Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://earchive.tpu.ru/handle/11683/72788
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVisintini, Alessandroen
dc.contributor.authorPonnimbaduge Perera, Tarindu Dilshanen
dc.contributor.authorDzhayakodi (Jayakody) Arachshiladzh, Dushanta Nalin Kumaraen
dc.date.accessioned2022-08-19T04:19:42Z-
dc.date.available2022-08-19T04:19:42Z-
dc.date.issued2021-
dc.identifier.citationVisintini, A. 3-D Trajectory Optimization for Fixed-Wing UAV-Enabled Wireless Network / A. Visintini, T. D. Ponnimbaduge Perera, D. N. K. Dzhayakodi (Jayakody) Arachshiladzh // IEEE Access. — 2021. — Vol. 9. — [P. 35045-35056].en
dc.identifier.urihttp://earchive.tpu.ru/handle/11683/72788-
dc.description.abstractUnmanned aerial vehicles (UAVs) is a promising technology for the next-generation communication systems. In this article, a fixed-wing UAV is considered to enhance the connectivity for far-users at the coverage region of an overcrowded base station (BS). In particular, a three dimensions (3D) UAV trajectory is optimized to improve the overall energy efficiency of the communication system by considering the system throughput and the UAV's energy consumption for a given finite time horizon. The solutions for the proposed optimization problem are derived by applying Lagrangian optimization and using an algorithm based on successive convex iteration techniques. Numerical results demonstrate that by optimizing the UAV's trajectory in the 3D space, the proposed system design achieves significantly higher energy efficiency with the gain reaching up to 20bitsJ−1 compared to the 14bitsJ−1 maximum gain achieved by the 2D space trajectory. Further, results reveal that the proposed algorithm converge earlier in 3D space trajectory compare to the 2D space trajectory.en
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherIEEEen
dc.relation.ispartofIEEE Access. 2021. Vol. 9en
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/-
dc.sourceIEEE Accessen
dc.subjectэнергоэффективностьru
dc.subjectоптимизацияru
dc.subjectenergy efficiencyen
dc.subjectsequential convex optimizationen
dc.subjecttrajectory optimizationen
dc.subjectUAV communicationen
dc.subject5Gen
dc.title3-D Trajectory Optimization for Fixed-Wing UAV-Enabled Wireless Networken
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dcterms.audienceResearchesen
local.description.firstpage35045-
local.description.lastpage35056-
local.filepathreprint-nw-36160.pdf-
local.filepathhttps://doi.org/10.1109/ACCESS.2021.3061163-
local.identifier.bibrecRU\TPU\network\36160-
local.identifier.perskeyRU\TPU\pers\44099-
local.identifier.perskeyRU\TPU\pers\37962-
local.localtypeСтатьяru
local.volume9-
dc.identifier.doi10.1109/ACCESS.2021.3061163-
Располагается в коллекциях:Репринты научных публикаций

Файлы этого ресурса:
Файл Описание РазмерФормат 
reprint-nw-36160.pdf1,43 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.