ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 166

1969

АМФИБОЛЫ ИЗ КОНТАКТОВО-МЕТАСОМАТИЧЕСКИХ ОБРАЗОВАНИЙ АМПАЛЫКСКОГО МЕСТОРОЖДЕНИЯ

Е. А. БАБИНА

(Представлена объединенным научным семинаром геологоразведочного факультета)

Амфиболы в контактово-метасоматических образованиях Ампалыкского месторождения пользуются широким распространением. Они встречаются в роговиках, скарнах и рудах, или являются продуктами гистерогенного разложения пироксена. Поэтому амфиболы Ампалыкского месторождения отличаются довольно широким генетическим и минералогическим разнообразием и занимают далеко неодинаковое место в общем контактово-метасоматическом процессе.

Амфиболы представлены четырьмя генерациями обыкновенной роговой обманки, актинолитом, тремолитом, гастингситом, дашкесанитом и паргаситом Все оптические константы амфиболов приведены в табл. 1, химические анализы в табл. 2, а спектральные в табл. 3.

Роговая обманка первой генерации образует мелкие изометричные и короткопризматические зерна, изолированные агрегаты в роговиках. Размер зерен от 0,15 до 0,23 *мм* в поперечнике. Состав роговой обманки 1 по диаграмме В. Е. Трегара [4] указывает на содержание 45—57% железистой и 55—43% магнезиальной молекул.

Роговая обманка второй генерации встречается только в скарнах. Нередко она образует крупные скопления с шестоватыми и призматически-пластинчатыми агрегатами в скарнах пироксенового, гранатопироксенового состава. Отложение ее происходило после выделения основной массы скарновых минералов и роговой обманки I. В зонах катаклаза агрегаты роговой обманки II деформированы, изогнуты и разбиты многочисленными трещинками, по которым развиваются кальцит, хлорит, пренит и сульфиды. Размер зерен роговой обманки II измеряется в пределах от 0,8 до 1,6 *мм* в поперечнике. Из приведенных данных оптических свойств роговая обманка II содержит 32—45% железистой и 68—55% магнезиальной частиц. Колебания показателей преломления и непостоянство молекулярного состава вызвано, по-видимому, разнообразием исходных первичных пород, за счет которых возникли скарны.

Рентгеноструктурный анализ подтвердил параметры обыкновенной роговой обманки: $\alpha \sin \beta = 9,60 \ \kappa x; B = 18,14 \ \kappa x; C \sin \beta = 5,15 \ \kappa x.$

Данные химического анализа, приведенные в табл. 2, нами были пересчитаны на кристаллохимическую формулу по методу И. Д. Борнеман-Старынкевич [1] с типовой формулой x_{2-3} y_5 z_8 [O,OH]₂₄, в которой сумма катионов группы y и z равна 13. Оптические свойства амфиболов

T	a	б	Л	И	Ц	a	1
					-		

E.

Название минералов и их гене- рации	Цвет мине- рала	Плеохроизм и схема плеохроизма	Показатели преломления	Величина двупрелом- ления	Угол пога- сания (C:Ng)	2 <i>V</i>	
Роговая обманка	Слабо окраше- на в зеленый	N _g —Зеленый N _m —нежно-зеленый	$N_g = 1,682 - 1,690 \pm 2,002$	0,022-0,024	15—17°	(—)67°—(—)70°	
-1	цвет	м _р —желтовато-зеленый Ng>N _m >N _p	$N_p = 1,658 - 1,668$				
Роговая	Темно-зеленый	Ng-буровато-зеленый	$N_g = 1,670 - 1,680 \pm 0,001$	0,019-0,021	15—18°	(-)69-75°	
обманка П		N _m —зеленовато-бурый	$N_m = 1,662 - 1,670 \pm 0,001$				
		N _p —зеленовато-желтый Ng≫N _m ≫N _p	$N_p = 1,651 - 1,659$				
Роговая	Травяно-	Nблелно-зеленый	$N = 1.665 \pm 0.001$	0.017	18-21°	(-)78°	
обманка	зеленый,	N _m —травяно-зеленый	$N_g = 1,000 \pm 0,001$				
III буровато- зеленый		N ₂ —желтовато-зеленый		States States			
		$N_m > N_q > N_n$		Section 1			
Роговая	Буровато-зеле-	N _g —зеленовато-бурый	$N_{\sigma} = 1,683 \pm 0,001$	0,022	12°	()70°	
обманка	ного цвета	N _т —желтоватый	$N_{p} = 1,661 + 0,001$				
ĨV		N _p —желтовато-зеленый Ng>N _m >N _p					
Актинолит	Зеленый	Ng—зеленовато-желтый	$N_g = 1,664 - 1,649 \pm 0,002$	0,021-0,022	. 16°	(-)82-(-)85°	
		N _m —бледно-зеленый	$N_m = 1,632 - 1,638 \pm 0,002$				
		N _p —бесцветный N _g >N _m >N _p	$N_p = 1,623 - 1,637 \pm 0,002$				
Термолит	Бесцветный		$N_g = 1,638 \pm 0,002$	0,024	18—20°	1993 - 1994 - 19	
			$N_p = 1,614 \pm 0,002$				
				and the second	and the second of the second		

Продолжение таблицы 1

in

d

Название минералов и их гене- рации	Цвета мине- ралов	Плеохроизм и схема плеохроизма	Показатели преломления	Величина двупрелом- ления	Угол пога- сания (C:Ng)	2V .
Гастингсит	Буровато-	Ng-густо-зеленовато-синий	$N_{\rm g} = 1,712 \pm 0,002$	0,020	17°	(—)40—42°
	зеленый	N _т -голубовато-зеленый	$N_{\rm p} = 1,692 \pm 0,002$	State Day		
		№ _р —светло-коричневый № _g >№ _m >р				
Дашкесанит	Буровато-	Ng-зеленовато-синий	$N_{g}\pm 1,731\pm 0,002$	0,019	10°	(—)30°
	зеленый	N _m —голубовато-зеленый	$N_{\rm p} = 1,712 \pm 0,002$	見たびまい		
		N _p —желтый N _g >N _m >N _p				
Паргасит	Синевато-	Ng-зеленовато-синий	$N_{\rm g} = 1,644 \pm 0,001$	0,018	22°	(−)54°
зеленый	зеленый	<i>N</i> _m светло-зеленый	$N_{\rm p} = 1,628 \pm 0,001$			
	5.1-	№ _р —зеленовато-желтый № _g >H _m >N _p				

При расчете амфиболов кислород (O,OH, F) приравнивался к 24. Исходя из расчета, формула роговой обманки II приняла следующий вид: [Ca_{1,93} Na_{0,54} K_{0,33} (H₃O)_{0,20}]_{3,0} **x** [Fe["]_{2,52} Mg_{0,56} Fe["]_{1,04} Al_{0,74} Ti_{0,15}]_{5,0} (Si_{6,12} Al_{1,88}) O_{22,0} (O_{1,15} OH_{0,85})_{2,0}.

Роговая обманка третьей генерации характеризуется более низкотемпературными условиями образования. Она замещает пироксен ранних генераций, в скарнах и роговиках нарастает на зернах последнего, корродирует его, или образует сплошные участки с реликтами пироксена в измененных скарнах и магнетитовых рудах. Основная масса роговой обманки III отложилась после отложения магнетита в стадию поздней гидротации. Агрегаты этой роговой обманки состоят из призматических и призматически-волокнистых зерен. По диаграмме Трегера роговая обманка III содержит 25% железистой и 75% магнезиальной молекул. Пересчет на кристаллохимическую формулу тем же методом, что и для роговой обманки II, дал следующую формулу: $(Ca_{1,85} Na_{0,45} K_{0,21})_{2,51} x (Fe_{1,24}^m Mg_{2,84} Mn_{0,035} Fe_{0,56}^m Ti_{0,035} Al_{0,29})_{5,0} x (Si_{6,54} Al_{1,46})_8$ O_{22,0} (OH)₂.

Роговая обманка четвертой генерации ассоциирует с низкотемпературными минералами — кальцитом, кварцем, халькопиритом и галенитом. Форма зерен удлиненно-призматическая, шестоватая, а размер их не превышает десятых долей *мм*.

Актинолит среди амфиболов находится в подчиненном количестве. Он ассоциирует с рудными минералами, замещает пироксен и роговую обманку ранних генераций. В шлифах он наблюдается радиально-лучистыми, тонковолокнистыми и игольчатыми агрегатами. Размер зерен изменяется в пределах от 0.05×0.095 *мм* до 0.15×1.25 *мм*. По оптическим свойствам минерал содержит 20-35% железистых и 80—65% магнезиальных молекул. Пересчеты химического анализа (табл. 2) на кристаллохимическую формулу позволили установить следующую формулу актинолита: (K_{0.02} Na_{0.08} Ca_{1.98})_{2.08} (Mg_{4.70} Fe["]_{0.32} Fe["]_{0.34})_{5.36} [Si_{7.58} Al_{0.40} Mn_{0.08}]_{8.0} O_{22.6} [OH_{1.0} O_{1.6}]_{2.0}.

Таблица 2

	Роговые	обманки				
Состав минералов	II генера- ция ция обр. 51 обр. 474		Актинолит обр. 341	Гастингсит обр. 613	Дашкесанит обр. 727	
Sio ₂	37,75	44,78	53,38	40,43	37,59	
Tio ₂	1,21	0,42	0,06	0,41	0,33	
Al_2o_3	13,17	10,21	0,96	10,25	11,23	
Fe ₂ o ₃	8,42	5,10	3,28	11,10	7,35	
Feo	18,57	10,15	2,91	17,53	20,66	
Мпо	0,14	0,15	0,20	1,29	0,36	
Mgo	2,30	13,46	23,58	5,18	4,83	
Cao	11,73	11,86	13,71	10,64	12,42	
Na ₂ o	1,76	1,60	0,30	1,21	1,10	
K ₂ o	1,55	1,11	0,22	1,08	1,27	
H ₂ o	2,80	1,15	1,42	0,97	1,12	
C1	-	1. 1. 1. <u>-</u> 1. 1. 1.	СЛ.		0,077	
F		. —	0,013	0,009	1,94	
	100 •	100	100	100	100	

Данные химических анализов амфиболов

Актинолит неустойчивый, легко замещается хлоритом, биотитом и флогопитом.

Тремолит обнаружен редкими игольчатыми агрегатами. Он охотно ассоциирует с актинолитом и является гистерогенным образованием, возникшим в результате разложения пироксена в скарнах. С понижением температуры актинолит и тремолит становятся неустойчивыми и замещаются хлоритом. Размер зерен тремолита не превышает 0,3×0,16 мм. Об оптических свойствах тремолита можно судить по табл. 1.

Гастингсит встречается совместно с дашкесанитом в метасоматически измененных скаполитизированных породах. В скарнах он обнаружен в ассоциации с роговой обманкой II генерации. Кристаллы его длиннопризматические, довольно крупные от нескольких миллиметров до сантиметра. Кристаллохимическая формула гастингсита, полученная в результате пересчета химического анализа (табл. 2) по методу И. Д. Борнеман-Старынкевич, примет следующий вид: (Na_{0,35} K_{0,20})_{0,55} Са_{1,74} (Mg_{1,19} Fe["]_{2,27} Mn_{0,16} Fe["]_{1,27} Al_{0,11})_{5,0} (Si_{6,22} Ti_{0,05} Al_{1,73})_{8,0} O_{22,0} (OH)_{1,97}.

Дашкесанит образует крупные гнезда и скопления в скарнах. Иногда он располагается мелкими столбчатыми кристаллами совместно с флогопитом. Распространение его весьма ограниченное. Размер зерен не превышает десятых долей *мм*. Оптические свойства приведены в табл. 1, а химический и спектральный состав — в табл. 2 и 3. После пересчета химического анализа дашкесанита на кристаллохимическую формулу, последняя примет следующий вид: (Са_{2,12} Na_{0,35} K_{0,27} Mg_{0.26})_{3,0} (Fe["]_{2,75} Mg_{0.88}Fe["]_{0,89} Mn_{0.06} Al_{0.42})_{5,0} (Si_{6,10} Al_{1,86} Ti_{0.04})_{8,0}O_{22,0} (OH_{1,77} Cl_{0.17} F_{0.95})_{2,09}.

Паргасит встречается совместно с флогопитом в виде единичных зерен и пластинчатых агрегатов. Оптические свойства паргасита показаны в табл. 1.

Многообразие минеральных форм амфиболов в контактово-метасоматических породах и рудах Ампалыкского месторождения объясняется замещением одних компонентов другими. Из приведенных химических анализов и кристаллохимических формул видно, что роговая обманка третьей генерации и актинолит охотно отдавали Fe" и Fe", Al₂O₃ и щелочи, обогащаясь одновременно кремнеземом, магнием и титаном. В более поздних амфиболах, таких как гастингсит, дашкесанит, наблюдается привнос Cl, F и вынос щелочей и кремнезема. Происходит изменение первоначального состава минералов. Так, роговая обманка второй генерации отличается повышенным содержанием железа, титана, а роговая обманка третьей генерации характеризуется увеличением содержания кремнезема и магния. Гастингсит и дашкесанит отличаются от роговых обманок несколько повышенным содержанием FeO и Fe₂O₃ и присутствием фтора и хлора. Изменение химического состава амфиболов нашло отражение и в оптических свойствах их. Чаще эти изменения сказываются на величине угла оптических осей от (-) 30° до (-) 85° и угла угасания от 10 до 22°. Для роговой обманки наблюдалось уменьшение показателей преломления от первой генерации к третьей. Гастингсит и дашкесанит, встречающиеся в аналогичных условиях, имеют близкий показатель преломления. Некоторые исследователи считают, что на оптические свойства и, в частности, на показатель преломления влияет содержание железа, магния и их соотношения. В этом случае интересны данные В. А. Дипир [2], который утверждает, что при повышении содержания двухвалентного железа в амфиболах повышаются их показатели преломления. В нашем случае (табл. 2) содержание закиси железа в роговой обманке II сравнительно выше по отношению роговой обманки III и актинолита, но несколько меньше, чем в дашке-

Таблица З

and the second second	В процентах													
Минералы	Ti	Mn	Ni	Со	Cr	As	Zn	Pb	Cu	La	Au	Ba	V	Мо
Роговая обманка II	0,1	0,1	0,001	0,001	0,001	0,001			0,001	сл.	0,001			
Роговая обманка III	2_		0,001	0,001		-	0,1	0,03	0,01	0,001	_	0,001		
Роговая обманка IV	_	_	_	0,001		0,001	0,3	0,001	0,001	0,001	-		0,001	0,1
Актинолит	0,01	-	Sector Sec.			-	0,01		0,001	0,001			0,001	
Гастингсит	0,01	_	0,01	0,001	0,001	_			0,01	0,001	-	11		
Дашкесанит	-	-	0,01	-	-	-	0,01	-	-	-	-		0,001	

саните и гастингсите. Показатели преломления амфиболов увеличиваются пропорционально содержанию двухвалентного железа. Л. Н. Овчинников, А. С. Шур и Н. Т. Елькина [3] связывают зависимость показателей преломления амфиболов с окислением железа и потерей воды при метасоматозе. Переход Fe" в Fe" сопровождается повышением показателя преломления. Кроме зависимости между окислением железа и потерей воды, на величину показателя преломления сказывается содержание глинозема, с увеличением которого повышается показатель преломления амфиболов. Выводы, сделанные Л. Н. Овчинниковым и др., подтверждаются и нашими анализами (табл. 2). Повышение показателей преломления у амфиболов Ампалыкского месторождения является следствием окисления железа при контактово-метасоматическом процессе и сопровождается уменьшением угла погасания и угла оптических осей. Из сказанного можно сделать следующие выводы.

1. Среди всего разнообразия амфиболов в контактово-метасоматических образованиях Ампалыкского месторождения преобладает обыкновенная роговая обманка.

2. Оптические константы амфиболов зависят от химического состава их, от парагенетических ассоциаций и условий образования при контактово-метасоматических процессах; от содержания в них железа и от степени его окисления.

3. По своим парагенетическим особенностям амфиболы тесно ассоциируют со скарновыми, рудными и низкотемпературными минералами. В общей парагенетической схеме минералообразования амфиболы начинают отлагаться в стадию образования роговиков, интенсивно выделяются в гипогенную эпоху и заканчивается процесс их выделения в низкотемпературной стадии.

ЛИТЕРАТУРА

1. И. Д. Борнемам-Старынкевич. Руководство по расчету формул минералов. Изд. Наука, 1964. 2. В. А. Дир. Состав и парагенезис роговых обманок комплекса Гледен-Тиет в

Пертмире. Переводы геол. и полезн. иск. Изд АН СССР, 1940.

3. А. Н. Овчинников, А. С. Шур и Н. Г. Елькина. Термоаналитическое исследование амфиболов некоторых скарновых зон Урала. Тр. 1-го совещания по петрографии. Изд. АН СССР, 1953. 4. В. Е. Трегер. Таблицы для оптического определения породообразующих ми-

нералов. Госгеолтехиздат, 1958.