ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 164

1967

ПОЛЯРОГРАФИЧЕСКИЕ КОЭФФИЦИЕНТЫ НЕКОТОРЫХ ЭЛЕМЕНТОВ В МЕТОДЕ АМАЛЬГАМНОЙ ПОЛЯРОГРАФИИ С НАКОПЛЕНИЕМ

Сообщение II

М. С. ЗАХАРОВ, А. В. КОНЬКОВА

(Представлена научно-методическим семинаром ХТФ)

Как известно, для одного и того же элемента на различных фонах при различных гидродинамических условиях во время накопления вещества в ртутном электроде и рН раствора могут получаться анодные зубцы, разные по форме, глубине и т. д. В связи с этим для характеристики анодных зубцов, катодных пиков и тока электролиза в работах [1, 2] предложен ряд коэффициентов γ_n^0 , γ_9^0 , γ_4^0 , γ_{ϕ}^0 , γ_{ϕ}^0 , γ_{ϕ}^0 , γ⁰_к − коэффициенты перемешивания, электролиза, чувствительности, формы, ослабления и концентрирования при стандартных условиях $(t = 25^{\circ} \text{ C}, w = 10^{-2} \text{ s/cek}; K_1 = 500z \text{ a.cm.monb}^{-1}):$

$$\gamma_{\Phi}^{0} = \frac{K_{2}^{0}}{K_{3}^{0}} = \frac{K_{2}}{K_{3}}; \tag{1}$$

$$\gamma_{n}^{0} = \frac{500z D_{1}^{0,45}}{K_{3}^{0}}; \tag{2}$$

$$\gamma_{\kappa}^{0} = 100, (3); \quad \gamma_{0}^{0} = \frac{\gamma_{\Phi}^{0}}{\gamma_{\pi}^{0}}, \quad (4); \quad \gamma_{3}^{0} = 100\gamma_{0}^{0}, \quad (5); \quad \gamma_{4}^{0} = 100\gamma_{\Phi}^{0}, \quad (6);$$

$$K_3^0 = K_3 \frac{0.1}{\boldsymbol{w}^{1/2}},$$
 (7); $K_3 = \frac{I_3}{SC},$ (8); $K_2 = \frac{z \operatorname{Fr}}{3} \frac{I_2}{q};$ (9).

 $K_1, K_2, K_2^0, K_3, K_3^0$ — константы электролиза анодного зубца и катодного пика (значок (°) означает при стандартных условиях);

w — срорость изменения потенциала, в/сек;

I₂, I₃ — анодный и катодный токи, *a*; S — площадь ртутного капельного электрода, *см*²;

С1 — концентрация ионов в растворе, моль/мл;

F — число Фарадея (96500);

r — радиус ртутного капельного электрода, см;

z — число электронов;

q — площадь под анодным зубцом, кулоны.

До настоящего времени в литературе отсутствуют сведения по определению полярографических коэффициентов элементов. Наличие этих данных позволило бы делать выводы о сравнительной чувствительности, обратимости электродных процессов и др. на различных фонах.

Данная работа и посвящается определению полярографических коэффициентов элементов, наиболее надежно определяемых методом 224

Таблица

Полярографические коэффициенты, полученные для различных элементов на некоторых фонах

1 Children and a start of the	and the second	the second state	and the state of the		a state of the state of the				
Фон	Эле- мент	K ⁰ ₂	K ⁰ ₃	γ ⁰ _n	γ¢	78	γ°.	γ ⁰ ₄	$D_1 \cdot 10^5, cm^2 ce\kappa^{-1}$
1	2	3	4	5	6	7	8	9	1 10
0,25 MHCI	Cu Pb T1	290 255 92,5	46 50 16,5	0,067 0,169 0,205	6,8 5,1 5,7	102 31,0 27,8	10200 3100 27800	680 510 570	0,26 0,824 1,5
0,1 M Na F	Cu Pb Cd T1 Zn	250 192,5 130 70,5 207	80 60 61,5 22 60,5	0,05 0,087 0,072 0,172 0,083	3,2 3,2 3,1 3,2 3,3	64,0 36,0 43,0 18,6 39,8	6400 3600 4300 1860 3980	320 320 310 320 320 330	0,404 0,855 0,597 1,88 0,76
0,1 M KCI	Cu Pb T1 Cd	127 220 120 215	50 60 24 87,7	0,05 0,089 0,148 0,055	2,25 3,2 5 3,5	45,0 36,0 33,8 63,5	4500 3600 3380 6350	225 320 500 350	0,184 0,824 1,74 0,67
0,1 M NH ₄ OH+ +0,1 M NH ₄ CI	Cu Pb Cd Zn Tl	123 250 215 117 75	50 60 57,7 54 26	0,105 0,08 0,0675 0,16 0,077	2,5 4,1 3,5 2,1 3	23,7 51,0 52,0 13,1 3,9	2370 5100 5200 1310 3900	250 410 350 210 300	0,85 0,675 0,427 2,6 0,46
0,1 M CH ₃ . •COO Na	Cu Pb Cd Zn	180 167 160 120	88 70 44 75	0,0477 0,078 0,104 0,06	2 2,4 3,5 1,6	42,3 30,5 33,6 26,6	4230 3050 3360 2660	205 240 350 160	0,515 0,925 0,64 0,601
0,1 M CH _a . .COONa+ 0,1 MCH ₃ COOH	Cu Pb Cd	180 197 190	80 * 60 48	0,056 0,0895 0,093	2,2 3,28 6	39,2 36,6 64,5	3920 3660 6450	225 328 600	0,57 0,91 0,622
,1 M NH4 OH+ +0.1 M (NH4)2. C4 H4 O6	Cu Pb Cd Zn Tl	82 101,6 134 118 38	56,7 56,7 121 158 91,3	0,089 0,064 0,089 0,035 0,089	1,45 1,79 1,11 0,747 0,416	16,3 28,0 28,5 21,3 10,7	1630 2800 2850 2130 1070	145 179 111 74,7 4,16	0,78 0,4 0,7 0,97 1,8
01.1	CARLES AND	Mar State	CHARLES AND	AN EXCLOSION SIL		No. V. C. C. S. S. S.		State Party Court	State State State

15. Заказ 3631

Продолжение таблицы

1

1	2	3	4	5	6	7	8	9	10
0,1 M NH4 OH+ 0,3 M (NH4)2 C4H4O6	Cu	82	58,2	0,077	1,41	18,3	1830	141	0,62
	Pb	103	47	0,079	2,19	27,6	2760	219	0,4
	Cd	164,5	120	0,040	1,37	34,2	3420	137	0,7
	Zn	121,2	158	0,0356	0,766	21,5	2150	76,6	0,97
	TI	41	80,3	0,045	0,51	11,3	1130	51	1,8
0.1 M NH4 OH+ +0.6 M (NH4) ² C4H4O ₆	Cū	70	59,7	0,077	1,17	15,2	1520	117	0,54
	Pb	108,5	48	0,077	- 2,26	29,4	2940	226	0,4
	Cd	122	108	0,0445	1,13	25,4	2540	113	0,7
	Zn	230	157	0,035	1,46	41,6	4160	146,4	0,97
	T1	38,8	82	0,0441	0,47	10,6	1060	47	1,8
0.3 M NII4 OH+ +0,1 M (NH4)2 C4H4O6	Cu	79	67,6	0,063	1,17	18,6	1860	117	0,54
	Pb	98,4	57,5	0,065	1,71	26,3	2630	171	0,4
	Cd	141	131	0,0365	1,08	29,5	2950	108	0,7
	Zn	117	165	0,034	0,71	21,0	2100	71	0,97
	Tl	36,8	86,5	0,042	0,426	10,2	1020	42,6	1,8
0.6 M NH4 OH+ +0,1 M (NH4) ² C4H4 O ₆	Cu	77,5	67,6	0,068	1,14	16,8	1680	114	0,54
	Pb	112	58	0,064	1,93	30,0	3000	193	0,4
	Cd	131	138	0,035	0,95	27,0	2700	95	0,7
	Zn	113	172	0,0327	0,66	29,0	2900	66	0,97
	T1	40	82	0,044	0,488	11,1	1110	48,8	1,8

1.1

амальгамной полярографии с накоплением (Cu, Pb, Sb, Cd, Zn; Tl, Bi, Sn, Ga), в некоторых часто применяемых в полярографическом анализе электролитах (0,1 M NaF; 0,1 M NH₄OH + 0,1 N NH₄Cl; 0,1 M KCl; 0,1 M CH₃COONa; 0,25 M HCl; 0,1 M CH₃COONa + 0,1 M CH₃COOH; mM NH₄OH + nM (NH₄)₂ C₄H₄O₆). Следует отметить, что для некоторых из указанных элементов в исследованных электролитах анодные зубцы не получились.

В таблице приведены средние значения экспериментальных данных, полученных из трех измерений. Из таблицы видно, что коэффициенты чувствительности (γ_{q}^{0}) различных элементов и одного элемента на разных фонах могут отличаться. Колебания значений коэффициентов чувствительности одного элемента на различных фонах при одинаковом коэффициенте концентрирования обусловлены степенью обратимости электродного процесса. Например, для Zn, у которого из всех изученных двухвалентных элементов на фоне 0,1 M NH₄Cl + 0,1M NH₄OH электродный процесс наиболее необратим и самое меньшее значение γ_{q}^{0} . Величина γ_{q}^{0} зависит также и от коэффициентов диффузии атомов металла в ртути.

Коэффициенты электролиза (γ_{9}^{0}) и др. коэффициенты разных элементов значительно отличаются друг от друга, что также обусловливается различной степенью обратимости электродных процессов.

Из сопоставления коэффициентов чувствительности для цинка на некоторых фонах видно, что чувствительность определения цинка на фоне 0,1 MNaF примерно в два раза выше таковой на фоне 0,1 M CH₃COONa. Для достижения одной и той же степени концентрирования ($\gamma_{\kappa}^0 = 100$) при проведении электролиза на фонах 0,1 M NaF и 0,1 M NH₄OH + 0,1 M NH₄Cl на втором фоне интенсивность перемешивания раствора должна быть примерно в 1,9 раза больше таковой на первом фоне. Из сопоставления γ_0^0 на первом и втором фонах видно, что соотношения между константами анодного тока и тока электролиза на первом фоне более выгодно, чем на втором. Сравнение γ_9^0 для цинка на различных фонах показывает, что на фоне 0,1 M NaF ток анодного растворения амальгамы цинка превосходит ток электролиза в значительно большей степени, чем на 0,1 M NH₄OH + 0,1 M NH₄Cl и 0,1 M CH₃COONa, что и обусловливает большее значение K_2^0 на первом фоне по сравнению с другими двумя фонами.

Из значений γ_{ϕ}^{0} для цинка на указанных фонах видно, что на фоне 0,1 M NaF анодный зубец по сравнению с катодным является более острым, чем на других двух фонах. Аналогичные сравнения можно сделать и для других элементов. Таким образом, полученные экспериментальные данные показывают, что в соответствии с теоретическими соображениями вышеприведенные полярографические коэффициенты могут служить характеристиками чувствительности определения элементов и обратимости электродных процессов.

В заключение выражаем благодарность профессору А. Г. Стромберту за внимание к работе.

Выводы

Для ряда элементов на некоторых фонах получены амальгамно-полярографические коэффициенты, характеризующие чувствительность спределения элементов и степень обратимости их электродных процессов.

ЛИТЕРАТУРА

1. М. С. Захаров, А. Г. Стромберг. Журнал аналитической химии, 19, 913, 1964.

35*

2. А. Г. Стромберг, М. С. Захаров. Ж. аналитической химии (в печати).