ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 213

1972

ЦИФРОВОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ РАДИАЦИОННОГО КОНТРОЛЯ ПЛОТНОСТИ ТЕЛ С НЕОДНОРОДНОЙ СТРУКТУРОЙ

В. А. ВОРОБЬЕВ, Г. Н. ПАРВАТОВ, В. И. СЕСЬ

(Представлена научным семинаром сектора дефектоскопии строительных материалов НИИ ЭИ)

Основным видом контроля, позволяющим получить наиболее полиую и объективную информацию при нахождении текстурно-структурных параметров композиционных материалов, является радиография [1]. Однако эффективность метода сильно зависит от качества самой пленки и методики ее обработки. Поэтому предложенный в работе [2] метод оценки неоднородности конструкций с помощью радиографического коэффициента, представляющего собой изменение относительной плотности почернения гамма-изображений на радиографическом снимке, не может быть эффективен для изучения распределения плотности по объему конструкций.

В данной работе для исследования распределения плотности по длине образца предлагается метод цифрового моделирования [3].

Структура бетона как многокомпонентного тела может быть представлена моделью ограниченного пространства, заполненного выпуклыми телами с равномерным распределением по объему. В большинстве случаев с достаточной степенью приближения выпуклые тела можно заменить сферами с распределенными эффективными радиусами [4], причем число различных радиусов можно ограничивать тремя, четырьмя и т. д. в зависимости от конкретных условий задачи. Для инженерных расчетов параметров гранулометрического состава обычно ограничиваются тремя размерами [5]. Таким образом, равномерное распределение размеров, составляющих компонент, можно заменить дискретным, а их распределение в объеме — частостями. Тогда математически модель можно сформулировать в общем случае, задав размеры шаров — r_i их частости f, и условия упаковки:

$$a \leqslant q_{jl} \leqslant b; \tag{1}$$

$$\sum_{i} (q_{ji}^0 - q_{ji})^2 \geqslant l_{i\kappa}.$$
(2)

Здесь $i = 1, 2 ... \kappa ... -$ номер пакуемого размера; q_j — координаты центра пакуемого шара в S-мерном пространстве; j = 1, 2, 3 ... s; индекс «O» относится к упакованному шару, а «I» — к пакуемому; $l_{i\kappa}$ — расстояние между центрами пакуемых шаров.

Условия (1) и (2) определяют граничные условия упаковки, то есть размеры граней и наименьшее возможное расстояние между гранулами соответственно.

101

Описанная выше математическая модель была реализована на ЦВМ М-20 для упаковки единичного куба шарами трех размеров, заданных в виде отношения 1:2, 17:3,85 с частостями f_1 , f_2 , f_3 . Алгоритм реализации следующий.

Координаты центров пакуемых шаров радиуса r_i представлялись тройками чисел (x, y, z) с равномерным распределением в интервале [01]. Равномерность распределения обеспечивалась специальными датчиками псевдослучайных чисел [6], причем для меньшей их корреляции для каждой координаты свой датчик.

Случайным образом из интервала [01] выбираются числа таким образом, чтобы выполнялись условия (1) и (2), причем a=0.5, b=0.95. Соотношение частостей $f_1:f_2:f_3$ варьируется отдельным датчиком выбора размера, к которому необходимо обращаться после каждого упакованного шара.

Признаком конца упаковки является число неудачных попыток подряд упаковать очередной шар — «*n*». Как только *n* = 1 000, упаковка считается оконченной и происходит выдача результатов.

Для удобства математическое описание упаковки и алгоритм его реализации на ЦВМ будем называть цифровой моделью. В результате статистического эксперимента цифровой модели на ЦВМ М-20 получены средние значения плотностей в зависимости от частостей при фиксированных значениях r_i . Результаты представлены в табл. 1.

С помощью цифровой модели рассмотрим характеристики плотности бруска цементобетона как случайные функции его сечений. В качестве характеристики плотности бетона используем однородность заполнения, представляющую собой дифференциальную плотность сечения [4]. Тогда по заранее нанесенной сетке точек (рис. 1) не составит труда сосчитать значения однородности «v» в каждом сечении по формуле:

$$\nu = \frac{1}{H} \sum_{i}^{N} l_i,$$

где *H* — толщина бруска;

li — длина хорды по лучу,

i = 1 ... *n* - количество шаров, которые пересекают луч.

Пусть $v_i(L_\kappa)$ — значение однородности по *i*-й горизонтали в κ -м сечении, тогда математическое ожидание от v_i и дисперсия будут равны соответственно:

$$\overline{\nu}_{x}(L_{\kappa}) = \frac{1}{n} \sum_{i} \nu_{i}(L_{\kappa});$$

$$\overline{D}_{x}(L_{\kappa}) = \frac{n}{n-1} \left[\frac{\sum_{i} [\nu_{i}(L_{\kappa})]^{2}}{n} - [\overline{\nu}(L_{\kappa})]^{2} \right].$$

Таким образом, найденные значения v_i (L_{κ}) случайной функции по схеме рис. 1 со средним значением v_x и дисперсией \overline{D}_x образуют случайное поле, внутренняя структура которого описывается корреляционной функцией [8]:

$$\overline{K}_{x}(L_{\kappa}L_{j}) = \frac{n}{n-1} \left[\frac{\sum_{i} \nu_{i}(L_{\kappa}) \nu_{i}(L_{j})}{n} - \overline{\nu}(L_{\kappa}) \overline{\nu}(L_{j}) \right],$$

переходя к нормированной корреляционной функции, получим:

$$\overline{\nu}_{x}\left(L_{\kappa}L_{j}\right) = \frac{\overline{K}_{x}\left(L_{\kappa}L_{j}\right)}{\overline{\sigma}_{x}\left(L_{\kappa}\right)\overline{\sigma}_{x}\left(L_{j}\right)},$$
(5)

где σ_r — среднее квадратическое отклонение в *к*-сечении.

Проведенные вычисления по формуле (5) показали, что исследуемая случайная функция v(L) не является стационарной, так как значения нормированной корреляционной функции не постоянны. Устраняя эти значения и переходя к стационарной функции, получаем значения нормированной корреляционной функции v_x (*h*), где *h* — произвольный интервал сечений. График этой функции представлен на рис. 2. Изменение функции $\overline{v_x}$ (*h*) можно аппроксимировать выражением (6), где коэффициенты *A*, *a*, *B* и *b* определяются в каждом частном случае методом наименьших квадратов. Пунктиром на рис. 2 показана сглаженная кривая по (6) с коэффициентами *A*=0,65, *a*=0,35, *B*=0,2, *b*=0,46 для цифровой модели.

Таким образом, поскольку «v» является дифференциальным коэффициентом плотности упаковки крупного заполнителя, можно записать математическую модель распределения плотности цементобетона в виде:

Рис. 1. Схема расположения точек вычисления; I_0 — падающий поток излучения; $\kappa = 1$, 2... точки по горизонтали; i = 1, 2... сечение по лучу

Рис. 2. График нормированной корреляционной функции. 1. Цифровая модель; 2. Аппроксимация по 6; 3. Образец цементобетона

$$\overline{\nu}_{x}(h) = A_{\exp}(-a^{2}h^{2}) + B_{\exp}(-b^{2}h^{2});$$
 (6)

$$\rho_{x}(L) = \rho_{0};$$

$$\bar{\rho}_{x}(h) = A_{\exp}(-a^{2}h^{2}) + B_{\exp}(-b^{2}h^{2}).$$

В качестве эксперимента нами было проведено физическое моделирование упаковок в куб (10 см \times 10 см \times 10 см) на шарах и гравии, с тем же соотношением размеров и частостей, что и в цифровых моделях. Результаты сведены в табл. 1. Упаковки с гравием и шарами получены при одних условиях. Однако значения плотностей гравийных упаковок несколько выше, чем в упаковках с шарами. Тем не менее из табл. 1 можно видеть закономерное изменение значений плотностей в зависимости от частостей во всех моделях — увеличение плотностей с увеличением частости первого размера. Это подтверждает возможность использования цифровых моделей для исследования структур типа бетон.

Из гравийных упаковок затем были получены цементобетонные образцы с последующим радиографированием X-лучами ($E=210 \ \kappa \mathcal{P} \mathcal{B}$) и расшифровкой гамма-изображений на микрофотометре МФ-4. Результаты расшифровки изображений рассчитаны по формуле (5). Для иллюстрации на рис. 2 приведена функция распределения v(h) для образца цементобетона с плотностью заполнения крупным заполнителем 0,68. Из сравнения кривых цифрой модели и образцов цементобетона можно сделать вывод, что в реальных бетонах распределение крупного заполнителя в образце подчиняется аппроксимации (6), полученной на цифровой модели. Таким образом, использование метода цифрового моделирова-

(7)

ния позволяет привлечь теорию случайных функций для исследования неоднородных структур и дать математическую модель распределения плотности крупного заполнителя в цементобетоне.

Таблица 1

Соотношение размеров 1; 2,17:3,85					
f_1	f_2	f_3	ц. м.	р шары	р гравий
28 14 9 8 6	1 1 8 19 6		0,67 0,65 0,64 0,63 0,61	$0,70 \\ 0,69 \\ 0,67 \\ 0,66 \\ 0,66 \\ 0,66$	0,71 0,68 0,71 0,67 0,67

ЛИТЕРАТУРА

1. Ю. Д. Гавкалов. Кандидатская диссертация, ТПИ, Томск, 1968. 2. В. Г. Фирстов. Особенности радиографии конструкций с анизотропной структурой. Дефектоскопия № 6, 83, 1969.

3. В. А. Воробьев, В. К. Кивран, И. Э. Наац. Исследование распределения потоков тормозного излучения за неоднородными барьерами методами математи-ческого моделирования. Известия ТПИ, 193 (1969). Изд. ТГУ, Томск.

4. В. А. Воробьев, И. Э. Наац. О соотношении между плотностью заполне-ния и линейным коэффициентом однородности структур типа бетон. Радиационные методы и средства неразрушающего контроля качества материалов и изделий. Труды I Межвуз. научно-технич. конференции. ОНТИПРИБОР, М., 1969. 5. А. А. Гвоздев, С. М. Крылов. Особенности деформаций бетона и железо-бетона и использование ЭВМ для оценки их влияния на поведение конструкций.

«Госстрой СССР», М., 1969.

6. В. Ф. Ляшенко. Программирование для цифровых вычислительных машин.
Изд-во «Советское радио», М., 1967.
7. А. А. Свешников. Прикладные методы теории случайных функций. Суд-

промгиз, Л., 1961.