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Highlights:

What are the main findings?

• A method for clustering urban water supply consumers based on their geographic
location and water consumption levels has been developed, allowing for the identifi-
cation of key areas with high water demand and consideration of spatial distribution
characteristics on the map.

• The effectiveness of applying the agglomerative clustering method has been demon-
strated, which, combined with the silhouette coefficient, allows for selecting the optimal
data partition strategy and distributing the territorial division of consumers across
service zones.

What are the implications of the main findings?

• The proposed geospatial clustering method allows for planning the placement of pres-
sure sensors, taking into account the distance of consumers from water sources, con-
sumption centers, and their cluster membership, which creates a foundation for solving
hydraulic modeling tasks.

• The results of the study are aimed at addressing the task of determining the magnitude
and influence zones of pressures generated by water sources on the key points of the
urban water supply system, in order to optimize the operation modes of pump stations.

Abstract: For large cities with developing infrastructures, optimising water supply systems
plays a crucial role. However, without a clear understanding of the network structure
and water consumption patterns, addressing these challenges becomes significantly more
complex. This paper proposes a methodology for geospatial data analysis aimed at solving
two key tasks. The first is the delineation of service zones for infrastructure objects to
enhance system manageability. The second involves the development of an approach for
the optimal placement of devices to collect and transmit hydraulic network parameters,
ensuring their alignment with both water supply sources and serviced areas. The study
focuses on data from the water supply network of a city with a population exceeding
half a million people, where hierarchical clustering using Ward’s method was applied to
analyse territorial distribution. Four territorial clusters were identified, each characterised
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by unique attributes reflecting consumer concentration and water consumption volumes.
The cluster boundaries were compared with the existing service scheme of the system,
confirming their alignment with real infrastructure. The quality of clustering was further
evaluated using the silhouette coefficient, which validated the high accuracy and reliability
of the chosen approach. The paper demonstrates the effectiveness of cluster boundary
visualisation for assessing the uniform distribution of pressure sensors within the urban
water supply network. The results of the study show that integrating geographic data
with water consumption information not only facilitates effective infrastructure planning
and resource allocation but also lays the foundation for the digitalization of the hydraulic
network, a critical component of sustainable development in modern smart cities.

Keywords: spatial clustering; optimisation; geographic segmentation; Ward’s method;
water resource management; silhouette quotient; infrastructure planning

1. Introduction
In today’s context of increased demands for reliability and efficiency in resource supply

systems, the implementation of advanced technologies such as the Internet of Things (IoT),
machine learning, and artificial intelligence has become increasingly significant. These
technologies enable the collection, processing, and analysis of real-time data, opening up
new opportunities to optimise the operation of complex technical systems, including urban
water supply systems. Currently, water supply systems represent a complex array of de-
vices and infrastructure that ensure the uninterrupted extraction, delivery, and distribution
of drinking water across vast territories. In large cities, these systems are multi-tiered, in-
volving different stages of water lifting to maintain optimal pressure in various sections of
the water supply network. Scientific studies indicate that these systems operate under the
influence of numerous external and internal factors, which can significantly affect their effi-
ciency and reliability [1–3]. Key challenges include optimising water resource management,
reducing leakage, and minimising operational failures in technological processes [4,5].

Thus, the efficiency of water supply systems depends on numerous factors, including
configuring optimal operating modes, promptly responding to emergencies, and ensuring
the quality maintenance of pipelines and equipment. Achieving the stable operation of
such systems requires the continuous monitoring of their condition, a detailed analysis
of operational characteristics, and timely managerial decision-making. However, existing
approaches to managing water supply systems often face several limitations that hinder a
comprehensive understanding of the structure and functioning of the network. In particular,
there is no effective way to accurately determine the concentration of key consumers on a
territorial map, which creates significant challenges when conducting energy audits. This
makes it difficult to analyse the distribution of objects relative to water intakes and evaluate
their impact on the water supply network. Such limitations complicate not only monitoring
but also the search for ways to improve the efficiency of system operations.

Most modern water supply systems have a significant amount of data, offering op-
portunities to develop a mechanism for quickly identifying key consumer sectors based
on essential factors. This study focuses on two such factors: geospatial data (longitude
and latitude) and water consumption volumes. These parameters enable the structuring of
water supply system objects and their analysis in a territorial context. It is worth noting
that factors such as population density and types of industrial facilities remain open topics
requiring further investigation. Accounting for these characteristics could significantly
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expand the analysis capabilities and provide a deeper understanding of water consumption
patterns using the methodology proposed in this research.

This paper examines the water supply system of a city with a population exceeding
half a million people, using Gomel (Republic of Belarus) as an example. The goal of the
study is to develop a methodology for clustering the territorial location of urban water
supply system objects, aimed at solving the following tasks:

1. Developing a methodology for dynamic spatial analysis to delineate territorial cluster
boundaries based on water consumption data and the geographic location of objects.
This will account for changes in a developing infrastructure by leveraging a continu-
ous flow of information to plan service zones for water supply networks and enhance
their manageability.

2. Designing a strategy for the optimal placement of sensors (pressure, flow rate, etc.)
in the water supply network, aligning their placement with territorial clusters and
ensuring the visualisation of their uniform distribution on a map. This will enable
effective data collection on the hydraulic parameters of the system—from water
supply sources to control points within the urban infrastructure. The collected data
will serve as the foundation for creating hydraulic models necessary for optimising
system performance and analysing the zones of influence of water intakes on various
sections of the water supply network.

The expected outcomes of the study include the development of a methodology that
will not only improve the manageability and monitoring of the existing water supply
system but also lay the groundwork for creating hydraulic models (digital twins) in the
context of smart city development. The results of the research represent an initial yet
significant step toward modelling energy-efficient modes of water supply networks and
optimising pressure schedules for pumping stations. Additionally, the findings can be used
for planning infrastructure modernization and developing resource management strategies
in cities with similar water supply structures.

2. Related Works
2.1. Clustering Algorithms

A review of global practises highlights hierarchical clustering and the k-means al-
gorithm as the most widely used clustering methods. An example of their application
is the study by Poncelet et al. (2017), which demonstrates the use of these methods for
identifying representative historical days in energy consumption and generation optimi-
sation models [6,7]. The authors proposed new criteria and metrics for evaluating model
representativeness and developed an optimisation method that more accurately models
annual variations in demand and energy production. Another example is the publication by
Arefifar et al., where similar approaches were applied to create virtual microgrids in smart
distribution systems [8]. This improved energy system management by accounting for
probabilistic characteristics of generation and consumption, optimising power distribution
among consumers [9].

The combination of these clustering methods with geographic data creates a powerful
synergy, enabling the effective resolution of a wide range of tasks. For instance, in the
study by Zhang et al., spatial clustering methods were used to analyse the energy efficiency
levels of various regions in China [10]. The research identified a trend toward grouping
consumers by their energy consumption levels. To gain deeper insights into the factors
affecting energy efficiency, such as industrial specialisation and economic development
levels, a spatial quantile autoregression model was employed [11]. This approach not only
identified key factors but also provided a foundation for developing targeted strategies to
improve energy efficiency.
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The application of clustering methods is also actively developing in tasks related to
water supply system reliability. An example is the study by Abokifa et al., which focuses
on the use of spatial data analysis combined with the predictive modelling of pipeline
failures [12]. The methodology proposed by the authors included the segmentation of the
pipeline network based on geographic location and pipe characteristics, allowing for the
identification of areas with a high risk of failure. The use of machine learning methods to
predict failure probabilities in each cluster enabled more accurate accident forecasting and
planning of preventive measures [13].

As the literature review demonstrates, territorial clustering has proven effective in
solving various tasks related to resource system management. It not only facilitates optimal
resource allocation and improves system manageability but also provides a foundation for
integration with advanced artificial intelligence and machine learning technologies.

2.2. Water Resource Management in Smart Cities

Global trends in the development of water supply systems rely on the concept of
smart cities and focus on implementing advanced technologies that enable the continuous
collection and processing of large volumes of data using artificial intelligence (AI) and
machine learning (ML) to solve highly specialised tasks [14–16]. Until recently, the high
cost of establishing connectivity among numerous water supply facilities spread across
vast urban areas limited the adoption of modern solutions. However, global advancements
in specialised communication standards for telemetry devices with low data transmission
volumes have opened new opportunities. With the development of Industry 4.0 projects
and smart city initiatives, obtaining information about the state of hydraulic networks has
become significantly easier, which has profoundly impacted the improvement of many
processes, including urban water supply. Internet of Things (IoT) technologies have not
only made data collection and analysis more accessible but also created broad opportunities
for exploring new ways to improve the efficiency of natural and energy resources [17–19].

Issues related to pipeline system management remain particularly relevant, where AI
models are capable of effectively addressing tasks such as pressure prediction at control
points, optimising operations, forecasting failures, and detecting leaks. In this process,
information resources play a key role by providing accurate and up-to-date data necessary
for model testing and training. An illustrative example is the study by Aljameel, Alomari
et al. [20], which explored the application of machine learning methods in pipeline systems.
The publication examined the effectiveness of recurrent neural networks (RNNs) and the
k-nearest neighbours (KNN) method for leak detection. A comparative analysis of various
ML models demonstrated the superiority of RNNs for such tasks, owing to their ability
to self-learn and process large datasets, resulting in high prediction accuracy in dynamic
informational environments.

Another study [21] presented the application of machine learning methods for mod-
elling pipeline failure scenarios under increased pressure. Predictive algorithms based
on artificial neural networks (ANN), gradient boosting (XGBoost, XGB), and categorical
boosting (CatBoost, CAT) were used. These models were trained on statistics from actual
pipeline inspections and results from finite element methods used for burst predictions.
Among the evaluated models, the CatBoost algorithm provided the most accurate predic-
tions with minimal errors. This highlights the effectiveness of combining AI models with
classical methods, making them a powerful tool for assessing pipeline safety, particularly
under changing operational conditions requiring adjustments to technological parameters.

Continuing the discussion on the application of machine learning in water supply
systems, the study by Sourabh N., Timbadiya P.V., and Patel P.L. [22], published in the
ISH Journal of Hydraulic Engineering in 2023, unveils new research possibilities. The
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publication focuses on water leak control and describes the application of reverse engi-
neering approaches for detection. The main idea of the study was to use classification
and regression tasks with artificial neural networks and support vector machines (SVM)
to identify pressure or flow deviations caused by leaks. The study was conducted in two
scenarios: the first involved measurements only for pressure and the second for water flow
in the system. The authors developed and trained multilayer perceptron (MLP) models
and multi-level classification and regression SVMs. It was established that ANN models
showed superior results compared to SVMs in detecting leaks across both scenarios. The
publication highlights that model performance can be further enhanced by optimising the
number of input data points during training, which remains an important area of research.

In this context, it is worth mentioning the study conducted by Momeni A. and Piratla
K.R. (2022) [23], which proposed using a simplified hydraulic model of water supply
networks that considers the condition of pipelines based on monitoring actual flow and
pressure values combined with machine learning methods. This approach, demonstrated
on a benchmark water distribution network, proved effective. The study illustrates how
modern machine learning algorithms can enhance the analysis of hydraulic characteristics
and provide continuous real-time monitoring of emergency scenarios [24,25].

To achieve maximum efficiency in using ML models, it is crucial to obtain reliable
hydraulic network information that accurately describes the behaviour of the water supply
system. This necessitates a clear understanding of optimal zones for placing data-collection
devices to monitor pressure, flow, and other critical parameters across urban infrastructure.
Understanding how water consumption objects form territorial clusters enables the local-
ization and minimization of sensors while ensuring comprehensive geographical coverage
for information systems. The justified placement of monitoring devices in complex and ex-
tensive water supply networks is vital for accurate data collection [26–28]. For this purpose,
it is necessary to develop a territorial clustering methodology that segments objects based
on their geographic location and water consumption volumes, significantly simplifying
data analysis. Clustering not only facilitates optimal sensor placement but also provides a
deeper understanding of water consumption patterns across different city areas, identifying
high-demand zones and key monitoring areas. In the context of expanding infrastructure,
this approach becomes essential for improving system manageability and control, as it
helps visualise data distribution density on geographic maps. This, in turn, contributes
to more precise adjustments of pumping station operating modes and optimisation of
pressure in the water supply network.

3. Methods
The study was structured in several successive phases. The first stage involved a pre-

liminary analysis of urban infrastructure and water supply system operation, focusing on
the geographical location of water intakes, water production volumes, and system pressure
levels. The second stage involved the collection and preparation of data for the analysis,
including statistics on water supply by abstraction and georeferenced water consumption
data for major urban sites. Intermediate stages covered digitisation, processing, and the
integration of data into a unified information system. At the final stage, water-consuming
objects were grouped into clusters by geographical features using the hierarchical clustering
method, forming segments with different locations and water consumption of objects. This
made it possible to identify territorial groups where the concentration of water consumers
had a specific geographical structure and to identify key clusters with different loads on
the water supply infrastructure.
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3.1. Sources of Statistical Information and Methods of Data Processing

The Gomel water supply system has several key water intakes, each of which plays an
important role in providing water supply to both the population and industrial enterprises.
The unique characteristics and peculiarities of each intake affect the overall efficiency of
the system and require a thorough preliminary infrastructure analysis. For this analysis,
statistical data compiled from hourly water supply values to the City’s network, obtained
from the engine room logs of the second lift pump stations for the year 2023, were used.
These data were digitised to further display the loading intensity on a map, allowing the
system performance to be assessed in the context of the geographical location of the water
intakes. In addition to these data, pump station-operating modes were investigated by
recording the output pressure in the discharge pipework on a minute-by-minute basis. This
allowed a more accurate assessment of the relationship between water consumption and
pressure schedules of the intakes as a function of time intervals and their spatial location.
Daily statistics of water supply to the city for a long period from 2017 to 2023 were also
used to analyse long-term trends.

The analysis of the water supply load distribution covered more than 250 of the largest
industrial facilities with reference to their geographical location. These facilities were
selected on the basis of their significant contribution to the water consumption of the
city, forming 66% of the balance. Since automated metering of water consumption was
not available for most of these facilities, a combined approach was used, combining data
from customer service departments and digital metering devices. The data provided by
the customer departments included the legal addresses of customers and consumption
volumes for certain periods. The Yandex. Maps geoservice was used to translate these
addresses into precise geographical coordinates.

This study used a variety of tools and libraries for data collection, processing, and
visualisation. The Jupyter Notebook platform was chosen as the main analysis environment,
providing the possibility of step-by-step code execution and visualisation of intermediate
results. Data processing was performed using Pandas and NumPy libraries. These tools
allowed us to perform the tasks of data loading, cleaning, aggregation, and normalisation
for further analysis. The visualisation of temporal and spatial characteristics of water
consumption and pressure at pumping stations was performed using Matplotlib and
Seaborn libraries, which allowed for the visualisation of daily and minute-by-minute
pressure fluctuations, as well as their georeferencing. Algorithms implemented in the scikit-
learn library were used for the spatial clustering of wo-supply objects. The ConvexHull
tool from the SciPy library was used to create a convex surface showing the boundaries of
geographical cluster zones.

3.2. Preliminary Overview of the Water Supply System

The structure of the studied water supply system includes five main water intakes:
Sozh, Iput, Korenevsky, Southwest, and Central, which supply water resources to both
the population and industry of the city. The water supply sources operate in a common
hydraulic system, maintaining established technological water parameters for consumers.
Each of the water intakes is located in different parts of the City and has unique character-
istics in terms of both capacity and pressure levels. Figure 1 shows the dynamics of water
delivery volumes by day for each of the intakes in the study system. To construct the time
diagram, the data were smoothed using the moving average method, which allowed for
the reduction of the influence of short-term fluctuations and better reflects the main trends
in the dynamics of water supply during visual analysis.
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Figure 1. Smoothed data of daily water supply by water intakes for 2023 using the moving aver-
age method.

On average, the Sozh intake shows the highest average values of daily water supply
(49,192 m3/day). The coefficient of variation in water consumption is 7.4%, indicating rela-
tively low variability of the data. The Iput, Southwest and Central intakes also contribute
significantly to the total water supply with average daily supply values of 18,358, 10,713
and 7764 m3/d respectively. The coefficients of variation for these intakes were 8.8, 13.4
and 13.3%, respectively, which also indicates relatively low variability in the city’s water
supply. In what sense, these intakes can be considered as sources providing the basis for the
daily supply of water to different parts of the city. The remaining water intake ‘Korenevsky’
with an average volume of 9820 m3/day has a high coefficient of variation (25.0%), which
determines the role of this intake in smoothing peak loads, adjusting to the daily demands
of consumers in the southern part of the city.

To visualise the geographical location of the intakes, the OpenStreetMap platform was
used, which made it possible to display the location of each intake on a map of the city
(Figure 2). Using the 3D Maps tool in Excel, an interactive map was created that shows the
intensity of water supply by each intake. This framework was then used to georeference
water consumers, providing a visual representation of the distribution of load on the water
supply system using a heat map. Using these tools, it became possible not only to analyse
the territorial distribution of water intakes, but also to effectively integrate their data with
other information systems for the further analysis and clustering of water consumption by
geographical zones. Thus, as a result of the visual analysis, the distance of water intakes
from the centre of water consumption and their actual load have been established. For
example, the actual capacity of the ‘Sozh’ intake, located in the north-eastern part of the city,
was significantly higher than other water supply sources. However, due to its remoteness
from the main water consumption facilities, its utilisation averaged slightly more than 50%
of the design capacity. In turn, water intakes located in the depths of industrial districts
operated with higher utilisation, reaching 74–86%.

The remoteness of water supply sources from consumers determined the existing
water intake regimes, where the differences in the maintained pressure levels in the urban
network were clearly observed. Figure 3 shows the daily pressure dynamics of the second
lift pumping stations, which illustrates the influence of territorial location on pressure levels.
The blue line shows the pressure of the ‘Sozh’ intake, which maintains the highest values
(about 0.42–0.44 MPa) during the entire observation period. In contrast, the Korenevsky
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(orange line) and Southwest (yellow line) intakes operate at lower pressures: Korenevsky
maintains 0.26–0.30 MPa and Southwest maintains 0.33–0.36 MPa.
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3.3. Methods of Spatial Clustering of Water Consumers

The preliminary analysis of the distribution of water intakes and their characteristics
has shown a significant influence of geographical location on water supply load, which
requires a more detailed approach to data clustering to identify key areas with high
concentrations of water consumption. In order to better analyse and optimise water supply
management, a spatial clustering method was applied. The study used two approaches
to data clustering. The first approach relied solely on the geographical coordinates of
water consumption facilities, which allowed for a detailed study of the spatial distribution
of water supply and the identification of areas with high water demand. This analysis
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provided important information on the spatial organisation of water use, identifying key
areas of concentrated pressure on the city’s infrastructure. The second approach combined
data on the location of facilities with their water use levels, which not only identified which
neighbourhoods were the highest water users but also assessed the geographic distribution
of these facilities across the city.

Both approaches used a hierarchical (agglomerative) clustering method to cluster
the data. In this study, Ward’s method [29] was used to cluster the data. This method
clustered the sites based on their geographical proximity and similarity in the level of water
consumption, which accurately compared with the established view of the water supply
pattern in the city. In accordance with Ward’s algorithm, at each clustering step, the two
closest clusters were combined if this minimised the increase in the total sum of squares of
variances. This ensured the creation of the most homogeneous groups when combining
water consumption facilities [30]:

∆ = ∑
i
(xi − x)2 −

(
∑

xi∈A
(xi − a)2 + ∑

xi∈B

(
xi − b

)2
)

, (1)

xi—coordinates of the i-th object (latitude and longitude); a, b, x—centres of clusters A, B,
and their association, respectively.

The quality of clustering in the study was assessed by calculating the silhouette
coefficient, which measures how well each object fits into its cluster compared to its location
in other clusters [31]:

s(i) =
b(i)− a(i)

max(b(i), a(i))
, (2)

where a(i)—the average distance between the ith facility and all other facilities in its cluster
(intra-cluster distance); b(i)—the minimum average distance between the ith facility and
all facilities in other clusters (inter-cluster distance).

Here, the silhouette coefficient was calculated as the difference between the intra-
cluster distance and the inter-cluster distance normalised by the maximum of these two
distances. High values of the coefficient, closer to 1, indicated good clustering and separa-
tion efficiency of the data. It is worth noting that understanding the most effective structure
of the separation of water consumption objects on the map allows for the adaptation of the
management of water withdrawals to real water demands [32,33]. At the same time, the
efficiency of clustering and the possibility of changing the boundaries of clusters in real
time directly depend on the automation of the water supply system in terms of obtaining
operational information about the levels of water consumption in the city. The integra-
tion of spatial analysis into water consumption management requires the use of modern
technologies for data collection and processing [34].

4. Results and Discussion
4.1. Integration of Spatial Analysis into Water Use Management

As a result of this research, an algorithm for territorial clustering of water supply
consumers has been formalised. This algorithm includes several consecutive stages aimed
at systematising data, linking them to geographical coordinates and labelling objects
into clusters:

Step 1: Collection and aggregation of water consumption data. This step collects
data from various sources, including automated metering systems and customer service
departments, where monthly or quarterly water consumption figures are recorded for
each facility in the city. All data are brought to a single form necessary for analysis and
aggregated to the required level of sampling. The sample size is determined by the available
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resources for data processing and the ability to obtain statistical data for analysis. If capacity
is limited, it is recommended to focus on the largest consumers located in different parts of
the city to ensure that the data are representative.

Step 2: Geocoding of addresses. Due to the fact that in most cases, subscriber de-
partment systems do not support exporting data with latitude and longitude coordinates
required for spatial clustering, limitations arise that make the operational spatial analysis
of the data difficult. The geographical reference of consumers is usually defined by the
legal addresses of the consumers, which requires an intermediate geocoding step. This
process consists of converting addresses into geographic coordinates using external geoser-
vices such as Google Maps or Yandex. Maps to obtain the latitude and longitude of each
object. The result is a database with geographic coordinates for each consumer and water
consumption volume, which allows us to link the facilities to their exact location on the
map and prepares the data for the next stages of analysis and clustering.

Step 3: Aggregation of data by address. To reduce computational costs, the aggregation
of water consumption data at the house and street level is performed. This step allows us
to combine information about several consumers located in the same building, preserving
key consumption indicators while reducing the total amount of data. If the data structure
includes not only industrial users but also residential customers, it is useful to aggregate
the data by bringing the indicators from apartment metering to individual houses or
neighbourhoods in order to obtain a generalised picture of water consumption. Aggregated
data are used for visual analysis when constructing a heat map of water consumption and
assessing its distribution over the city territory, which provides a more visual representation
of the distribution of load on the water supply system and remoteness from water intakes.
For the system under study, the heat map (Figure 2) visually represents areas with high
water demand (red areas) and areas with moderate and low consumption (green and blue
areas, respectively).

Step 4: Spatial clustering. Based on the obtained coordinates and aggregated data, a
hierarchical clustering method is applied to group sites based on their geographical location
and water consumption level. This process results in the formation of data points labelled
according to their belonging to specific clusters. These data serve as a basis for constructing
convex surfaces that unite the extreme points of each cluster and form the boundaries of
territories with different intensities of water consumption.

Let us consider the results of applying the above algorithm to the example of the water
supply system under study.

4.2. Hierarchical Clustering and Finding the Optimal Number of Clusters

The primary visual analysis of the dendrogram (Figure 4) plotted on the basis of
co-ordinates (latitude and longitude) revealed distinct gaps between the grouped datasets,
indicating a natural intergroup spread. For automated cluster selection, a cut-off method
was used, which involves drawing a horizontal line at the level of a significant gap. This
approach allowed us to identify four groups, the reliability of whose formation was addi-
tionally checked by calculating the silhouette coefficient. In the dendrogram, clusters are
marked with different colors: orange corresponds to cluster 1, green to cluster 2, red to
cluster 3, and purple to cluster 4. These colors indicate groups that were subsequently
visualized in the spatial distribution of the data, allowing their location relative to geo-
graphic coordinates to be seen more clearly. This approach ensures ease of interpretation of
clustering results and the connection between the dendrogram and spatial data.
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Figure 4. Dendrogram by geographical location of water consumption facilities.

The results confirmed that the highest value of the silhouette coefficient (0.499) is
indeed achieved when the data are divided into four clusters. The highest values of the
coefficient justify the chosen division, indicating good internal consistency of the clusters
and their distinct differentiation. The addition of the water use factor to the geographical
coordinates shifted the structure of the clusters from 4 to 6, with the silhouette coefficient
decreasing to 0.432. This decrease indicates a more complex data structure arising when
additional parameters are taken into account during the geoclustering process. Table 1
shows the results of the silhouette coefficient calculation for clustering the data by location
and water consumption level.

Table 1. Results of calculating the silhouette coefficient for various clustering methods.

Cluster Index on
the Map

Silhouette Coefficient
(by Location of Facilities)

Silhouette Coefficient
(by Location of Facilities and

Level of Consumption)

2 0.497 0.354

3 0.499 0.418

4 0.485 0.425

5 0.496 0.432

6 0.414 0.400

7 0.433 0.398

Figure 5 shows the character of the silhouette coefficient change when the number
of clusters increases when dividing the data by the location of objects and their water
consumption level.
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4.3. Segmentation of Water Consumption Facilities

According to the obtained clusters, the water consumption objects were plotted on
a coordinate grid, which allowed visualising groups of consumers by their geographical
location. To draw the boundaries, the convex hull algorithm from the ConvexHull class
of the SciPy library was used to connect the points defining the outer boundaries. This
approach clearly marked the territorial boundaries of the clusters (Figure 6). It should
be noted that the allocation of four clusters turned out to be justified not only from the
point of view of spatial optimality of their location on the map, but also from the point of
view of the boundaries of the pipeline network service areas. For example, cluster No. 1,
which is located near the Southwest water intake, is predominantly situated in the south-
western part of the city of Gomel and covers residential and industrial areas of the Sovetsky
district with socially developed infrastructure. The classification of water consumers is
distinguished by an increased number of health care and educational institutions, indicating
the active use of the selected zone for both residential and industrial needs. This group
included 27.4% of the total number of water consumers considered.

Cluster No. 2, located in the southern part of the city and served by water intakes
‘Korenevsky’ and ‘Iput’, includes the territory of Novobelitsky district. This area is charac-
terised by a low density of facilities (11.2% of the total number), large residential areas and
suburban zones, and a small number of industrial and social facilities using water from the
city network. Cluster 3, covering the north-eastern part of the city in the Zheleznodorozhny
District and served by the Sozh water intake, has similar characteristics, with a share of
17.0% of the total number of facilities.

Cluster 4, located in the central part of the city and served by the Central water intake,
is the most saturated in terms of density and diversity of infrastructure. Key facilities such
as central universities and the city’s main shopping centres are located here. With 44.4% of
the total number of properties, Cluster 4 reflects the highest density of water use.
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Figure 6. Clustering of water consumption objects according to geographical data.

It is worth noting that the addition of water consumption volumes to the clustering
process resulted in two additional clusters compared to the variant where only geographical
data were taken into account. The first cluster included the largest consumers with volumes
of about 305,000 m3/year (food factory) and 270,050 m3/year (moulding companies), while
the second cluster included facilities with volumes of about 99,563 to 142,000 m3/year (hos-
pitals, correctional facilities). This suggests that the approaches used to analyse territorial
data have a certain universality and flexibility depending on the factors taken into ac-
count. Thus, the allocation of water consumption zones can be used for different urbanised
areas with similar population sizes and water supply structures, for example, Irkutsk
or Vladikavkaz. In particular, the water supply in Vladikavkaz is organised through
underground sources of the Ordzhonikidzevskoye field, using water intake structures.
For comparison, the water supply system of Gomel includes five water intakes, similar
to Vladikavkaz.

4.4. Application of Clustering Results for Optimal Installation of Pressure Sensors

It is impossible to build mechanisms for optimising water supply without obtaining
continuous information on the hydraulic regimes in the city network. For this purpose, it is
important to clearly define at which points in the city it is necessary to install registration
devices and which territorial zones they will cover. The division of the city of Gomel into
clusters made it possible to prioritise areas for the placement of pressure sensors, which
greatly simplified the planning of further development of the monitoring system. To date,
more than 20 pressure sensors have been installed in Gomel, located at key control points
of water supply and at the outlet of pumping stations. The figure shows the distribution
of installed pressure sensors across the city territory in accordance with the preliminary
clustering of legal water consumption facilities. The map (Figure 7) shows the outer
boundaries of each of the four clusters based on the results of the water consumption
analysis. All points of placement of pressure recording devices both at the outlet of WS
pumping stations and at CP control points in the city are marked here.
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It can be seen from the placement scheme that some sensors extend beyond the cluster
boundaries. This is due to the fact that the constructed cluster boundaries covered mainly
commercial water consumption facilities, not taking into account the housing stock due
to the limitation of the provided information. Nevertheless, this arrangement of sensors
does not distort the validity of the overall device distribution picture and allows us to
cover significant areas of the urban water supply network. It can be clearly seen here
that the current distribution of sensors across clusters differs from neighbourhood to
neighbourhood. For example, cluster 1 of the south-western neighbourhood requires
additional sensor equipment for uniform pressure monitoring in this area. At the same
time, the central part of the city (cluster 4) is already quite densely equipped with sensors,
so the priority of installing additional devices in this neighbourhood is much lower than
in others.

The ultimate goal of this research is to develop a hydraulic modelling system for
Gomel’s water supply. For this purpose, an IoT platform for pressure monitoring based on
the Internet of Things technology is being developed. The platform organises data exchange
using the MQTT protocol, which allows for the efficient collection and transmission of
information from pressure sensors. This also opens up opportunities for research and
the development of more accurate prediction models based on neural networks. Figure 8
shows the pressure model of one of the control points in the city network and its actual
pressure. The data on the pressure at the pumping stations of the investigated water intakes
are used as input parameters. Output parameters are presented as pressures in the control
points of the system.
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Figure 8. Pressure modelling at control points using a multilayer perceptron model.

The preliminary plot clearly shows the high accuracy of the multilayer perceptron
model, which is confirmed by the following metrics calculated for one of the benchmarks:
the mean absolute error (MAE) was 5.07 kPa, the root mean square error (RMSE) was
6.57 kPa, and the mean absolute percentage error (MAPE) was 1.48%. Mathematical aspects
of model construction and features of hydraulic modelling are part of further research and
will be discussed in detail in the following scientific publications.

5. Conclusions
The study of spatial clustering of water consumption facilities using Ward’s method

allowed us to identify four main clusters based on the geographical location of facilities in
the example of the city of Gomel. The clustering showed high spatial optimality: 44.4%
of water consumption facilities are concentrated in the central part of the city (cluster 4),
while the south-western part (cluster 1) covers 27.4% of facilities, demonstrating an equal
distribution of consumers between residential and industrial areas. The southern part of
the city (cluster 2) is characterised by low density (11.2%) and the north-eastern part (cluster
3) covers 17% of the facilities, highlighting the different levels of water consumption and
distribution of infrastructure across the city districts.

The application of the agglomerative clustering method in this study allowed for the
separation of over 200 industrial facilities by geographical location and water consumption
volume, and the introduction of the water consumption volume parameter into the clus-
tering provided additional separation of the data by identifying two new clusters Some
facilities, such as the confectionery factory with 305,000 m3/year and metal casting facili-
ties (270,050 m3/year), were found to be the most water-intensive, indicating significant
infrastructure loads in these clusters. Accounting for water consumption volumes allowed
for a deeper segmentation of facilities and the identification of key areas with high resource
demand, which is particularly important for optimising water and energy management.
However, it is worth noting that this study, due to data limitations, did not consider factors
such as population density and types of industrial facilities, which could significantly
impact the analysis results. Accounting for these factors is part of future research aimed at
expanding the methodology and identifying more detailed water consumption clusters for
various urbanised areas.

The results of the study confirm that agglomerative clustering, enhanced by accurate
geographical data, provides a powerful tool to highlight consumers by their specific char-
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acteristics, which opens up opportunities to further optimise supply systems and improve
their efficiency. In the context of smart city development, such methods play a key role
as they allow the integration of resource consumption data with other elements of urban
infrastructure, creating more sustainable, reliable and energy-efficient systems.
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