Том 166

1969

РАЗРАБОТКА РАЦИОНАЛЬНОЙ МЕТОДИКИ РАЗВЕДКИ ПРОСТЫХ КАМЕННОУГОЛЬНЫХ МЕСТОРОЖДЕНИЙ

(на примере Байдаевского района Кузбасса)

Л. М. ПЕТРОВСКИЙ

(Представлена научным семинаром кафедр минералогии, петрографии и геологии и разведки месторождений полезных ископаемых)

Основными путями в совершенствовании методики и повышении эффективности разведки месторождений угля должны быть:

1) детальная геолого-промышленная типизация участков;

2) оперативный анализ методики и эффективности проводимых

разведочных работ;

3) обоснование возможности проведения детальной разведки на простых месторождениях угля по разреженной против фактически применяющейся разведочной сетке и выработка рациональной методики определения плотности такой сети.

Анализ эффективности разведки

К настоящему времени в Байдаевском районе детально разведаны 11 участков, на шести из которых проведена доразведка и находятся действующие шахты (табл. 1). Анализ затрат метража скважин на 1000 т запасов категорий A+B (показатель μ) с учетом соотношения категорий запасов подтверждает проведенное разделение участков по сложности разведки на основе изучения их тектоники: участки 1-7 простого строения со значениями μ до 0.25 м и участки более сложного строения с μ более 0.25 м. При этом участки 3 и 4 группы простого строения имеют значения μ более 0.25 м. Высокие удельные затраты на этих участках, как будет показано ниже, вызваны перерасходом скважин на них в связи с доразведкой, а сами участки по своему положению на диаграмме сопоставления должны входить в группу I, хотя по данным фактических затрат они тяготеют к группе II (рис. 1).

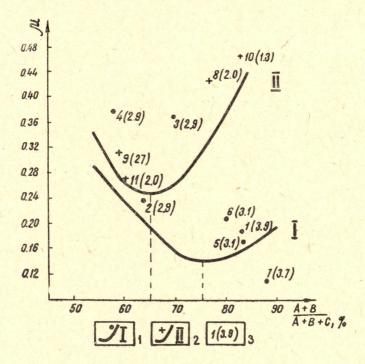
В основу анализа сравнительной эффективности разведки участков Байдаевского района была положена предложенная В. Я. Коудельным [3] методика оценки оптимального предела детальной разведки месторождений угля, предусматривающая сопоставление соотношения высоких категорий запасов с удельными затратами скважин (показатель µ). Эта методика анализа эффективности детальной разведки участков учитывает влияние геолого-методических факторов; рассчитываемые по ней удельные затраты не зависят от организационно-технических факторов. Последнее вырастает в неоценимое преимущество при анализе работ продолжительных по времени разведок на участках или при невозможности установления стоимостных затрат в отдельные периоды их. То и другое имеет место на ряде участков района, разве-

дывавшихся в довоенные и военные годы. Поэтому в настоящем анали-

зе не участвуют затраты в денежном выражении.

Выше описано использование значений показателя μ в общей характеристике разведанности участков. Однако изменение показателя μ для одинаковых по тектонике участков зависит не только от достигнутой степени разведанности пластов угля и размера площади участков, но также от условий залегания пластов, выдержанности их мощности и степени угленосности разведуемой части разреза. Такая зависимость может быть выражена с помощью предлагаемой номограммы,

Таблица 1 Технико-экономические показатели разведки участков Байдаевского района


№-наименование уча- стков детальной развед- ки и доразведки ^х (дей- ствующих шахт)	Объем бурения, тыс. <i>м</i>	Кол-во метров скв. на 1 км²	Показа- тель µ, м	$\begin{vmatrix} A+B \\ A+B+C_1 \\ \% \end{vmatrix},$	Приведенный размер единичного разведочного блока $(l \cdot b)$, M
1 ^х — Байдаевский 1—2 (Байдаевская 1—2)	16,7	1670	0,19	83	155000 (610×250)
2 ^х — Зыряновский (Зыряновская)	7,7	1000	0,24	64	157000 (630×250)
3 ^x — Абашевский 1—2 (Абашевская 1—2)	14,6	2470	0,37	70	58500 (235×250)
4 ^x — Абашевский 3—4 (Абашевская 3—4)	26,7	1900	0,38	58	79000 (320×250)
5 ^x — Байдаевский 3—4 (Байдаевская 3—4)	28,6	2350	0,18	84	90000 (360×250)
6 ^x — Есаульский 1—2	17,7	1170	0,21	80	$155000 (610 \times 250)$
7 — Байдаевские восточные 1—2—3	27,4	1140	0,11	88	210000 (840×250)
8 — Есаульский 3—4	37,7	1880	0,43	76	98000 (400×250)
9 — Антоновский 1—2	33,6	1050	0,31	60	148000 (600×250)
10 — Есаульский 5	26,8	1200	0,47	85	111000 (440×250)
11 — Антоновский 3	21,4	980	0,27	61	178000 (700×250)

в которой по оси абсцисс откладываются запасы категорий A+B, а по оси ординат — общий метраж колонкового бурения (рис. 2). Соответствующие значения осей абсцисс и ординат определяют положение точек линий равных величин показателя μ (0,1; 0,15 и т. д.). С помощью вспомогательных верхних осей абсцисс, выражающих общие промышленные запасы и сдвинутых относительно основной оси абсцисс номограммы в порядке, соответствующем определенному (35, 55% и т. д.) соотношению запасов, показывается уровень степени разведанности участков.

Расположение участков на номограмме показывает, что участки 5, 7 и 11 характеризуются лучшим эффектом разведки по своим группам. При этом с увеличением площади участков, при прочих равных условиях, эффект разведки повышается.

Дальнейший сравнительный анализ эффективности разведки построен на выражении зависимости характера разведки от степени рабочей угленосности, т. е. от количества, мощности и выдержанности рабочих пластов угля и мощности разведуемой части разреза. С этой целью на номограмму наносятся линии равной рабочей угленосности, в об-

ратной зависимости от которой находятся значения показателя µ. При этом, учитывая закономерность роста затрат метража скважин с уменьшением объекта разведки, начало линий рабочей угленосности сдвигается вверх от общего начала координат номограммы на метраж среднего числа скважин в одной разведочной линии участка (2000 м для участков I типа района). Привязка линий рабочей угленосности производится по наиболее представительному участку (№ 5 для типа 1). Для определения масштаба заложения линий угленосности используется то

Fис. 1. Сопоставление удельных затрат метража (показателя μ) и степени разведанности участков детальной разведки и доразведки: 1 — участки простого геологического строения и кривая сопоставления для них; 2 — то же для участков сложного геологического строения; 3 — значения средней рабочей угленосности

положение, что при разведке участков с различной рабочей угленосностью, но при прочих равных условиях (площади, условий залегания пластов и др.), затраты метража для данной степени разведанности будут одинаковыми. Получив в точке пересечения (т. C) любой из горизонтальных линий с линией угленосности представительного участка (3,1%) соответствующие ей запасы категорий A+B (120 млн. т), определяем положение остальных линий рабочей угленосности.

Находится новое оптимальное положение участков на пересечении перпендикуляров к оси запасов категорий A+B, проходящих через точки положения участков в основных осях номограммы, и линий их рабочей угленосности, по ординате которого можно узнать оптимальные затраты метража скважин на них. Сравнение фактических конечных затрат с полученными оптимальными затратами на детальную разведку участков типа I показывает наличие перерасхода метража на всех, кроме участков 2 и «эталонного» 5, участках доразведки; наибольшей величины перерасход достигает на участках 4,3 и 1. Кроме того, оптимальные затраты по детальной разведке на различную величину превышают фактические затраты на нее на участках с прошедшей дораз-

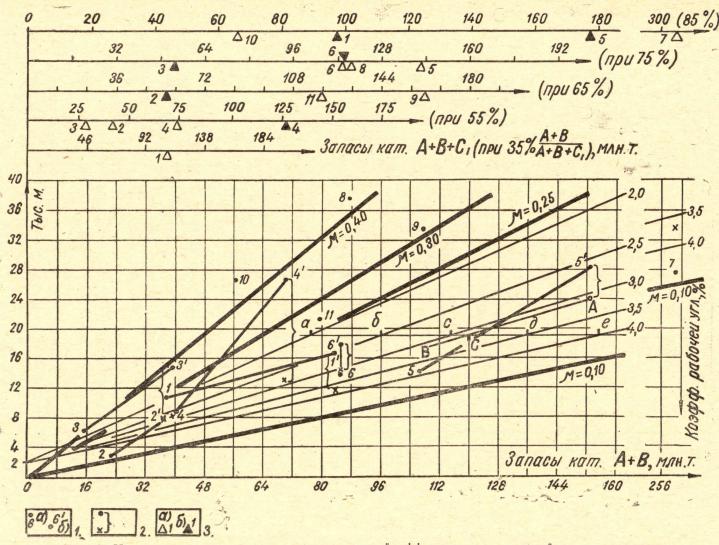


Рис. 2. Номограмма для определения сравнительной эффективности детальной разведки участков: 1 — фактическое положение участков по данным детальной разведки (а) и с учетом доразведки (б); 2 — оптимальное положение участков и величина перерасхода метража скважин; 3 — положение участков на линиях соответствующего соотношения запасов категорий A+B в детальную разведку (а) и с учетом доразведки (б)

ведкой. На этом основании стало возможным заключить, что, с одной стороны, на участках с прошедшей доразведкой действительно существовала недоразведанность после проведенных детальных разведок на них с другой,— величина и характер ее для участков с различными условиями залегания пластов, глубиной разведки и площадью были разными.

Полученные величины перерасхода и оптимальных затрат метража скважин на участках типа I можно считать вполне объективными. Тогда оптимальная эффективность детальной разведки участков этого типа, с учетом различной рабочей угленосности, площади объектов и задач разведки, должна характеризоваться значениями μ в пределах от 0,12 до 0,2 м. Оптимальная эффективность детальной разведки участков II типа должна определяться значениями μ в пределах 0,2—0,45 м. Участки простого строения (тип I) нецелесообразно разведывать до степени разведанности выше 75%, а сложного (тип II) — 65%.

Детальная геолого-промышленная типизация участков

Важной предпосылкой высокоэффективного проведения разведок месторождений угля является их детальная геолого-промышленная классификация. Известные геолого-промышленные классификации мессторождений Кузбасса основаны исключительно на статистическом учете, главным образом морфологических признаков их (Васильев П. В., 1960; Пах Э. М. и Сендерзон Э. М., 1959) и реже технико-экономических показателей разведки (Бурцев Д. Н., 1962; Сендерзон Э. М., 1962). Этим классификациям присущ тот недостаток, что почти в каждом из выделяемых типов месторождений находятся площади с разными по сложности условиями разведки. Использование таких классификаций нередко сталкивалось с известными трудностями уже на стадии предварительной разведки месторождений.

Нами поставлена задача разработки количественной методики геолого-промышленной типизации участков на основе анализа геолого-технико-экономических данных разведки. Наряду с расчетом значений затрат метража скважин на $1000\ T$ запасов категорий A+B (показатель μ) и на $1\ \kappa m^2$ площади участков (табл. 1) проведено определение так называемой геологической сложности участков (размера единичного разведочного блока l:b) по условиям их разведки с помощью формулы:

$$\mu = \frac{10^5 hS}{lbKd \ \Sigma \ ms}$$
 или $l \cdot b = \frac{10^5 hS}{\mu Kd \ \Sigma \ ms}$,

где l и b — средние расстояния между разведочными линиями и скважинами на них, определяющие размер сторон единичного блока, m;

h — средняя глубина скважин на участке, m;

S — площадь участка, M^2 ;

 μ — удельные затраты метража скважин на 1000 m запасов категорий A+B, M/m;

K — степень разведанности $\left(\frac{A+B}{A+B+C_1}\right)$, %;

s, m, d — занимаемая площадь, средние мощность и объемный вес угля отдельных пластов.

Величина входящего в формулу выражения Σ ms в значительной мере зависит от уровня вертикальной и площадной продуктивности свиты рабочих пластов угля на участке. Поэтому определяемые абсолютные размеры блоков необходимо корректировать коэффициентами,

уравновешивающими каждые данные условия продуктивности до принятых относительно какого-либо участка (Байдаевского 1—2 в нашем случае) единых условий их. Анализ полученных таким путем приведенных размеров единичных разведочных блоков позволил выделить группу участков 1, 2, 6, 7, 9, 11 с большими размерами блоков и группу участков 3, 4, 5, 8, 10—с относительно малыми размерами их (табл. 1). Та и другая группы участков, за исключением участков 6 и 5, определяются местонахождением их на западном и восточном крыльях Байдаевской синклинали. Чрезмерно малые размеры разведочных блоков на участках 3, 4, 5 заставили предположить наличие перерасхода скважин на них, что и подтвердилось при последующем анализе разведанности шахтных полей. После учета перерасхода скважин на участках 1—5 (по методу разрежения сети и с помощью предложенной для анализа эффективности разведки специальной номограммы) среди двух групп или типов их оказалось возможным выделить участки южной и северной подгрупп со следующими размерами разведочных блоков (табл. 2).

Таблица 2 Типизация участков по приведенным размерам единичных разведочных блоков

	Западное крыло Бай- даевской синклинали	Восточное крыло Бай- даевской синклинали		
Северная часть (тип II)	Участки 9, 11 (подгруппа 3) (600—700 × 250) м	Участки 8, 10 (подгруппа 4) (400—500 × 250) м		
Южная часть (тип I)	Участки 1, 2, 5, 7 (подгруппа 1) (800—900 × 250) м	Участки 3, 4, 6 (подгруппа 2) (600—700 × 250) м		

Примечание: эти размеры блоков необходимы и достаточны для оконтуривания запасов категории A.

Из табл. 2 видно, что для детальной разведки участков северо-восточной части площади требуется сеть скважин, плотность которой в 2 раза превосходит плотность для участков юго-западной части. Таким образом, разведанная площадь района, характеризующаяся по существующим общим классификациям простыми условиями детальной разведки, дифференцирована нами с этой точки зрения на 3 подгруппы участков.

Выбор и обоснование оптимальной плотности сети скважин в детальную стадию разведки

Для относительно выдержанных пластов угля на примере участка 4 определение и сопоставление разведочной плотности было проведено по методам аналогии (2, 4, 5), разрежения и сравнения с данными эксплуатации, Богацкого В. В. [1] и Прокина В. А. [7]. Анализ показал, что:

1. Надежное проведение детальной разведки средних по площади участков простого строения [типа I] обеспечивается сетью скважин $300-400 \times 700-1400$ м, разреженной против фактической для категорий A и B в 1,5—2 раза. Такое разрежение основной сети скважин возможно лишь при детальном прослеживании пластов угля на выходах под наносы с расстоянием между пересечениями вдоль выхода не более 200 м.

2. Рекомендуемая на основе методов аналогии разведочная сеть соответствует оптимальной плотности (по данным разрежения) лишь для частных случаев изменчивости признаков месторождения и размеров площади участков его.

3. Рассчитываемая по методу Богацкого разведочная сеть на средних и больших объектах больше оптимальной сети; лишь на мелких

объектах она отвечает последней (табл. 3).

4. Определяемые по методу Прокина расстояния между скважинами на средних и больших объектах более близки к оптимальным, чем на мелких (табл. 3).

Таблица 3

	По Прокину В. А.				По Богацкому В. В.				По автору			
Пло- щадь участ- ка <i>км</i> ²	разн		число ничи блог	ных	число еди- ничных блоков развед. сеть, м			число еди- ничных блоков		развед. сеть, <i>м</i>		
	A	В	A	В	A	В	A	В	A	В	A	В
2	660× 1200	890× 1600	3	2	14	8	270× 540	350× 700	7	4	350× 700	500× 1000
5	ш	u ,	7	4	ш	u	400× 800	550× 1100	14	8	400× 800	550× 1100
7	u	u	9	5	u	ш	500× 1000	650× 1300	14	8	500× 1000	650×1300
14	ш	и	18	10	и	u	700× 1400	950× 1900	30	18	500× 1000	650×1300
21	"	ш	27	15	и	ш	850× 1700	1150×2300	30	18	600× 1200	750×1500

В основу предлагаемой методики расчета плотности сети, базирующейся на формулах В. В. Богацкого и В. А. Прокина, положен учет закономсрности изменения необходимого числа блоков и расстояний между скважинами в зависимости от площади объектов с помощью выведенного корректировочного коэффициента [6]. Из табл. З видно, что рассчитанная по предлагаемой методике разведочная сеть выгодно отличается от других сеток; она наиболее близка к результатам проведенного разрежения сети. На основе полученной расчетной сети, с учетом обеспечения кратности ее, рекомендуется следующая оптимальная сеть скважин в детальную разведку относительно устойчивых пластов на простых месторождениях угля (табл. 4).

Таблица 4 Рекомендуемая оптимальная сеть скважин для участков простого строения

Категории запасов	Плошадь участка, кв км							
	2	5	7	14	21			
A	350×700	350×900	350×1100	400×1200	450×1300			
В	350×1400 (700×700)	350×1800 (700×900)	350×2200 (700×1100)	400×2400 (800×1200)	450×2600 (900×1300)			

После выбора оптимальных расстояний между пересечениями пластов угля для каждой категории запасов оптимальное общее число единичных блоков *N* на участке в детальную разведку предлагается рассчитывать по формуле:

$$N = 0.3 \frac{S}{S_A} + 0.3 \frac{S}{S_B} + 0.4 \frac{S}{S_C},$$

где S — площадь разведуемого участка;

 $S_{A, B, C}$ — площадь единичных разведочных блоков в контуре запасов категорий A, B и C_1 ;

0,3 и 0,4 — показатели соотношения площадей запасов категорий A, B и C_1 , отвечающие требованию инструкции ГКЗ получения по 30 % запасов категорий A и B и 40 % — C_1 .

Тогда оптимальное число скважин C для участков с различной фор-

мой их площади может быть определено: для квадратной формы участка как $C = (\sqrt{N}+1)(\sqrt{N}+1)$; для прямоугольной формы при соотношении сторн его 1:2

$$C = \left(\sqrt{\frac{N}{2}} + 1\right) \left(2\sqrt{\frac{N}{2}} + 1\right);$$

то же при соотношении сторон 1:3

как
$$C = \left(\sqrt{\frac{N}{3}} + 1\right) \left(3\sqrt{\frac{N}{3}} + 1\right)$$

И Т. Д.

Максимальное число скважин на крайне вытянутых по форме участ-ках определяется по формуле (N+1) (1+1) или 2 (N+1), которая рекомендовалась нами для крутопадающих пластов на простых месторождениях угля [6].

При определении оптимальной плотности разведочной сети в конечную (детальную) стадию разведки необходимо учитывать закономерности геолого-тектонического строения полей, что дает возможность, используя метод аналогии и руководствуясь принципом равной достоверности, развивать разведочную сеть в соответствии с различной сложностью участков.

Проведенный анализ разведки участков типа I Байдаевского райо-

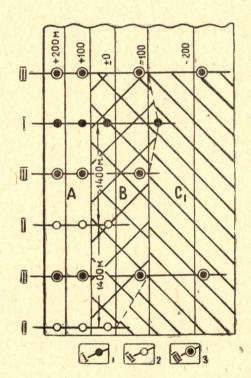


Рис. 3. Рациональная схема разведки группы перемежающихся устойчивых и относительно устойчивых пластов угля на примере участка № 4: 1 — поисковые линии скважин; 2 — линии скважин в предварительную разведку; 3 — то же в детальную разведку; (В схеме не показаны выработки и скважины, проходимые для прослеживания выходов пластов под наносы и для взятия крупных проб угля)

на позволяет рекомендовать для аналогичных открытых участков простого строения следующую рациональную схему детальной разведки (рис. 3). В основе ее предусмотрено, чтобы скважины периода детальной разведки не задавались на прежних разведочных линиях, что при разведке многопластовой толщи позволит избежать проходки глубоких скважин вблизи от ранее пройденных скважин в предварительную разведку.

ЛИТЕРАТУРА

- 1. В. В. Богацкий. Математический анализ разведочной сети. Госгеолтехиздат, 1963.
- 2. Инструкция по применению классификации запасов к месторождениям углей и горючих сланцев. Госгеолтехиздат, 1961.
 - 3. В. Я. Коудельный. К вопросу о разведке угольных месторождений. Развед-
- ка и охрана недр, №5, 1957. 4. К. В. Миронов. Геолого-промышленная оценка угольных месторождений. Гос-
- геолтехиздат, 1963.
- 5. Э. М. Пах, Э. М. Сендерзон. Плотность сети детальной разведки и опробования угольных месторождений в Кузбассе. Вопросы геологии Кузбасса, т. 2, Томск, 1959.
- 6. Л. М. Петровский. К вопросу определения рациональной плотности разведочной сети на угольных месторождениях. Изв. ВУЗов Геология и разведка, № 10, 1965.
- 7. В. А. Прокин. Выбор рациональной методики разведки Сибаевского месторождения. Сб. матер. по геологии редких и благор. металлов. Вып. 5, 1961.