

$$\xi - 1 = 1,25 \,\varepsilon^2, \tag{3}$$

где K_0 — значение константы анодного пика в уравнении Рэндлса-Шевчика при полубесконечной линейной диффузии, т. е. при $\varepsilon = 0$.

Эти приближенные формулы (2) и (3) правильно отражают предельные случаи: при ε , стремящемся к нулю (*r* или *w* стремится к бесконечности), получаем $\xi = 1$ и $K = K_0$; при ε , стремящемся к бесконечности (*r* или *w* стремятся к нулю), имеем $\xi = 0$ и K = 0. Из теоретического угавнения (1) и формул (2) и (3) следует, что для разных металлов (разные *z* и *D*) при разных условиях опытов (разные *r* и *w*) зависимость ξ от ε должна быть одной и той же, т. е. на графике в координатах ξ и ε опытные точки для металлов при разных условиях опыта должны располагаться на одной кривой.

Целью данной работы является изучение зависимости константы анодного пика кадмия и таллия от радиуса ртутной капли и скорости изменения потенциала и сравнение полученных опытных данных с теоретическими расчетами.

20

Электролитическая ячейка для изучения зависимости константы анодного пика от радиуса ртутной капли описана нами ранее [3].

Проведены три серии опытов:

1. Влияние радиуса анодного пика капли на константу анодного пика таллия в интервале радиусов от $2,23 \cdot 10^{-2}$ до $11,8 \cdot 10^{-2}$ см в растворе состава $1 \cdot 10^{-3} \frac{2 - \mu O H}{\pi} T I^{+1} + 1$ м KNO₃.

2. Влияние радиуса ртутной капли на константу анодного пика кадмия в интервале радиусов $1,67 \cdot 10^{-2}$ до $9,6 \cdot 10^{-2}$ см в растворе состава $1 \cdot 10^{-3} \frac{2 - uoh}{\pi} \text{ Cd}^{+2} + 0,5 \text{ м Na}_2 \text{SO}_4$.

3. Влияние скорости изменения потенциала на константу анодного пика таллия в интервале скоростей от 4,5 · 10⁻³ до 2,0 в/сек в раст-

воре состава
$$1 \cdot 10^{-3} \frac{2 - ион}{\pi} T I^{+1} + 1$$
 м KNO₃.

Условия опытов: продолжительность электролиза 5 мин; потенциал электролиза — 0,7 в (нас.к.э.) в опытах с таллием и — 1,0 в (нас.к.э.) в опытах с кадмием; объем раствора 50 мл, температура 18°С; скорость изменения потенциала в первой серии опытов $1 \cdot 10^{-2}$ в/сек, во второй серии опытов 5,8·10⁻³ в/сек; радиус ртутной капли в 3-й серии опытов $r = 3,8 \cdot 10^{-2}$ см.

Объем ртутной канли определим, зная число капель (и вес одной капли), вытекших из полярографического капилляра и подвешенных на платиновый контакт; капли с радиусом от $1,6\cdot10^{-2}$ до $6\cdot10^{-2}$ см подвешивались на контакт диаметром $2\cdot10^{-2}$ см, а капли с радиусом $6\cdot10^{-2}$ см и выше подвешивались на контакт диаметром $5\cdot10^{-2}$ см. Радиус ртутной капли вычислялся по объему ртути в предположении, что капля является правильной сферой.

Опыты при скоростях изменения потенциала от 5,4·10⁻³ в/сек до 1,6·10⁻² в/сек проводились на регистрирующем полярографе с самописцем марки OH-101 (Венгрия), опыты со скоростями от 1,6·10⁻² и выше проводились на осциллографическом полярографе OП-3.

Константа анодного пика вычислялась по опытным данным по формуле¹).

$$\mathbf{K} = \frac{zF}{3} \frac{Ir}{q},\tag{4}$$

где I — глубина анодного зубца, a; r — радиус ртутной капли, cm; q — количество электричества, прогекающее через электролизер при анодном растворении металла, *кулон* (определялось по площади под зубцом); F — постоянная Фарадея; z — число электронов на один атом металла. При вычислении параметра ε по формуле (1) для коэффициентов диффузии таллия и кадмия в ртути были приняты значения соответственно $1,03 \cdot 10^{-5}$ и $1,60 \cdot 10^{-5} cm^2/ce\kappa$ [4]. Константа K_0 вычислялась по формуле (5)

$$K_0 = 2,68 \cdot 10^5 \ \boldsymbol{z}^{3/2} \ \boldsymbol{\omega}^{1/2} \ D^{1/2}. \tag{5}$$

Результаты опытов представлены в таблице и на рис. 1 — 3. Из рис. 1 видно, что в качественном согласии с теорией с увеличением

где S — поверхность ртутной капли, см²;

С — концентрация атомов металла в капле, 2-атом

¹) Константа анодного пика является коэффициентом в выражении для глубины анодного зубца: I = KSC,

параметра є (с уменьшением радиуса капли r и скорости изменения • потенциала w) константа анодного тока уменьшается. Однако количественного совпадения теоретической зависимости с опытными данными нет. Как видно из рис. 2 и 3, опытные точки на графиках Таблица

1-я серия			2-я серия			3-я серия			
№ п.п.	$\left \begin{array}{c} r \times 10^{2},\\ c_{\mathcal{M}} \end{array}\right $	К, <u>а.см</u> г-атом	№ п.п.	$r \times 10^2,$ c M	К, <u>а.см</u> г-атом	№ п.п.	w × 103, в∣сек	К, <u>а.с.м</u> г-атом	К ₀ , <u>а.см</u> г-атом
1	2,23	41,0	1	1,64	80,5	1	2,00	21,7	38,9
2	2,8	44,6	2	2.07	96.0	2	4,60	39	55,3
3	3,53	50,0	3	2,83	120,0	3	10,0	66	87,6
4	4,75	56,5	4	3,61	127,0	4	16,6	86	. 113 .
5	6,00	75,0	5	4,46	124,0	5	33,3	137	160
6	6,45	75,0	6	6,07	142	6	66,6	214	226
7	8,15	75,6	7	7,01	148	7	133,3	365	315
8	10,3	78,4	8	7,65	136	8	266,6	450	446
9	11,8	73,5	9	8,74	152	9	533,3	650	636
10	1.1.1	12 1 19	10	9,60	138	10	1066,6	930	935

Влияние радиуса ртутной капли, скорости изменения потенциала на константу . анодного пика

1) Значения Ко, вычисленные по формуле (5).

Рис. 1. Зависимость константы анодного тока таллия и кадмия от радиуса ртутной капли и скорости изменения потенциала. Кривая 1—терретическая; 2—таллий, влияние r, (1-я серия опытов белые кружки) и кадмий, влияние r (2-я серия опытов двойные кружки); 3—таллий, влияние w (3-я серия опытов черные кружки). Условия опытов указаны в тексте.

в координатах
$$\left(\lg \frac{1}{\lg \xi} \ \mathsf{u} \ \lg \frac{1}{\varepsilon} \right) \mathsf{u} \left(\lg \frac{1}{\xi - 1} \ \mathsf{u} \ \lg \frac{1}{\varepsilon} \right)$$
 удовлетвори

тельно располагаются на прямых линиях, и зависимости ξ от ε в разных сериях опытов могут быть представлены следующими эмпирическими формулами.

В 1-й и 2-й сериях опытов

$$\lg \xi = 0,25 \, \varepsilon^{0,8} \tag{6}$$

или

$$\xi - 1 = 0.785 \varepsilon.$$
 (7)

В 3-й серии опытов

$$\lg \xi = 0,141 \, \varepsilon^{0,8} \tag{8}$$

или

$$\xi - 1 = 0.413 \epsilon$$
 (9)

Кроме того, не вполне выполняется требование теории, чтобы опытные точки в координатах § и є укладывались на одну кривую независимо от

природы металла и услсвий опыта. Причиной такого несоответствия теории опытным данным является, по-видимому, то, что теоретический вывод делается для условий которые не вполне выполняются на опыте. Это различие условий связано в первую очередь с тем, что диффузия на ртутной капле не является вполне симметричной. Кроме того, для самых маленьких и самых больших ртутных капель их форма сильно отличается от сферической, что не учитывается в расчетах.

Заметим (в дополнение к сказанному в начале статьи), что эмпирические формулы (7 и 9) удовлетворительно отражают следствия теории

Рис. 3. Проверка интерполяционной формулы (3) по опытным данным. Номера кривых и обозначения точек те же, как в подписи к рис. 1.

анодных зубцов. Перепишем эти формулы с учетом выражения (1) в виде:

$$\mathbf{X} = \mathbf{K}_{0} \quad \frac{r w^{1/2}}{r w^{1/2} + A \left(\frac{D}{z}\right)^{1/2}},$$
(10)

где A — коэффициент, не зависящий от r и w.

При малых r или w, когда $rw^{1/2} << A\left(\frac{z}{D}\right)^{1/2}$, слагаемым $rw^{1/2}$ в знаменателе можно пренебречь и, учитывая (5), написать

$$\mathbf{K} = \frac{2,68 \cdot 10^5}{A} z^{1/2} \, \boldsymbol{\omega} \, 3q. \tag{11}$$

Таким образом, эмпирические формулы (7) и (9) правильно отражают вывод теории [2], что при малых скоростях изменения потенциала *w*

23

глубина анодного зубца становится пропорциональной w (в первой степени). Для глубины анодного зубца получаем из (11)

$$I = K SC = \frac{2,68 \cdot 10^5}{A} z^{1/2} w \, 3q \,, \tag{12}$$

$$v = vC, \tag{13}$$

(v — объем ртутной капли). Формула (12) правильно отражает вывод теории [2], что при малых r и w глубина анодного зубца становится пропорциональной не концентрации, а количеству металла в капле.

Выводы

1. На примере обратимых анодных зубцов таллия и кадмия в методе АПН изучена зависимость глубины анодноог зубца от радиуса ртутной капли и от скорости изменения потенциала в широком интервале радиусов капли и скоростей изменения потенциала.

2. Опытные данные в полуколичественном согласии с теорией показывают, что с уменьшением радиуса ртутной капли или скорости изменения потенциала константа анодного тока уменьшается.

3. Обсуждены возможные причины, приводящие к некоторому несоответствию между теорией и опытом.

ЛИТЕРАТУРА

1. В. Е. Городовых, А. Г. Стромберг, Б. Ф. Назаров. Зависимость константы анодного пика от радиуса ртутной капли и скорости изменения потенциала, І. Теория. Настоящий сборник. 2. В. Е. Городовых. Изв. ТПИ, 128, 3, 1965. 3. Б. Ф. Назаров, А. Г. Стромберг. Электрохимия, в печати. 4. А. Г. Стромберг, Э. А. Захарова. Электрохимия, в печати.