ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 199

1969

ТЕРМИЧЕСКИЙ АНАЛИЗ ТВЕРДЫХ СОЕДИНЕНИЙ, СОВМЕЩЕННЫЙ С МАСС-СПЕКТРОМЕТРИЕЙ ГАЗООБРАЗНЫХ ПРОДУКТОВ РАЗЛОЖЕНИЯ

Р. Н. ИСАЕВ, Ю. А. ЗАХАРОВ, В. В. БОРДАЧЕВ

(Представлена научным семинаром кафедры радиационной химии и лаборатории ХТТ)

Масс-спектрометрический анализ, выполняемый по ходу термолиза твердых тел (в изотермическом или неизотермическом режиме последнего), позволяет получить разнообразную информацию о специфике и механизме термолиза. В зависимости от поставленных задач конструируются устройства систем напуска или введения анализируемого образца в прибор.

В литературе описан ряд подобных устройств [1—4], однако использование их часто затруднено методическими осложнениями. Например,

Рис. 1. Схема установки для проведения ДТА или изотермического разложения:

1, 2 — ртутный манометр МЧР-3, 3 — насос Камовского, 4 — шкала манометра Бурдона, 5 краны, 6 — манометр Бурдона, 7 — кран, соединяющий сосуд с ампульной системой МХ-1302, 8 — ворот для опускания навески, 9 — охлаждающий шлиф, 10 — подвеска, 11 — стаканы для ДТА, 12 — стеклянная чашечка с навеской, 13 — печь, 14 — термопара, 15 — позиционный регулятор потенциометра ЭПД-52, 16 — реле ТРР, 17—потенциометр ЭПД-52

применение отпаиваемых ампул, содержащих анализируемый газ, требует создания конструкций для их вскрытия, заполнения и отпайки их и вместе с тем не позволяет проводить непрерывный анализ продуктов на протяжении всего распада. В работах [2, 3] для введения образ-

50

	Возможные ионы	Интенсивность пиков в мв.	
m/e		І отбор	II отбор
12 .	C+	46	30
14	N +	62	130
15	N 15+, N H+		10
16	O^+, NH_2^+	111	190
17	OH+.NH ³⁺	12	21
18	$H_{0}O+$	45	70
28	$N_{2}^{+}CO_{+}$	700	879
30	NO+	700	845
32	O_{2} +	415	1095
35	C1+	410	145
36	HC1+		509
37	$Cl^{37}+$		44
38	HC137+		156
44	CO_{2}^{+} . H ₂ O ⁺		720
45	$C^{1_3}O_{2^+}$	8	10
46	NO ₂	9	10
51	C10+	следы	S
52	HC1O+	»	<u> </u>
53	C1 ³⁷ O+		1
70	$C1_2+$	8	60
72	C1 ³⁵ C1 ₃₇ +	5	39
74	$C1_{2}^{37}+$	1000 A	10

Масс-спектр газообразных продуктов разложения NH₄ClO₄ в режиме ДТА. Ионизирующее напряжение 70 в., ток эмиссии 2 ma

ца прибегли к конструктивному изменению ионного источника, что не всегда целесообразно.

Нами смонтирована и описывается ниже весьма простая схема, позволяющая проводить анализ продуктов термолиза параллельно с изучением кинетики изотермического распада или ДТА соединений. Реакционный сосуд, являющийся одновременно частью напускной системы напуска, схематически показан на рис. 1. Он представляет собой цилиндрический сосуд из молибденового или кварцевого стекла. Разложение препарата в режиме ДТА или при изотермическом нагревании контролируется с точностью 0,01 *мм. рт. ст.* по давлению выделившихся газов с помощью мембранного манометра Бурдона (6), используемого при этом в качестве нуль-инструмента и работающего с ртутным манометром повышенной точности МЧР-3 (2). Использование мембранного манометра позволяет пренебречь агрессивными свойствами выделяющихся газов, таких, как Cl₂, окислы азота и др.

Предварительная эвакуация сосуда (до давления около 10-3 мм рт. ст.) проводится при открытом кране (7) с помощью откачной системы масс-спектрометра МХ1302. Термостатирование сосуда или линейное ведение температуры (в режиме ДТА) осуществляется массивной печью (13). Режим работы ее контролируется системой термостатирования, работающей на основе регулирующего потенциометра ЭПД-52 (17), или создается системой линейного ведения температуры пирометра Курнакова. Точность регулировки температуры в режиме изотермического нагрева в области 200-450° С составляет $\pm 0.5^{\circ}$ C.

При проведении изотермического разложения навеска вещества помещается в чашечку (12), опускаемую воротом (8) в предварительно нагретую часть реакционного сосуда. При работе ячейки в режиме

ДТА исследуемый препарат и эталон помещаются в стаканчики, впаянные в дно сосуда; термопары отделены при этом от навесок тонким стеклянным дном стаканчиков.

Отбор проб газов на анализ осуществляется через кран (7) путем заполнения анализируемым газом одной из ампул гребенки, связанной с системой напуска масс-спектрометра МХ-1302 [5]. Из-за малого объема отбираемых проб эти операции не мешают проводимому изучению кинетики термолиза.

Описанная ячейка эксплуатировалась в обоих описанных режимах, являясь весьма простой в изготовлении и работе, в то же время достаточно надежна и чувствительна в режиме ДТА.

Рис. 2. Термограмма перхлората аммония, снятая при начальном разряжении 2.10-2 *мм. рт. ст*

На рис. 2 приводится термограмма перхлората аммония, снятая при начальном вакууме $2 \cdot 10^{-2}$ *мм. рт. ст.* и скорости нагрева образца $\approx 10 \ epad/muh$, точками I и II обозначен отбор газов. Соответствующий масс-спектр приводится в табл. 1.

ЛИТЕРАТУРА

Дж. Бейнон. Масс-спектрометрия и ее применение в органической химии.
Изд. «Мир» М., стр. 160—180 (1964).
2. G. A. Heath, I. R. Majer. Trans. Farad. Soc. 60, № 502, 783—91 (1964).

2. G. A. Heath, I. R. Majer. Trans. Farad. Soc. **60**, № 502, 783—91 (1964). 3. А. М. Алексеевидр. Изв. вузов — Химия и хим. технология, **9** № 4, 604—608, (1966).

604—608, (1966). 4. R. S. Gohlke, H.G. Langer, Anal. Chem., 37, № 10, 25А—28А, (1965). 5. Я. А. Юхвидин. Заводская лаборатория № 1, 35 (1957).

замеченные опечатки

Стра- ница	Строка	Напечатано	Следует читать
4	Табл. 4	Расщепление	Расщепление, гаусс
8	Рис. 2	1000 ,A	
19	1-ая снизу	ДаН СССР	ДАН СССР
. 22	24 сверху	$O^{=} \Box + 2e + 1/20_2$	$O = \Box + e + 1/20_2$
23	13 сверху	За счет электронов	За счет захвата электроно в
	16 сверху	Кристаллов постоянных	кристаллов постоянным
28	7 снизу	$A^{-}A \rightleftharpoons^{0}_{T} + e$	$A \rightarrow A \tau^0 + e$
36	12 снизу	Zoumeine	Roumeine
40	3 сверху	выходе	входе
. 44	5 снизу	(11)	(1)
47	3 сверху	и окружающее	в окружающее
51	Табл. І	NH ³⁺	NH ₃ +
51	Табл. І	HCl ₃₇ +	HC1 ³⁷ +
54	Рис. 2	t (сек)	lgt (сек)
64	5 сверху	кристаллах позволяет	кристаллах с контролируемой
		получить с контроли-	величиной поверхности
		руемой величиной по- верхности	позволяет получить
69	8 сверху и		
	13 снизу	ПП-Ш	ΠΠ-ΙΙΙ
70	Табл. І	$0,99+1,06.10^{13}$	$0,99+1,06.10^{13}$
	Зи 6 снизу	А. Д. Уорбе	A. A. Yoffe
71	авторы	Д. А. Захаров	HO. A. Jaxapob
	7 снизу	0,5 %	0,05 %
74	подпись под	1	lgo,
	рис. 4	$N \longrightarrow N_{-} 0 + 1$	N
77	то снизу		113 113- 1 C
11	подпись под	НО	H
79	5 и 6 сверуу	CIO	ClO ₃
81	17 снизу	$C_1 \xrightarrow{\sim} C_1 , 1, [C_1O_4]^*$	$C10_4 \longrightarrow C10_4.e, [C10_4]^*$
88	8 CBEDXV	% 1168	№ 1168
01	o cooping	I NH ₃	15NH3
91	2 снизу	N = N + C = O +	Γ_{18}
111	П снизу	141 151 1,120160	Каленаци
111.	Т СНИЗУ	Кі	KI
120	1 chebxy	$G = \sigma + i$	$G = g + \gamma$
120	1 CHH3y	V	Vĸ
146	5 снизу	спектрометрия	спектроскопия
140	l o ennoy	I CHIEF STOLEY	and the second

1