ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМ. С. М. КИРОВА

Том 253 1976

ИССЛЕДОВАНИЕ КОМПОНЕНТНОГО СОСТАВА попутного газа САМОТЛОРСКОГО НЕФТЯНОГО МЕСТОРОЖДЕНИЯ

А. В. КРАВЦОВ, Н. М. СМОЛЬЯНИНОВА, В. А. КУЗНЕЦОВА

(Представлена научно-методическим семинаром ХТФ)

Для оценки ресурсов и компонентного состава попутных газов нефти Самотлорского месторождения Западной Сибири по соответствующим методикам [1,2] были отобраны и разгазированы при пластовой температуре на УИПН-2м глубинные пробы нефтей этого месторождения из пластов А-I (скв. 14) и Б-VIII (скв. 12). Анализ отобранных проб газа производился хроматографическим методом с использованием хрома-

Состав газа и легких углеводородов, растворенных в поверхностной*

Номер скважины		Углеводород										
	Глубина	C ₂ F	I_6	C ₃ l	H ₆	И-С4Н10						
	анализа	на поверхн. нефть	на пласт.	на поверхн. нефть	на пласт. нефть	на поверхн. нефть	на пласт. нефть					
14 (пласт А-1	до C ₄) до C ₅	0,001 0,001	0,001 0,001	0,127 0,127	0,114 0,114	0,121 0,121	0,108 0,108					
12 (пласт Б-VIII)	до C ₄ до C ₅	0,006 0,006	0,005 0,005	0,203 0,203	0,181 0,181	0,181 0,181	0,161 0,161					

тографов ГАХ-21 и ХЛ-4. На ГАХ-21 осуществлялось разделение неуглеводородных газов и метана при следующих условиях:

неподвижная фаза

— цеолит САХ,

длина колонки

-1 M,

температура термостата — комнатная,

— гелий, 100 мл/мин.

газ-носитель Углеводородные газы до С5 разделялись на хроматографе ХЛ-4. Условия анализа:

неподвижная фаза — вазелиновое масло (20%) на ИНЗ-600.

температура термостата — 50°С,

газ-носитель

— гелий, 100 мл/мин,

длина колонки

-4 M.

Определение содержания двуокиси углерода в газе осуществлялось на химическом газоанализаторе ВТИ-2. По установленному компонентному составу газа рассчитывалась его плотность при нормальных условиях и производился пересчет объемных процентов в весовые [3].

Количество газа, выделяющегося из 1 см³ нефти при ступенчатом сбросе давления на одну атмосферу, для всех проб одинаково возрастает с уменьшением общего давления в системе. Плотность газа и нефти по

После разгазирования при пластовой температуре

Таблица 1

Состав газа при ступенчатом разгазировании пластовой нефти с отбором в общий объем*)

	8 1404 sta	60 an	ги	La Trans		40 a	ти			20	ати		Name of the	16	ати		1.	/ 6	ати		le l'	, 0	ати	
Компонент	Markey !	6 об	%	вес	%	об.	%	вес	% 0	ő.	%	вес	. %	06	9	6 вес	%,0	б	%	вес	% C	6	%	вес
Komiodent	пласт А-1	пласт Б-VIII	пласт А-1	пласт Б-VIII	пласт А-I	пласт Б-VIII	пласт А-1	пласт Б-VIII	пласт А-I	пласт Б-VIII	пласт А-І	пласт Б-VIII	пласт А-I	пласт Б-VIII	пласт А-I	пласт Б-VIII	пласт А-I	пласт Б-VIII	пласт А-I	- пласт Б-VIII	пласт А-I	пласт Б-VIII	пласт А-I	пласт Б-VIII
Ci	92,23	90,55	82,08	79,80	91,90	89,44	81,76	77,00	90,88	87,90	79,30	74,20	90,49	86,52	78,30	71,20	88,75	84,52	74,50	66,20	82,41	70,43	61,50	44,10
C ₂	1,64	3,10	2,92	5,48	1,70	3,28	3,03	5,65	1,94	3,64	3,39	6,15	2,05	3,96	3,55	6,51	2,39	4,75	4,00	7,45	3,35	6,00	5,00	7,50
C ₃	1,86	2,83	4,55	6,90	2,06	3,38	5,04	8,20	2,58	4,11	6,17	9,60	2,71	4,70	6,45	10,70	3,50	6,40	8,10	13,70	5,86	12,78	12,10	22,00
И-С4	0,46	0,38	1,48	1,22	0,48	0,44	1,53	1,35	0,76	0,55	2,36	1,64	0,90	0,64	· 2,81	1,90	1,02	0,97	3,11	2,74	2,06	2,28	5,60	5,15
H-C ₄	0,89	0,44	2,88	1,40	0,91	0,54	2,92	1,68	0,96	0,86	3,02	2,63	1,00	1,07	3,13	3,20	1,30	1,70	3,96	4,80	2,10	4,78	5,70	10,80
И-С5	0,20	0,25	0,84	0,99	0,19	0,24	0,73	0,92	0,23	0,26	0,90	0,99	0,24	0,29	0,95	1,05	0,30	0,41	1,14	1,44	0,99	1,20	3,34	3,37
H-C ₅	0,22	0,35	0,90	1,39	0,21	0,31	0,81	1,20	0,23	0,32	0,90	1,22	0,24	0,35	0,92	1,26	0,31	0,42	1,16	1,48	0,96	1,15	3,23	3,27
C ₆	_	2.4	-	× - ·	1	-	-	- 1	10-1-7	_				0,05		0,22		0,20	_ X	0,84	0,13	0,89	0,45	2,97
2	2,31 1	1,82	3,60	2,80	2,22	1,87	3,46	2,82	2,08	2,02	3,17	2,99	2,04	1,83 🆠	3,10	2,63	1,90		2,80		1,69		2,18	
CO ₂	0,20	0,28	0,75	0,02	0,30	0,50	.0,74	1,18	0,34	0,25	0,79	0,58	9,33	0,59	0,79	1,33	0,54	0,63	1,23	1,35	1,45	0,49	0,90	0,84

^{*)} Разгазирование проводилось при пластовой температуре: 65°C для пласта А-1 и 75°C для пласта Б-VIII.

ступеням при дифференциальном разгазировании также возрастает при сбросе давления, что говорит об увеличении содержания в газе, особенно последней ступени, тяжелых углеводородов C_4 — C_5 . Общее количество газа, выделяющегося из 1 м 3 нефти при ее контактном разгазировании для проб из скважин 14 (пласт A-1) и 12 (пласт Б-VIII) составляет соответственно 95.01 и 78.38 м³.

Состав попутного газа, выделившегося при разгазировании в общий объем, представлен в табл. 1. Попутный газ из пласта А-І (скв. 14) характеризуется более высоким содержанием метана, чем газ из пласта Б-VIII (скв. 12), но газосодержание нефти из пласта А-І выше такового пласта Б-VIII.

Как и следовало ожидать, при уменьшении давления в системе в процессе ступенчатого разгазировамия содержание метана в попутном газе уменьшается, а углеводородов С3—С5 увеличивается.

После разгазирования пластовой пробы нефти до атмосферного давления в ней остается в растворенном виде значительное количество vглеводородов C₂—C₅. Выход и состав газов, оставшихся растворенными в разгазированной нефти, определялся нами по методике лаборатория № 2 ВНИИНП и представлен в табл. 2.

Из табл. 2 видно, что в разгазированной при температуре пласта нефти содержатся значительные количества тяжелых компонентов в основном углеводородов С4 и С5. Сумма растворенных углеводородов до C_4 и до C_5 разнится для исследованных проб нефтей (из скв. 14 и

Таблица 2 и пластовой пробах самотлорской нефти (% вес. на нефть)

%	вес								
н—	C ₄ H ₁₀	и—С	₅ H ₁₂	н—	C ₅ H ₁₂	Итого			
на поверхн. нефть	на пласт. нефть	на поверхн. нефть	на пласт. нефть	на поверхн. нефть	на пласт. нефть	на поверхн. нефть	на пласт. нефть		
0,596 0,596	0,537 0,537	0,652	0,588	0,993	0,895	0,845 2,490	2,243		
0,940 0,940	0,837 0,837	0,779	0,693	1,291	1,150	1,330 3,400	3,027		

скв. 12) и колеблется соответственно в пределах 0,845—1,330 вес. % п 2,490—3,400 вес. % на разгазированную нефть. Метан и неуглеводородные газы при разгазировании улетучиваются полностью и в поверхностной пробе нефти отсутствуют.

Выводы

1. Проведено ступенчатое разгазирование глубинных проб нефти из пластов А-I (скв. 14) и Б-VIII (скв. 12) Самотлорского месторожде-

ния Западной Сибири при пластовой температуре. 2. Установлено, что общие ресурсы попутных газов составляют 13,193% вес. для пласта А-I (скв. 14) и 15,307% вес. для пласта Б-VIII (скв. 12), считая на пластовую нефть.

ЛИТЕРАТУРА

1. «Методика отбора и исследование глубинных проб пластовых нефтей Томской и Новосибирской областей», отчет НТГУ, Новосибирск, 1966.
2. В. Н. Мамуна, Г. Ф. Требин, Б. В. Ульянинский. Экспериментальное исследование пластовых нефтей. ГОСИНТИ, 1960.
3. А. С. Смирнов, А. И. Ширковский. Добыча и транспорт газа. Гостоп-

техиздат, 1967.