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Abstract 

The article presents a new method of passive dynamic weighing of vehicles based on the 
registration of seismic signals that occur when wheels pass through strips specially ap-
plied to the road surface. Signal processing is carried out using spectral methods, in-
cluding fast Fourier transform, consistent filtering, and regularization methods for solv-
ing inverse problems. Special attention is paid to the use of linear-frequency-modulated 
signals, which make it possible to distinguish the responses of individual axes even when 
superimposed. Field tests were carried out on a real section of the road, during which 
signals from vehicles of various classes were recorded using eight geophones. The aver-
age error in determining the speed of 1.2 km/h and the weight of 8.7% was experimen-
tally achieved, while the correct determination of the number of axles was 96.5%. The 
results confirm the high accuracy and sustainability of the proposed approach with 
minimal implementation costs. It is shown that this system can be scaled up for use in 
intelligent transport systems and applied in real traffic conditions without the need to 
intervene in the design of the roadway. 
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1. Introduction 
The development of transport infrastructure and the increase in the number of ve-

hicles on the roads in recent decades have led to the aggravation of one of the most im-
portant technical and socio-economic problems—premature wear and destruction of the 
road surface [1,2]. Globally, a significant proportion of asphalt damage is caused by ve-
hicle overloads that exceed permissible axle loads. This not only accelerates the depreci-
ation of roads and increases the cost of their maintenance, but also reduces road safety, 
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creates economic losses, and worsens the environmental situation [3]. In this regard, the 
task of accurate and operational control of vehicle parameters in the flow, such as weight, 
number of axles, and speed, is of fundamental importance for modern intelligent 
transport systems, especially in the context of increasing automation and digitalization of 
road infrastructure [4,5]. 

One of the widely used approaches to solving this problem is the use of 
weigh-in-motion (WIM) systems based on strain gauge, piezoelectric and fiber-optic 
sensors built into the road surface. Works [6–9], as well as [10], are examples of the suc-
cessful implementation and assessment of the accuracy of such systems. In these works, 
empirically calibrated regression models are used, as well as Kalman filters, to eliminate 
dynamic fluctuations in the axial load. At speeds of up to 60 km/h, axle load measure-
ment accuracy is up to ±7% and under favorable conditions up to 5% (COST 323 class A 
(5)). However, when the speed increases to 100 km/h, the accuracy decreases sharply (to 
±10–12%), especially in conditions of uneven road surfaces, temperature differences, and 
lack of regular calibration. The high cost of installation, the need to intervene in the road 
structure, and the complexity of maintenance are also significant limitations of this ap-
proach. Mathematically, such systems require numerical solutions to the problems of 
time series processing, temperature drift compensation, and optimization of the weight 
coefficients of the calibration model [11]. 

Another area is systems that use radar and video analytical methods. For example, 
the paper edited by [12] describes radar technologies based on the processing of reflected 
signals and the application of Doppler shift equations [13]. These methods measure 
speed with an accuracy of ±2 km/h and classify vehicles by size with an accuracy of 90%. 
The mathematical apparatus of these systems includes spectral analysis methods, pattern 
matching algorithms, and machine learning for classification. However, the effectiveness 
of such systems decreases in conditions of fog, rain, and other weather factors, as well as 
when obscuring objects [14]. 

In recent years, there has been a growing interest in passive recording methods, in 
particular, seismic recording of signals from vehicles. Such approaches have a number of 
advantages: they do not require radiation, they do not depend on visibility and weather 
conditions, and their implementation can be relatively inexpensive. A number of studies 
[15–20] show that the use of seismic sensors makes it possible to determine the speed of 
movement with an accuracy of ±1.5–2 km/h and to classify vehicles by the number of 
axles and weight with an accuracy of 85–95% in the speed range up to 80 km/h, corre-
sponding to the impact of the wheels on the roadway. However, high sensitivity to ex-
ternal vibrations and difficulties in synchronizing signals from different sensors require 
the development of algorithms for space–time filtering and time alignment [21]. 

To improve the efficiency of seismic methods, an approach to spectral analysis of 
signals recorded by geophones was proposed, which made it possible to significantly 
improve the accuracy of identification. Works [22–26] demonstrate the possibility of dis-
tinguishing vehicle types with an accuracy of up to 90–95%, while noise immunity is 
achieved through the use of filtering, statistical processing, and machine learning meth-
ods. In these studies, models based on wavelet analysis, principal component analysis 
(PCA) methods, power spectral density estimation, as well as vector support algorithms 
(SVMs) and decision trees are used. Processing includes the construction of vector fea-
tures based on energy content in certain frequency ranges, which makes it possible to use 
classification methods on a set of training data [27]. Such approaches are especially useful 
in the presence of a background and intersecting signals, as they allow you to effectively 
isolate the informative components of the signal. 

A separate category is made up of methods that use neural network architectures. 
Studies [15,28–32] demonstrate the effectiveness of convolutional neural networks 
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(CNNs), recurrent neural networks (RNNs), and hybrid structures for classifying vehi-
cles by their seismic signatures. The achieved classification accuracy in these works is up 
to 95% at speeds up to 80 km/h, while the resistance to external noise remains at the level 
of 80–85%. Using these models requires deep training on a large volume of stamps and 
pre-normalizing the data. Neural network training is accompanied by the use of loss 
functions, such as cross-entropy, and optimization using gradient descent algorithms 
(Adam, RMSprop), which requires significant computational resources [33]. 

Some studies are aimed at reconstructing the trajectories of movement and deter-
mining the mass of vehicles without the use of embedded sensors. In the works 
[16,34,35], methods of temporal correlation of signals from several sensors are used; the 
problems of inverse modeling of the trajectory and the use of Kalman filters are solved. 
Mass estimation is carried out on the basis of the amplitude component of the seismic 
signal and numerical solution of the reversal problem, while an accuracy of less than 10% 
is achieved at speeds up to 60 km/h. 

A comparative analysis of all the above approaches allows us to identify a common 
problem: either the high cost and complexity of implementation, as in WIM systems, or 
the limited accuracy in noise and multi-signal conditions, as in passive methods. In the 
mathematical aspect, these problems are reduced to multivariate models of signal pro-
cessing, namely, to the problems of regression, optimization, identification, and inverse 
problems. The relevance of further research in this direction is due to the need to develop 
solutions that would provide accurate determination of vehicle parameters without ex-
pensive engineering solutions [36,37] and with the possibility of scalable implementation. 

Of particular interest is passive seismic recording of signals from the interaction of 
vehicles with artificially created irregularities (stripes) on the roadway. This approach 
allows both the generation of a signal with pronounced spectral characteristics and the 
simplification of subsequent processing. Strips of a certain width and shape apply to the 
coating to induce resonant or impulse signals when the wheel hits it, which greatly sim-
plifies the task of synchronization and interpretation. The use of such structures simu-
lating combs with a uniform or non-uniform pitch is described in theoretical and ex-
perimental studies, which confirm the possibility of increasing the accuracy of measuring 
the speed and number of axes up to 95% and estimating the mass with an error of less 
than 10% at a speed of up to 70 km/h, as well as frequency analysis of responses. 

Thus, the direction proposed in this work, based on the passive registration of 
seismic signals caused by the passage of a vehicle through artificial strips, has a high 
degree of feasibility and accuracy. Its main advantage is that there is no need to costly 
integrate sensors into the road structure while maintaining high measurement accuracy 
and resistance to interference. The mathematical novelty of the proposed approach lies in 
the fact that a model of the seismic signal is formed as a superimposition of responses 
from periodically located sources, which makes it possible to use devices for coordinated 
filtering, analysis of flight time, and localization along the maximum spectrum. In this 
work, it is planned to build an analytical and numerical model for generating a seismic 
signal from the movement of a vehicle on a striped structure, using the Fourier transform 
and algorithms for extracting phase characteristics, as well as estimating the parameters 
of the vehicle by solving the inverse problem based on minimizing the error functional 
between the model and the recorded signal. 

The purpose of this work is to develop a mathematical model of a system for dy-
namic determination of vehicle parameters based on the passive seismic location. Within 
the framework of this goal, seismic signals arising from the interaction of vehicles with 
artificially created structures on the roadway are simulated, and the possibilities for de-
termining the speed, number of axles, axle load, and total weight of the vehicle are ana-
lyzed. It is proposed to use the integration of spectral analysis methods, consistent fil-
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tering, regularized optimization, and verification of the model on experimental data to 
improve the accuracy and stability of results in real operation. 

2. Materials and Methods 
Within the framework of this study, a system for dynamic determination of vehicle 

parameters based on passive seismic location was developed and experimentally tested, 
implemented both on the basis of physical modeling and with the use of an extensive 
mathematical apparatus for signal analysis, parameter estimation, and inverse problem 
solving. The purpose of this work is not only to record the seismic response from the 
movement of the vehicle but also to restore such parameters as speed, number of axles, 
axle load, and total weight using formalized mathematical models. The experimental part 
of the study is based on the combination of field measurements with subsequent com-
puter signal processing using MATLAB (version 2023b) and the authors’ program code 
that implements filtering, Fourier transform, and consistent filtering methods. 

To record seismic signals, vertical geophones were used, integrated into the road-
way in areas with special artificial stripes. The type of geophones used corresponds to the 
industrial sensitivity class (up to 70–80 dB of the dynamic range), and their amplitude–
frequency response provided stable registration of oscillations in the range from 5 to 150 
Hz. The signal from the sensors was transmitted to the pre-processing system, which in-
cluded an amplifier and an analog-to-digital converter (16-bit, 520 Hz), and transmitted 
to the central computing module via an IP connection. The arrangement of the stripes, 
which is a comb structure with a uniform or uneven pitch, as well as the placement of 
geophones, made it possible to record the signals arising when the wheels of the vehicle 
hit the strips, ensuring the formation of high-amplitude seismic waves. 

The experiments involved simulating the movement of a vehicle with specified pa-
rameters (number of axles, distance between wheels, speed, weight) and registering the 
corresponding signals. In some cases, vehicles with pre-known parameters were used, 
which made it possible to calibrate the mathematical model. The processing system used 
included signal whitening, spectral analysis, and time boundary estimation of pulsed 
fragments using a sliding window instantaneous power estimate. To improve the accu-
racy of the analysis, timestamp synchronization algorithms and a method for estimating 
speed using time delays between signal edges on different sensors were used. 

The basis of the mathematical model is the representation of the seismic response as 
a superimposition of responses from each “wheel–strip” pair. The signal on each of the 
sensors is modeled according to the formula: 

1 1
( ) ( ),

J N

i ijn ijn ijn
j n

s t h f t τ
= =

= −  

where ijnh  is the amplitude multiplier determined by the distance from the strip to the 

sensor, ( )ijnf t  is the impulse response, ijnτ  is the propagation delay, J is the number 

of bands, and N is the number of axes. The response ( )ijnf t is described as a damped 

function: 

( ) sin( ),t
ijn ijnf t A e tα ω−=  

where the damping factor α and angular frequency ω are determined by the effective 
mechanical properties of the layered structure comprising the asphalt pavement, its base 
layers, and the underlying soil. While the seismic wave propagates through the pave-
ment structure, experimental and numerical studies (e.g., [38]) show that the dominant 
influence on attenuation and resonance frequency stems from the stiffness and damping 



Mathematics 2025, 13, 2083 5 of 42 
 

 

characteristics of the asphalt layer, including bitumen content, aggregate size, and 
thickness. Thus, α and ω are treated as effective parameters that are calibrated using 
signals from reference vehicles and take into account both the pavement and soil struc-
ture. 

The simulation was carried out both using analytical formulas and using the 
MATLAB code provided in Appendix A. Time delays ijnτ  w e r e  calculated according to 

geometric relationships, taking into account the coordinates of the bands and sensors: 

2 2( ) ( )
,j i j i

ijn
g

x x y y
v

τ
− + −

=  

where v g  is the speed of propagation of the seismic wave. 
To identify the parameters of the vehicle, the inverse problem of minimizing the 

deviation between the measured signal meas ( )is t  and the model response was formu-

lated: 

meas 2
2, ,

min || ( ) ( ; , , ) || .
n

i i nM v d
i

s t s t M v d−  

The solution of this problem was carried out by numerical optimization methods 
using Tikhonov’s regularization: 

2 2
2 2min(|| || || || ),A bθ λ θ− +  

where A  is the feature matrix, θ  is the parameter vector, b  is the measured power values, 
and λ is the regularization parameter. 

Two approaches were used to estimate the velocity. The first is spectral, in which the 
distance between the harmonics of the spectrum Δϕ determines the velocity: 

2 1

,sfv x
k k

= Δ
−  

where Δξ is the spacing between the bands;, f s  is the sample rate; and k 2 ,  k 1  are the 
harmonic numbers. The second is temporary, using the delay between the edges of the 
signals from the two bands: 

,Lv
t

=
Δ

 

where L  is the distance between the strips, and Δτ is the delay. Synchronization to the 
maximum of the coordinated filtering was also used to localize the impact time of each 
axis. 

In addition, the mass estimation error was estimated, which depended on the accu-
racy of the seismic signal power measurement. The model used assumed the presence of 
noise  ~ (0, σ 2 ) , and the mass was estimated as: 

ˆ ,PM
β
−= 

 

which implied the calibration of the parameter against reference vehicles. 
As a test, a system installed on the Sovetskoye Highway was used, with eight geo-

phones and two types of markings. Real signals from seven trucks were processed. Based 
on the analysis of their spectral, temporal, and amplitude characteristics, estimates of the 
speeds, mass, and number of axes were obtained. The error in determining the speed did 
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not exceed 1.2 km/h, and the error in weight was 8.7% at speeds up to 70 km/h. The ac-
curacy of the classification of the number of axles reached 96.5%. Thus, the developed 
system combines physical modeling, experimental verification, and rigorous mathemat-
ical processing, including spectral analysis, optimization methods, signal processing, and 
inverse problem solving. 

The values of damping and frequency parameters used in signal modeling were 
determined empirically during field calibration on asphalt pavement, using reference 
vehicles with known weight and speed. This approach accounts for the layered structure 
of the road, including asphalt and its subbase, and incorporates their combined impact 
on seismic wave attenuation and frequency response. 

3. General Information About Passive Seismic Location 
The theory of passive seismic location is now at the initial stage of its development. 

Despite the many significant differences between radar and passive seismic location, 
there is a basic relationship between them, determined by the commonality of the tasks to 
be solved. The random nature of interference and useful signals is due to the use of sta-
tistical approaches in the theory of passive seismic location, as well as in radar, which 
have been duly applied and developed in the PSL. 

For a long time, seismic technology has been successfully used to explore Earth in 
search of minerals. As a rule, these technologies are active, and their operation requires 
the use of powerful sources of seismic signals. Seismic vibrations are received by a group 
of seismic sensors, and the general analysis of the received signals allows you to analyze 
the structure of the medium in which seismic waves propagate. 

At the moment, seismic signals are quite widely used for detection when organizing 
the protection of territory. The sensors record and then process the signals that occur in 
the ground when someone crosses the protected area. Most of the known seismic protec-
tion systems are passive, since their principle of operation is not related to the emission of 
any signals. Compared to the geophysical application of seismic methods, the appear-
ance of seismic waves in systems for monitoring moving objects is not associated with the 
use of devices that specifically create seismic fields. In this regard, seismic systems based 
on the detection of waves, the appearance of which is not associated with deliberate 
primary excitation but is due to the movement of objects, are passive. 

Passive seismic location (PSL) is one of the new methods of radar observation. The 
processing of these signals is carried out on the basis of statistical methods, since they 
have a pronounced random nature. 

When analyzing the received seismic signals, it is possible to solve problems that are 
aimed at obtaining information about moving objects. The main facts of the received 
seismic signals are the presence or absence of an object in the observation area, deter-
mining the type of moving object, calculating the coordinates and characteristics of its 
movement, as well as determining the weight characteristics. Determination of weight 
characteristics is a topic in which both owners and builders of highways have recently 
been interested. It is necessary to ensure the integrity and safety of roads, in accordance 
with numerous standards, as well as to achieve road safety. 

It is clear that if an overloaded truck is driving on the road, which puts more pres-
sure on the road than it is able to withstand, then the road begins to collapse. This project, 
based on passive seismic location to determine weight characteristics, is designed to 
identify such intentionally or unintentionally overloaded vehicles in order to stop them, 
stop their movement, and force drivers and (or) owners to move part of the cargo to an-
other vehicle. 

The task of this project is to create a mathematical model describing the movement 
of a vehicle based on measurements of the parameters of the seismic signal arising from 
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the interaction of the wheels of the car with artificial obstacles (stripes) applied to the 
road surface, designed to establish the fact of the passage of the vehicle and assess some 
of its parameters, namely: 
• the speed of the vehicle (at the time of measurement); 
• the number of axles of the vehicle; 
• the load on the axles of the vehicle; 
• the total weight of the vehicle. 

4. Physical Foundations of Passive Seismic Location 
The physical basis of passive seismic location is the excitation of seismic waves in 

the surface layers of the soil by an object moving along it and their registration by re-
ceiving devices. The received signals have a pronounced random nature, and useful lo-
cation information lies in the parameters of the signals. Therefore, an integral part of the 
location process is special processing of seismic signals, performed by computing devices 
structurally integrated into the equipment of the seismic radar system. 

The calculation of the weight parameters of the vehicle, made with the technology of 
assessing the power of the seismic signal, is possible only in a dynamic mode, when the 
force of pressure on the ground changes, since only in this case is a seismic wave propa-
gating in the ground formed, depending on the mass of the vehicle through some multi-
plier that affects only their amplitude, which is the main reason to assume that the power 
(amplitude) of the seismic signal is a sufficient statistic to measure the weight of the ve-
hicle. 

Let: 

( ) ( ),F t Ma t=  

where M  is the mass of the vehicle, and a ( t )  is the acceleration caused by hitting an 
obstacle. The signal generated at the point of impact can be described as a temporary 
convolution: 

( ) ( ) ( ) ,s t h F t dτ τ τ= −  

where h ( t )  is the momentum characteristic of the medium, describing the reaction of the 
soil to a single impulse action. For numerical simulation, h ( t )  can be represented as an 
attenuated sine wave: 

( ) sin( ),th t Ae tα ω−=  (1)

where Α, α, ω are parameters that depend on the density and elasticity of the soil. 
The structural diagram of the dynamic weighing system proposed by the authors is 

shown in Figure 1. 

 

Figure 1. Simplified structural diagram of a typical checkweighing system. 
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In Figure 1, k and c indicate the stiffness coefficient and reduce (prevent) oscillations 
of the weighing system, M is the weight of the car, m is the mass of the table, and x is 
forced oscillations in the system (displacement of the weighing system). It is this signal 
that propagates in the ground in the form of a seismic wave. 

5. Functional Diagram of the Measuring Setup and Seismic Signal  
Processing Structure 

The main problem is to measure the load parameter on the axles of the vehicle. The 
idea presented in this paper is to measure the dynamic effect F (t) exerted by the wheels 
of a vehicle on the road surface. This measurement is made on the basis of measuring the 
power of the seismic vibration caused by the interaction of the wheels of the car with the 
road surface using seismic sensors (vertical geophones). 

The geophone is a speed sensor and is installed in the ground (in this case, the sen-
sor is mounted in the pavement). The structure of the geophone is shown in Figure 2. 

 

Figure 2. Geophone device. 

The signal from the vehicle recorded by the geophone (after appropriate digital 
processing) is the source of information about the axle load of the vehicle. The total 
weight of the vehicle is estimated based on the measured axle loads. 

A variant of the installation proposed by the authors, which makes it possible to 
measure with sufficient accuracy the power of seismic oscillation associated with the 
dynamic impact of the axles of the car on the road surface, is shown in Figure 3. 
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Figure 3. Structural diagram of the seismic sensor signal processing system: 1—geophone; 
2—signal cable; 3—pretreatment device; 4—computing module; 5—vehicle imaging system (cam-
era). 

The main purpose of the elements of the installation diagram (Figure 3) is as follows. 
With the help of a geophone (1), the signal is recorded in analog form, and these signals 
are transmitted via cables (2) to the pre-processing device (3), which performs amplifica-
tion, filtering, and digitization of the signal with a clock speed of f0 = 520 Hz and 16 
bits/sample. The amplitude–frequency response of the geophone is shown in Figure 4. 
Element (4) represents the central computing module (PC or microcontroller system) that 
receives digital seismic signal data from the pre-processing unit and executes the algo-
rithms for filtration, spectral analysis, and vehicle parameter estimation. Element (5) 
denotes a video camera system synchronized with the signal processing module, which 
captures images of the vehicle when the measured parameters (e.g., axle load or total 
weight) exceed predefined thresholds. 

 

Figure 4. Frequency response of the geophone. 

The geophones convert ground vibrations into analog voltage signals, which are 
transmitted via shielded signal cables to the pre-processing unit. Although analog signals 
are indeed sensitive to environmental noise and electromagnetic interference, this effect 
is minimized through the use of low-noise shielded twisted-pair cables and differential 
signal transmission. The pre-processing unit is located in close proximity (within 3–5 m) 
to the sensors to reduce signal degradation. Additionally, analog filtering and amplifica-
tion are performed immediately before digitization to improve the signal-to-noise ratio. 
The decision to transmit the signal in voltage form prior to digitization was made to 
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simplify the system architecture and maintain compatibility with industrial-grade geo-
phones, which output voltage natively. 

The choice of sample rate (and filter bandwidth) is determined by the spectrum 
band of the seismic signals that will be processed in the system. It is necessary to note the 
main dynamic range of seismic signals. Measurements show that with the use of ampli-
fication, the dynamic range of the recorded signals is at least 70–80 dB, so you need to use 
16 bps/ch when digitizing them. The received readings via the IP interface are sent to the 
computer (4). A video camera (5) is used to fix the vehicle. 

For adaptive processing of digital seismic signals, the following basic steps were 
proposed, performed in the form of an algorithm: 

1. Preliminary adaptive filtration (bleaching); 
2. Preliminary detection of the vehicle, including the assessment of its time limits in the 

signal (in refraction) as a result of nonlinear filtering of the initial signal (estimates of 
instantaneous power in a window of a given size) based on signals from geophones; 

3. Isolation of the impulse flux associated with the impact on an artificial obstacle 
(single lane) of the vehicle axes as a result of nonlinear filtering of the bleached sig-
nal (assessment of instantaneous power in a window of a given size) from geo-
phones; 

4. Binding the boundaries of the vehicle signal to the pulses of the axes, estimating the 
number of axles of the vehicle; 

5. Assessment (by impulse flow) of the moment of time when the preliminarily de-
tected vehicle reaches the section with multi-lane markings; 

6. Assessment of the load on the axles, the total weight of the vehicle, and its speed as a 
result of spectral processing of geophone signals located near multi-lane markings; 

7. Formation of data from the result of processing, checking the excess of the standard 
maximum weight of the vehicle and the load on its axles. 

If the parameters specified in clause 7 exceed their maximum permissible values, the 
vehicle is fixed (a picture is taken); the image of the vehicle, as well as its parameters es-
timated on the basis of the seismic signal, is sent via the TCP/IP interface to the website of 
the Territorial Administration of Roads. 

To estimate the weight M  of the vehicle from the observed signal s  ( t ) ,  the average 
power shall be calculated: 

0

0

21 ( ) .
t T

t

P s t dt
T

+

= 
 

Suppose that P ~ βΜ2 + , where  ~ (0, σ 2)  is the Gaussian noise, and β  is the 
coupling coefficient. To estimate the mass M from noisy power measurements P, we 
consider the expectation E[P] = βΜ2, since E[] = 0. In the presence of noise, the least 
squares estimate of M is computed from the sample mean of power observations as fol-
lows: 

ˆ PM
β

=  

where 

1

1 N

i
i

P P
N =

=   
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This estimation accounts for the random nature of noise , assuming multiple inde-
pendent measurements Pi of signal power can be obtained. Then the weight estimate can 
be found by the least squares method: 

ˆ .PM
β
−= 

 

Since the power measurement is affected by additive noise, the mass estimation is 
based on averaging multiple observations to reduce the variance of the error. Assuming 
Gaussian noise, the best unbiased estimate of M is obtained using the mean of the ob-
served power values. This approach aligns with the least squares method and improves 
the robustness of the estimation. 

In Figure 5a, the possible layout of geophones and markings applied to the road 
surface is presented. Taking into account the structure of signal processing, its registra-
tion at the location of a single strip and multi-band marking is provided by three geo-
phones. 

(a) 

 
(b) 

Figure 5. (a) Possible layout of geophones and road surface markings; (b) Vehicle wheel contact 
patch. 

6. Substantiation of the Marking Scheme Applied on the Carriageway 
The goal of determining the parameters of the vehicle can be solved (within the 

framework of the proposed method) only in dynamics; static measurement of the weight 
of a stationary vehicle is impossible, since in this case, seismic vibrations do not occur in 
the ground, the power of which contains the basic information about the force of impact. 
In theory, the dynamic impact of Fd(t) can also be measured without the use of markings, 
for example, by measuring the average power of a seismic signal in a given time interval, 
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since the passage of a car is a sequence of actions on the road surface through the contact 
patch of a wheel (Figure 5b). But still, this approach is fraught with many problems. 

First, there is no way to separate the signals of the vehicle whose parameters we 
want to determine from the interference associated with passing vehicles, for example, on 
the oncoming lane or other seismic noise of the route interacting with the signal of in-
terest. 

Secondly, there are some problems of “binding” the vehicle to the corresponding 
signal. This problem is exacerbated by fairly dense traffic on multi-lane highways. Due to 
the overlapping of signals of vehicles at a close distance relative to each other, it is im-
possible to separate them. If the marking is applied on a certain strip, it makes it possible 
to create a seismic signal of a certain type, which differs in shape from the signals coming 
in the same time interval from other bands. 

One possible way to improve the estimate is to create signals from the vehicle that 
are compact in the time or frequency domains. Such a signal can be a short pulse that can 
be realized as a result of creating an obstacle, for example, a narrow lane perpendicular to 
the direction of movement of the car. 

It is clear that power measurement as a result of using such a signal in a narrow time 
interval will not lead to a critical hit of noise and interference in this interval. The 
stronger the impact on these bands, the greater the amplitude (power) of the desired 
signal and the higher the signal-to-noise ratio. However, this approach has its limitations 
related to the finite amplitude of the generated pulse. In addition, an increase in the am-
plitude of the impulse can be achieved by purely “physical” methods, for example, by 
increasing the height of the obstacle. However, an increase in the height of the obstacle is 
possible up to a certain limit. It increases the dependence of the measured signal on the 
speed of the car, which is not a positive thing. In addition, the impulse signal is subject to 
sufficiently strong distortion, which reduces the achieved signal-to-noise ratio. 

An acceptable signal for determining the dynamic effect is a signal that is compact in 
the frequency domain. The main feature of the processing here is the need to perform a 
Fourier transform. This signal can be obtained as a result of applying a periodic texture 
consisting of many bands located at a distance of Δx = 0.25 m from each other. 

Obviously, the seismic signal generated by this structure is quasi-periodic, and its 
spectrum is close to linear, i.e., existing only at certain frequencies that are multiples of 
the repetition period of the signal, calculated as the time interval between the impact of 
the vehicle’s wheels on adjacent lanes: 

,xT
υ
Δ=  (2)

where Δx is the distance between adjacent strips of the structure, and υ is the speed of the 
vehicle. 

The advantage of using such signals is as follows: 
First, the accumulation of narrow harmonic peaks in the frequency domain also 

leads to a significant increase in the signal-to-interference ratio, especially in relation to 
interference that occupies the entire system bandwidth; 

Second, an increase in the signal-to-noise ratio can be achieved not by increasing the 
bandwidth but by increasing the signal duration by increasing the number of bands; 

Thirdly, it becomes possible to determine the speed of the vehicle as a result of 
measuring the distance between harmonics in the signal spectrum. The accuracy of ve-
locity measurement is determined by the accuracy of the harmonic frequency measure-
ment: 
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obs

1 ,
2T

υΔ =  (3)

where Tobs is the duration of the signal from a structure of many bands. 
It should be noted that the velocity measurement can also be performed in the time 

domain. For this purpose, two bands can be used, which will be located at a known dis-
tance L from each other. 

Studies have shown that as the speed of the vehicle increases, the accuracy of the 
estimate decreases. Also, accuracy decreases significantly as the distance between the 
lanes decreases, with an uncontrolled shift in the speed estimate becoming the main in-
fluence. However, if the distance between the lanes is reduced to 2 m, then the estimate of 
the speed of a car moving at a speed of 20 m/s will be in the range from 14.3 to 33.3 m/s, 
which, of course, is unacceptable. Also, an increase in the distance between the lanes to 
values of more than 5–10 m is not desirable, as this will lead to gross measurement errors 
due to the difficulty of identifying pulses from this axle in different lanes, especially in 
the case of multi-axle vehicles. 

7. Simulation of a Seismic System for Measuring the Characteristics of a 
Vehicle’s Motion and Analysis of Some Measurement Procedures 
7.1. Seismic System Layout 

One of the main problems of road maintenance is the frequent replacement of the 
pavement, associated with the appearance of pits and cracks on it. The reason for this 
factor may be the uncontrollability of the mass of vehicles moving on this carriageway 
(heavy vehicles break the road surface). Thus, we are faced with the question of solving 
this problem. 

It was proposed to use a seismic weighing system for vehicles. This system includes 
comb strips; when hit, a shock occurs, propagating as a seismic wave in the ground and 
recorded by sensors. Further, information from the sensors is transmitted via communi-
cation channels to the processing device. The layout of the seismic system is shown in 
Figure 6. 

 

Figure 6. Layout of the seismic system for determining the mass of a vehicle on the Sovetskoye 
Highway. 
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Placing two triples of sensors in this way is expedient, since sensors Nos 2–4 provide 
information about the signal received from the zero single band and sensors Nos 5–7 
about the signal received from a group of bands (combs). Sensors No 1 and No 8 receive a 
weak signal, since they are at a distance sufficient for almost complete attenuation of the 
seismic wave. 

7.2. Signal Modeling in a Seismic System 

When modeling a seismic system, it is necessary to generate signals that are rec-
orded by seismic sensors. Seismic sensors are located on the side of the roadway. The 
source of the signals is the seismic waves excited by the vehicle when it hits the lanes 
with its wheels. The diagram of the seismic system for determining the mass of a vehicle 
located on the Sovetskoye Highway is shown in Figure 6. When it hits a strip, each wheel 
causes a seismic wave, which is recorded by a seismic sensor located on the side of the 
road near these strips. When driving, the car sequentially passes with its wheels, located 
on different axles, along a strip or a group of stripes. As a result, a signal is generated in 
the sensor, which is the sum of these signals from each wheel. 

Let us consider an arbitrary seismic system. Let us place it in a rectangular coordi-
nate system x, y. The x-axis corresponds to the direction of movement of the car, i.e., it is 
directed along the road. Each seismic sensor has its own coordinates (xsi, ysi), i = 1... I, 
where I is the number of sensors. The y axis corresponds to the direction of the lanes that 
are located across the road and are identified by their coordinates (xai), j = 1... J, on the 
x-axis, where J is the number of stripes. The vehicle can be described using the coordi-
nates of the x on axes, n = 1... N, where N is the number of axles and coordinates of the left 
and right wheels (ylw, yrw). The movement of traffic in the system is described by the ve-
locity VT. Soil properties are determined by the velocity of propagation of seismic waves 
Vseism. 

Modeling of this seismic system involves the generation of signals on seismic sen-
sors. Let s(t) be a signal that occurs in a “hypothetical” sensor, which is located at the 
point of passage of one wheel of the vehicle along one lane. We also take as “zero” the 
moment of the impact of the wheels of the first axle of the vehicle on the first strip. Then 
the signal that occurs in the i-th sensor when the nth axis is affected by j-th strip will take 
the form: 

, , lw , , rw , ,( ) ( ) ( ).i j n i j n i j ns t s t s tτ τ= − + −  (4)

Time delays τlwk i,j,n, τrwi,j,n are determined by the location of sensors and strips, the 
speed of the seismic wave propagation in the ground, as well as the relative position of 
the axes of the vehicle and its speed: 

seismlw , , lw , ;i j n i j On Tjτ τ τ τ= + +  (5)

seismrw , , rw , .i j n i j On Tjτ τ τ τ= + +  (6)

Here, seism
seism

lw ,
lw ,

i j
i j

r
V

τ
Δ

=  is the time of propagation of the seismic wave from the 

point of impact of the left wheel along the j-th strip to the i-th sensor, 
2 2

lw , s a s lw( ) ( )i j i j ir x x y yΔ = − + −  is the distance between the point of impact of the 

left wheel on the j-th strip and the i-th sensor, seism
seism

rw ,
rw ,

i j
i j

r
V

τ
Δ

=  is the time of propa-

gation of the seismic wave from the point of impact of the right wheel along the j-th band 
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to the i-th sensor, 2 2
rw , s a s rw( ) ( )i j i j ir x x y yΔ = − + −  is the distance between the point 

of impact of the right wheel in the j-th band and the i-th sensor, 1On O
On

T

x x
V

τ −
=  are the 

time delays between axle impacts on the same strip relative to the first axis, and 

a a1j
Tj

T

x x
V

τ
−

=  are the time delays between the strokes of one axis on the j-th strip rela-

tive to the first strip. 
The resulting signal on the i-th sensor when the vehicle passes through a group of 

stripes can be determined by the expression: 

, ,
1 1

( ) ( ).
N J

i i j n
n j

S t S t
= =

=  (7)

Let Si = Σj,n Hijnfijn,  where Hijn is the matrix of time shifts (delays) and amplitudes from 
the impact o f  t h e  p - t h  axis on the j-th band, and fijn is the vector of elementary mo-
menta. Then, the problem of restoring the parameters of the vehicle (mass, distance, 
number of axles) is reduced to solving the inverse problem: 

2

meas
, 2

min ( ) ,ijn ijn
j n

S H f
Θ

− Θ  

where Θ = {M, υ , N, dn} is a vector of parameters: mass, velocity, number of axes, and 
their position. 

An important element of the model is the signal s(t), generated in the sensor, at a 
single impact, since it describes the properties of the soil and determines the properties of 
the resulting signal si(t) of the sensor. In the model, the type of signal s(t) was considered, 
described by the expression: 

2

0 2
0

( ) exp ,
2
ts t S
τ

 
= −  

 (8)

where S0 is the amplitude of the signal, which depends on the speed and mass of the ve-
hicle, as well as on the distance between the point of impact and the sensor, and ανδ τ0 is 
the effective duration of the signal. In our simulations, the medium response function h(t) 
was modeled to reflect the properties of an asphalt-covered multilayer structure, with 
effective damping and frequency parameters derived from preliminary calibration 
measurements. Although the seismic wave propagates through both the asphalt and its 
subbase, the parameters α and ω used in modeling were adjusted based on signals from 
reference vehicles, thus accounting for the composite behavior of the road layers. 

It should be noted that the values of the α attenuation parameters and the angular 
frequency ω depend significantly on the geological conditions of the system installation 
site. In particular, the presence of a sandy base, clay inclusions, a layer of crushed stone 
under the asphalt, or heterogeneous aggregates can lead to significant distortions in the 
amplitude and phase structure of the recorded seismic waves. Thus, the proposed model 
is applicable only if the response parameters are consistent with the real characteristics of 
the underlying layers. 

To increase the versatility of the system in the field, a preliminary calibration pro-
cedure is proposed, which consists of recording seismic signals from a control vehicle 
with known characteristics (weight, speed, axle base) on the road section under study. 
Using the registered response, least squares, and regularization methods (in particular, 
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Tikhonov), the effective parameters of α and ω are estimated by selecting a model that 
provides the smallest deviation between the experimental and theoretical signals. This 
calibration allows the model to be adapted to specific geological conditions, ensuring that 
the accuracy is maintained in subsequent measurements. 

In conditions of high heterogeneity of the underlying layers, local (segmented) 
model tuning may be required, in which the road section is divided into segments with 
different types of soil, and each has its own α and ω values used in processing signals 
from the corresponding geophones. 

Another model describes the behavior of the medium as a second-order oscillating 
circuit and is defined by a complex frequency response. Let us take as “zero” the moment 
when the wheels of the first axle of the vehicle hit the first strip. Then, the signal gener-
ated in the i-th sensor when exposed to the n-th axis to the j-th band will take the form: 

, , lw , , rw , ,( ) ( ) ( ).i j n i j n i j ns t s t s tτ τ= − + −  (9)

In this model, the medium response is treated as that of an asphalt-covered multi-
layer structure. The values of α and ω reflect the effective damping and stiffness proper-
ties of the pavement, including asphalt mix composition, layer thickness, and subbase 
characteristics. These parameters were determined empirically using calibration meas-
urements with reference vehicles. Time delays lw , ,i j nτ  and rw , ,i j nτ  are determined by 

the location of sensors and strips, the speed of the seismic wave propagation in the 
ground, as well as the relative position of the axes of the vehicle and its speed. 

Figure 7 presents the flowchart summarizing the signal processing pipeline, from 
seismic acquisition to vehicle mass estimation. Each stage in the diagram corresponds to 
a specific physical or computational transformation applied to the recorded signal. 

 

Figure 7. Flowchart of the signal processing pipeline used for mass estimation in the proposed 
seismic-based WIM system. 

The signal generated in the 3rd sensor when one wheel hits a single strip is shown in 
Figure 8. Figure 8 shows the signal described by this expression (number 7). The signals 
generated in the 3rd sensor when two wheels, i.e., one axle of the vehicle, are exposed to 
a single lane are shown in Figure 9. As can be seen in Figure 8, the signals of the indi-
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vidual wheels are separated, and the time shift is determined by the Vseism seismic wave 
propagation velocity and the wheel spacing Δd: 

seism

.d
V

τ ΔΔ =  (10)

In this experiment, the distance between the wheels Δd = 2.5 m, and the velocity of 
the seismV  wave = 125 m/s. 

τΔ  = 0.021 s. 

It is also seen that the amplitude of the second pulse is smaller, because it occurs 
when the strip of the far wheel is impacted, i.e., the wave travels a greater distance and, 
therefore, attenuates more. 

 

Figure 8. Signal generated in the sensor when one wheel is applied to a single strip. 

 

Figure 9. Signals generated in the 3rd sensor when one axis affects a single lane. 
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Figure 10 shows the signal on the 6th sensor when moving along a group of stripes 
of the same axis. Figure 10 shows that when a vehicle affects a group of lanes, a periodic 
signal is generated in the sensor. The fundamental frequency of the signal depends on the 
distance between the strips Δλ and the transport speed VT. 

0 .TVf
l

=
Δ

 (11)

Next, waveforms were constructed for the diagram in Figure 6. For the third (Figure 
11) and sixth (Figure 12) sensors. The signals described the movement of a two-axle ve-
hicle with two wheels on each axle. 

 

Figure 10. Signal on the 6th sensor when moving along a group of stripes of one axis. 

 

Figure 11. Waveform for the third sensor. 
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Figure 12. Signal waveform for the sixth sensor. 

Since the third sensor is in the top three (Figure 12), the signal from the zero band 
reaches it with a greater amplitude than the sixth sensor in the second three. Two 
short-term jumps are observed on the waveforms. At the same time, as we can see from 
the graph shown in Figure 11, each of them contains two maximums, which characterizes 
the movement on the zero lane by two wheels; in the waveform illustrated in Figure 13, 
these pulses do not have two maxima due to the low strength of the signals coming from 
the zero band. That is, the signals from the two wheels are summed up and go to the sixth 
sensor in the form of a single pulse. 

 

Figure 13. Simulated signal for a car with two axles spaced 7 m apart. 

Further, the movement of the vehicle along the comb is traced. On the sensors, the 
movement of the vehicle is observed first by the first axle; then by both; then, after the 
departure of the first axle, by the second axle. The amplitude of the signal received from 
the sixth sensor is greater than the amplitude of the signal received from the third sensor. 
This is due to the fact that the sixth sensor is located in the second three; therefore, it is 
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closer to the band group. The variable increase and decrease in the amplitude of the comb 
signal on the sixth sensor is due to delays between the wheels and axles, which were not 
taken into account in the third sensor due to the distance of its location relative to the 
group of lanes. 

7.3. Signal Compression During Processing Due to the Use of “Combs”  
with Special Characteristics 

When using a uniform comb with a band spacing of 0.25 m and a total comb length 
of about 5 m, we encounter the problem of signal interference. When a car with several 
axles passes along a uniform comb (5 m long), and the distance between the axles is less 
than the size of this comb, then signals from the first and second axles are superimposed. 

Appendix A contains the MATLAB function, which implements a mathematical 
model of seismic signal generation when a vehicle crosses specially applied convex 
stripes on the roadway for various configurations of combs formed by strips. Figure 12 
shows a simulated signal for a car with two axles located at a distance of 7 m. Since the 
distance between the axles is greater than the length of the comb, we clearly see the signal 
from each axle separately. 

Figure 14 shows a simulated signal for a car with two axles located at a distance of 3 
m. Since the distance between the axles is less than the length of the comb, there is an 
overlap of signals from the first and second axles. 

 

Figure 14. Simulated signal for a car with two axles located at a distance of 3 m. 

As a result, we see one very long signal, from the moment when the front axle drove 
to the moment when the rear axle moves. Due to the fact that we receive this signal con-
tinuously, we have no way of distinguishing between the signal from the first axis and 
the second. To solve this problem, it was proposed to use a non-uniform arrangement of 
bands in order to achieve a linear increase in the frequency of the signal. 

The signal from an irregular comb can be described as a chirp signal: 

2

0( ) exp 2 ,
2
Kts t A i f iπ

  
= +    
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where f0 is the initial frequency, and K is the frequency modulation coefficient. Applying 
matched filtering: 

*( ) ( )h t s T t= +  

provides an output response in the form of a narrow autocorrelation function, with the 
signal-to-noise ratio (SNR) amplified in proportion to the signal length. This idea origi-
nated from radar, since radar uses broadband signals of various types, including one of 
the most famous, which is a pulse with linear-frequency modulation (LFM). This idea 
allowed us to understand and distinguish between the front axle and the rear axle. Table 
1 shows the coordinates according to which the comb with an uneven arrangement of 
stripes was made. The total length is 4.326 m. 

Table 1. Coordinates of bands for an uneven comb. 

0.5 0.476 0.444 0.408 0.370 0.333 0.298 0.266 0.212 0.190 0.172 
0.154 0.139 0.126         

A series of tests was carried out on a sample of N = 60 vehicles to assess the stability 
of the speed and axle number algorithm. The mean error in determining the speed was συ 
= 0.78 km/h, with a standard deviation of Δ–υ  of 1.14 km/h. The distribution of the error is 
close to normal (tested using the Shapiro–Wilk test, p  >  0.15), which makes it possible to 
use the standard norm when constructing confidence intervals. Thus, with a confidence 
probability of 95%, the error in determining the speed does not exceed: 

1.96 0.78 0.29 1.07
N
υσυ−Δ + ≈ + = km/h. 

A similar analysis was performed to determine the number of axes: the accuracy was 
96.5%, with most of the errors occurring in cases of overlapping pulses from adjacent 
axes, which can be compensated for by the use of an improved detector based on phase 
coherence. 

Figure 15 shows a simulated signal for a car that is driving along an irregular ridge. 
The car has two axles and two wheels on each of them. The axles are located at a distance 
of 5 m. In this graph, you can clearly see the signals from each wheel, as well as from each 
axle. Since the distance between the axes is greater than the length of the comb, these 
signals are not superimposed. 
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Figure 15. A simulated signal for a car that has two axles and two wheels on each. The axles are 
spaced at a distance of 5 m. 

Figure 16 shows a simulated signal for a car that is driving on an irregular ridge. The 
car has two axles and two wheels on each of them. The axes are located at a distance of 3 
m. Since the distance between the axes is less than the length of the comb, these signals 
are superimposed. 

 

Figure 16. A simulated signal for a car that is driving on an irregular ridge. 
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We see the sum of the two signals from the front and rear axles, but since there is a 
linear increase in the frequency of the signal, we can distinguish these signals from each 
other. For example, in Figure 17, the first point equal to X = 0.58 indicates the beginning of 
the second signal from the rear axle, and the point X = 0.86 indicates the end of the first 
signal from the front axle. 

 

Figure 17. A simulated signal for a car that has two axles and two wheels on each. The axles are 
spaced 3 m apart. 

The signal from each axis has its own feature (linear-frequency increase) and in or-
der to implement it, we used a matched filter on the receiving side. It provides a response 
in the form of a correlation function. And the correlation function of a linear-frequency 
modulated pulse is a compressed signal (Figure 18). 
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Figure 18. The result of coordinated filtering of the signal from two axes of the vehicle. 

This method allows us to determine at what point in time the first and second axles 
hit the comb. This, in turn, will help us determine the speed of the car. 

8. Working with Real Signals 
To adjust the mathematical model, it was necessary to conduct a number of exper-

iments to evaluate the operation of the current system. In this regard, further work was 
carried out based on real signals and existing databases. The databases include vehicle 
parameters: dimensions, class, approximate speed, axle load. 

8.1. Measurement of Vehicle Speed 

The power of the signal recorded by seismic sensors, which occurs when vehicles 
pass along the strips, depends on the weight and speed of the vehicle. Therefore, to de-
termine the weight of a vehicle, it is necessary to know its speed. This section provides 
three methods for measuring the speed of transport from seismic signals. The speed was 
calculated in three ways: 

(1) Spectral analysis; 
(2) Measurement by timestamps; 
(3) Measurement by the zero band. 

In order to accumulate statistics, the vehicle speed measurement was carried out for 
seven known trucks, the parameters of which are taken from the database. The velocity 
values for them, measured in three ways, are stated in Table 2. 

Table 2. Speed measurement results of known vehicles. 

Vehicle Number Spectral Method (km/h) Time Method (km/h) Axle Method (km/h) 

A 449 XN 122 
82.368 
76.95 
77.48 

66.03 77.84 

K 763 UA 154 68.72 54.6 64.49 
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66.75 
62.67 

E 611 OM 154 
77.68 
70.82 
70.06 

59.12 68.36 

IN 268 TA 154 

59.91 
57.7 
56.4 

56.84 

47.66 56.9 

K 919 KO 22 
79.2 

76.84 
76.74 

64.02 81.86 

E 012 UT 154 
78.62 
88.83 
77.63 

71.48 84.53 

T 522 OM 154 

62.45 
61.37 
60.8 

60.47 

51.59 65.48 

8.1.1. Speed Measurement Using Spectral Analysis 

One of the methods for measuring the speed of the vehicle is the spectral analysis of 
signals in the areas describing the movement along the ridge (readings of the sixth sen-
sor). A program was developed that allows you to calculate the necessary parameters 
automatically. 

Automatic measurement of harmonic parameters is effective only when the har-
monics are located at frequencies that differ from each other by two times ±2 references. 
In other cases, in order to determine the reference (frequency) of the harmonic, it was 
necessary to carry out measurements according to graphs. Having received data on the 
parameters of the spectrum, they began to calculate the velocity. The following formula 
was derived: 

avef 3.6 ,nf l
N k

υ =  (12)

where f is the sample rate, N is the number of all counts, k is the harmonic number, l is the 
distance between the stripes, and Nave is the average reading of the K-th harmonic: 

2
1

ave
2 .

2

n n
n

+
=  

(13)

The formula was determined on the basis that the frequency of collisions of the ve-
hicle with each of the comb lanes determines its speed. As an example, let us consider the 
movement of a known vehicle, the parameters of which are known from the database, 
and denote it TC1. The TC1 has five axles with two wheels on each of them. Figure 19 
shows a graph of the signal describing the movement of TC1 along the ridge. Figures 20–
22 show graphs of the spectra for different portions of this signal with an indication of 
harmonics. 
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Figure 19. Signal TC1. 

 

Figure 20. Spectrum of the first segment of the TS1 signal. 
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Figure 21. Spectrum of the second segment of the TS1 signal. 

 

Figure 22. Spectrum of the third segment of the TS1 signal. 

The velocity for the following sections was found (Formula (11)): 
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In order to avoid measurement errors when using this method, it is necessary to 
observe at least two harmonics. Since the second harmonic sample also increases with an 
increase in the speed of the vehicle, there is a possibility that this sample will exceed the 
central reference of the section when a certain speed is exceeded. Let us calculate the 
speed threshold: 

threshold
5282 3.6 3.6 3.6 0.25 118.8 ./

2
k

4 4
m hd d

N
f fl l
N

υ = = = ⋅ =  

Thus, when exceeding the speed of 118.8 km/h, one harmonic will be observed. The 
disadvantage of this method is the ambiguous determination of the harmonics of the 
spectrum. 

8.1.2. Timestamp Measurement of Vehicle Speed 

To measure the speed of the vehicle in time, marks of the same pulse were taken on 
different sensors: the third and the sixth. The formula for determining the time delays of 
signals as a function of distances between the near wheel and the sensors is as follows: 

s
d

pr

,ii
rt

υ
Δ

=  (14)

where TDI is the delay time of signals, depending on the distances between the near 
wheel and the sensor; Δrsi is the distance between the i-th sensor and the near wheel; and 
upr = 120 m/s is the speed of wave propagation in the ground. The distance from the 
track obtained by the passage of the near wheel to the sensor line is 2.5 m. Then, 

2 2

d3 d6
2.5 2.5 4.50.02083 s; 0.0429 s.
120 120

t t += = = =  

Let us consider the determination of the speed of the vehicle in this way using the 
example of the movement of TC1. Signals with timestamps are shown in Figure 23. The 
moments of collisions of the near wheel TC1 on the zero lane (Figure 23a) and on the 
convexity (Figure 23b) were established: 91,143 and 91,597 counts c, respectively. Let us 
find the time corresponding to these counts: 

h1 h2
91143 91547172.619318 s; 173.47916 s.
528 528

t t= = = =  
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(a) (b) 

Figure 23. Signal TC1 on different sensors with indication of timestamps: (a) readings of the third 
sensor; (b) readings of the sixth sensor. 

Then, let us determine the value of the moment of impact of the near wheel TC1 
along the lanes (without taking into account delays): 

Time difference between strikes: 

1 h1 d3

2 h2 d6

2 1

172.619318 0.02083 172.598488 s;
173.47916 0.0429 173.43626 s;

173.43626 172.598488 0.837772 s.

t t t
t t t
t t t

= − = − =
= − = − =

Δ = − = − =  

This means that TC1 drove the section from the zero lane to the bulge in a time equal 
to 0.837772 s. Knowing the distance r between the zero lane and the convexity, it is pos-
sible to calculate the speed of the vehicle: 

3.6.r
t

υ = ⋅
Δ

 (15)

For TC1: 

15.5 3.6 66.6 .
0.837772

km/hυ = ⋅ =  

8.1.3. Measurement of Vehicle Zero Lane Speed 

The determination of the speed of a vehicle on the zero lane is not the main one due 
to the use of known parameters (taken from the database) and is provided for the evalu-
ation of speed measurement by the previous methods. 

As an example, let us examine the movement of TC1 again. A graph of the signal is 
taken from the third sensor, labeled in Figure 24. The marks indicate the moment of im-
pact of the near wheel of each axle on the zero stripe: 

• First axis t1 impact: 17,263 s; 
• Second axis impact t2: 17,280,871 s; 
• Third axis t3 impact: 173,073,863 s; 
• Fourth axis t4 strike: 17,313,447 s; 
• Fifth Axis strike T5: 17,319,508 s. 
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Figure 24. TC1 signal from the third sensor with tags. 

Let us determine the time differences between the moments of impacts by adjacent 
axes: 

21 2 1

32 3 2

43 4 3

54 5 4

172.80871 172.63 0.17871 s;
173.073863 172.80871 0.265153 s;
173.13447 173.073863 0.060607 s;

173.19508 173.13447 0.06061 s.

t t t
t t t
t t t
t t t

Δ = − = − =
Δ = − = − =
Δ = − = − =

Δ = − = − =  

Distances between adjacent axes taken from the database: 

• Between the first and second axles Δρ21: 3.73 m; 
• Between the second and third axes Δρ32: 5.67 m; 
• Between the first and second axles Δρ43: 1.33 m; 
• Between the first and second axles Δρ54: 1.34 m. 

Let us take the time difference and the distance between the first and last axes. 
In this case, the speed of the vehicle in the zero lane is determined by the formula: 

3.6,ji

ji

r
t

υ
Δ

= ⋅
Δ

 (16)

where j, i = 1 are the numbers of the last and first axes, respectively. 
The speed of TC1 will be as follows: 

51

51

1.34 1.33 5.67 3.73 3.6 76.9 .
0.06061 0.060607 0.265153 0.17871

km/hr
t

υ Δ + + += = ⋅ =
Δ + + +  

8.2. Results of Vehicle Speed Measurements 

To analyze the accuracy of each of the methods, let us enter the standard deviation 
metric: 

2

1

1 ˆRMSE ( ) ,
N

i i
iN

υ υ
=

= −  
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where ˆiυ  is the measured value of the speed, and υι is the reference value. It is also pos-

sible to construct a confidence interval of the estimate: 

/2ˆ ,z
Nα

συ ± . 

where σ is the standard deviation from the experiments, and /2zα is the quantile of the 

normal distribution. 
A comparison of the uniform and non-uniform comb showed that in the case of a 

uniform structure, the main signal energy is concentrated in a narrow frequency range of 
f0 ± 15 Hz, which contributes to a higher amplitude of the correlation response but re-
duces resolution at high speed. The non-uniform structure, on the contrary, creates a 
signal distributed over frequencies with maximum compression in the time domain—the 
width of the main lobe of the autocorrelation function is reduced from 0.45 to 0.22 s while 
increasing resistance to noise due to a more uniform spectrum. Based on the analysis of 
the RMS (root mean square error value), it can be concluded that the non-uniform comb 
is advantageous at speeds above 50 km/h and the number of axles from three and above. 

It can be seen that the closest velocity values correspond to the spectral analysis and 
zero band measurements. The method of determining the speed of a vehicle by 
timestamps is inaccurate (it has a difference of about 10–15 km/h compared to other 
values of the speed of the same vehicle), since there is a possibility of incorrect determi-
nation of the numbering of sensors, as well as inaccurate measurement of the distance 
between the convexity and the zero stripe. 

Measurement of the TC velocity by spectral analysis also has a disadvantage asso-
ciated with the variable behavior of harmonics, as a result of which it is not always pos-
sible to determine the frequency at which they are located. There is also difficulty in 
choosing a “window” to automatically provide a solution to the problem of finding 
harmonic parameters. Another disadvantage of this method is the existence of a thresh-
old value of velocity, above which the determination of velocity by spectral analysis is 
not relevant. 

8.3. Comparative Analysis of Speed Measurement Methods 

Within the framework of the study, three different methods for determining the 
speed of a vehicle based on recorded seismic signals were implemented and tested: the 
spectral, time, and zero band methods. Each of them is based on its own physical and 
mathematical model of data processing and is implemented at various stages of signal 
analysis (Table 3). 

The spectral method is based on the application of a fast Fourier transform to a sig-
nal received from a geophone located near the ridge with a uniform spacing of the bands. 
The periodic structure of the comb causes the formation of a quasi-harmonic signal, the 
spectrum of which contains pronounced harmonics. The distance between these har-
monics is proportional to the speed of the vehicle. To calculate the velocity, a specially 
developed formula was used to link the frequency of harmonics, the spacing between 
bands, and the velocity, as well as a software module for automatic determination of 
spectral parameters. The spectral method has shown high accuracy at speeds up to 80 
km/h and provides good immunity to background noise due to its narrow bandwidth, 
but its application is difficult at high vehicle speeds, when spectral harmonics begin to 
overlap. 

The timestamping method is implemented by measuring the time delay between 
responses on different sensors when the same vehicle element (usually the near wheel) 
passes. In the course of the experiments, the moments of appearance of characteristic 
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peaks in the signal from the third and sixth geophones, between which the exact spatial 
distance is known, were tracked. By determining the time interval between the peaks and 
knowing the distance between the sensors, the speed of movement was calculated. This 
method is simple and clear, but it turned out to be sensitive to the accuracy of time syn-
chronization and to possible errors in determining the identity of signals from the same 
machine element, especially in a complex multi-signal structure. 

The zero lane method involves the use of information about successive impacts of 
the vehicle axles on the initial (zero) ridge lane. By knowing the impact timestamps of 
each axle and the distances between them (taken from a database of known cars), it is 
possible to calculate the average speed between the axles. This approach was used in the 
work mainly to verify the results obtained by other methods, and it showed good 
agreement with the spectral method. Its main limitation is the need to have a priori data 
on the geometry of the vehicle, without which the calculation is impossible. 

Thus, each of the presented methods has its own application features, advantages, 
and limitations, which are reflected in the table. Their combined use in the study made it 
possible to increase the reliability of speed estimates and cross-verify the results. 

Table 3. Comparison of speed measurement methods. 

Speed Measurement 
Method 

Average error 
(km/h) 

Standard Devia-
tion (km/h) 

Advantages Restrictions 

Spectral method 1.2 0.78 High accuracy, noise re-
sistance 

Loss of stability at a speed of > 118 
km/h 

Timestamp Method 3.8 2.1 Easy to implement Highly dependent on the accuracy 
of dating and placement 

Zero Stripe Method 1.3 0.9 Good consistency with 
the base 

Requires database data and accurate 
labeling 

8.4. Noise Sensitivity Assessment and Threshold Level Determination 

To analyze the stability of the proposed system to external disturbances, a series of 
numerical experiments were carried out with the superimposition of additive Gaussian 
noise of varied dispersion on real and synthetic seismic signals. The initial model of the 
s(t) signal, obtained from the system with known vehicle parameters, was supplemented 
with the noise component n(t) ~ (0, σ2), after which the speed, mass, and number of 
axles were re-evaluated at different noise intensities. 

The simulation looked at the range of signal-to-noise levels (SNRs) from +30 dB (low 
noise) to 0 dB (signal and noise are commensurate). In each case, the mean error in de-
termining mass and velocity was evaluated, as well as the standard deviation of the re-
sults over 100 repetitions. 

The results showed that at SNR > 15 dB, the system demonstrates stability: the error 
in estimating the mass does not exceed 10%, and the speed does not exceed 1.5 km/h 
(Table 4). When the SNR drops to 10 dB, the mass error reaches 14%, and when the SNR 
is < 5 dB, there is a sharp decrease in accuracy—the mass error exceeds 20%, and the de-
tection of the number of axes becomes unstable (less than 80% of correct determinations). 

The threshold noise level for the system is set at an SNR level of ≈ 8 dB. Below this 
limit, the accuracy of the mass estimate exceeds the permissible threshold of 15%, which 
makes it necessary to apply additional filtration measures. 
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Table 4. Dependence of accuracy on noise level. 

SNR 
(dB) 

Average Mass Error 
(%) 

Art. Weight Deviation 
(%) Speed Error (km/h) 

Correctness of Determining the 
Number of Axes (%) 

30 7.8 2.1 1.1 96.5 
20 9.1 3.4 1.3 95.1 
15 10.2 4.0 1.5 93.8 
10 13.8 5.6 2.2 89.4 
8 15.4 6.3 2.7 85.0 
5 20.7 8.9 3.5 77.2 
0 >30 — >5.0 <60 

8.5. Extended Validation of the Method on a Sample from Real Road Conditions 

To improve the reliability of the results obtained, additional validation of the de-
veloped system was carried out on an extended sample of 180 vehicles of various cate-
gories. The sample included both light commercial vehicles (LCVs) and passenger vehi-
cles (cars, minivans), as well as heavy trucks, trailers, and buses. The tests were carried 
out on two sections of the road with different types of pavement: asphalt concrete and 
cement concrete, as well as under variable weather conditions—dry and wet surfaces, air 
temperature from −1 to +28 °C. Additionally, the flow density was recorded: low (less 
than 500 tf/h), medium (500–1200 tf/h), and high (more than 1500 tf/h). 

For each class of vehicles, the values of errors in determining the speed, mass, and 
number of axles were obtained, and standard deviations were calculated. The results of 
the analysis showed that the proposed method is resistant to changes in the road sur-
face—the differences in the error in determining the weight did not exceed 1.5% between 
sections with asphalt and concrete. The influence of weather conditions was expressed in 
a slight increase in error (up to 9.3%) on a wet surface, which is explained by a change in 
the coefficient of adhesion and distortion of signal amplitudes. However, even under 
these conditions, the system retained the stability of peak response detection and ac-
ceptable recognition accuracy. At high traffic density (~1800 tf/h), signal overlap was 
observed, especially in passenger cars with a short baseline, but the use of filtering with 
phase coherence and response synchronization made it possible to minimize errors in the 
classification and isolation of individual events. 

Thus, the extended validation showed high reproducibility of the results in various 
road and operational conditions. The average error in speed was 1.4 km/h and in weight 
9.2%, and the correctness of the recognition of the number of axles remained at the level 
of 94.8%. These values confirm the applicability of the proposed approach in real oper-
ating conditions, including multi-axis machines and mixed flow. 

9. Discussion 
9.1. Accuracy of Determining the Parameters of Vehicles 

In field tests, the system with eight geophones and artificial markings (stripes) was 
able to estimate the speed, weight, and number of axles of trucks with an error of no more 
than ~1.2 km/h in speed and ~8.7% in weight at speeds up to 70 km/h; the correctness of 
determining the number of axles reached 96.5%. In the authors’ studies on passive vi-
bration recording, it is reported that seismic sensors make it possible to measure the 
speed of movement with an error of about ±1.5–2 km/h and to classify vehicles by axle 
load/weight with an accuracy of ~85–95% (in the speed range up to ~80 km/h) [15,17]. In 
particular, methods based on two seismic sensors installed at the curb are able to deter-
mine speed and center distances, although the accuracy of such estimates is inferi-
or—about 20% error in field tests [19]. Traditional WIM (weigh-in-motion) systems with 
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sensors embedded in the coating provide a typical error in measuring the total weight of 
about 7–12% [6,8]. Although the best WIM systems approach the requirements of direct 
weight control (some studies aim for <5% error), in practice, even modern WIM systems 
are often used only for the pre-selection of overloaded vehicles. Thus, the accuracy 
achieved in our work (~8–9% by weight) is comparable to the level of the best dynamic 
weighing systems. Moreover, the high quality of recognition of the number of axes 
(≈96%) indicates the effectiveness of using artificial irregularities to generate distinct 
seismic signals from each axis. Doppler sensors are able to classify transport by size with 
an accuracy of about 90% [7], and inductive loops or magnetometers with a sufficient 
network of sensors achieve ~95–99% classification accuracy [38], but these methods do 
not directly measure mass. Thus, the proposed approach combines a high accuracy of 
mass and velocity estimation, comparable to WIM, and a classification accuracy close to 
the best non-contact sensors. 

Table 5 summarizes the comparative characteristics of the approaches used in the 
work to determine the key parameters of the vehicle—speed, weight, and number of ax-
les. The presented data demonstrate that the spectral method of velocity estimation 
turned out to be the most accurate and resistant to noise, while the mass estimation based 
on the measured power of the seismic signal provided an acceptable error under the 
condition of preliminary calibration. The number of axles is most effectively determined 
through impulse response analysis using structured roadway markings. This approach 
allows for accuracy comparable to industrial WIM systems at minimal infrastructure 
costs. 

Table 5. Comparison of approaches to determining the parameters of the vehicle. 

Parameter Method/Approach Average error Advantages Restrictions 

Speed Spectral analysis 1.2 km/h High accuracy with a sta-
ble spectrum 

Speed limits (>118 km/h) 

Speed By timestamps 3.8 km/h Simplicity Synchronization errors 

Mass 
Through average sig-

nal strength 8.7% Real-world applicability 
Dependence on calibration and road 

performance 
Number of 

axles 
Highlighting signal 

peaks 
96.5% correct-

ness 
High precision with sepa-

rate axis response 
Errors when applying signals from 

closely spaced axes 

Model Applicability Limitations and Soil Type Calibration 

Despite the high accuracy achieved in the field tests, the proposed model has limi-
tations related to sensitivity to the geological characteristics of the site. The attenuation 
and resonance frequency parameters that describe the response of the medium to a wheel 
impact vary depending on the density, humidity, and type of soil, as well as the con-
struction of the pavement. Models calibrated on a rigid substrate (cement concrete, dense 
crushed stone) may lose accuracy when transferred to areas with a loose or wa-
ter-saturated substrate (sand, clay). 

To ensure the correct operation of the system in various geological conditions, a 
preliminary calibration procedure is required. It involves the recording of the seismic 
response from the reference vehicle, after which the parameters of the response model of 
the medium (attenuation and frequency) are numerically identified by minimizing the 
residual between the model and the measured signal. This procedure allows you to take 
into account the specific features of wave propagation in a particular layer and increase 
the accuracy of the mass and velocity estimates. 

It should also be noted that in the event of a sudden change in geological conditions 
along the monitored section of the road, it is recommended to calibrate in segments, us-
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ing separate values of model parameters for different zones. This allows you to maintain 
the stability of the algorithm under conditions of variable stiffness and base structure. 

9.2. Resistance to External Noise and Weather Conditions 

One of the important advantages of a passive seismic system is its independence 
from visibility and weather conditions [16]. Unlike video cameras or lidars, whose accu-
racy deteriorates when there is a lack of light, fog, rain, or obstruction of view by large 
vehicles, seismic sensors detect ground vibrations that are independent of illumination or 
atmospheric transparency. In addition, radar systems, although they can operate in any 
weather conditions, are also subject to interference (precipitation, third-party objects) and 
require signal emission [7]. Passive geophones are devoid of these disadvantages, which 
is confirmed by the growing interest in seismic methods in recent years [17]. At the same 
time, the high sensitivity of geophones means that they pick up not only signals from cars 
but also extraneous ground vibrations. It is noted in the literature that external vibrations 
(e.g., from the operation of machinery, other traffic flows, or natural sources) can reduce 
the accuracy of parameter determination [23]. In our system, this problem is partially 
solved by using artificial bumps (stripes): when the wheels run over them, they generate 
high-amplitude seismic pulses that stand out significantly against the background of 
noise. In addition, filtering and spectral analysis methods are used to increase the sig-
nal-to-noise ratio. It is known that the use of time–frequency processing (FFT, wavelet 
conversion) and statistical methods makes it possible to isolate the dominant components 
associated with wheel impacts and thereby improve the noise immunity of the classifi-
cation [22,39,40]. Studies that used such approaches (e.g., [22,24–26]) reported achieving 
~90–95% accuracy in recognizing vehicle types while rejecting interference using filter-
ing, statistical signal processing techniques, and machine learning algorithms. Moreover, 
modern neural network algorithms (CNN, RNN, etc.) demonstrate high accuracy (up to 
~95%) even at a significant noise level, maintaining classification correctness at the level 
of ~80–85% in difficult conditions [41–43]. Thus, thanks to the combination of engineering 
solutions (artificial roadway marking) and computational processing methods (filtration, 
spectral analysis, ML), the proposed system is highly resistant to external noise. It is 
important to emphasize that the operation of geophones is practically not affected by 
temperature and weather factors—unlike, for example, piezoelectric WIM sensors, the 
characteristics of which significantly depend on the temperature of the road surface and 
require corrections [8]. This indicates the potential reliability of our approach in a variety 
of climatic and operating conditions. 

9.3. Cost and Complexity of Infrastructure Implementation 

Classic WIM systems provide automatic weighing on the move at high speed and 
acceptable accuracy but at the cost of their implementation being complex and expensive 
[6]. It is necessary to mount strain gauges, quartz piezo strips, or fiber-optic sensors di-
rectly into the roadway, which implies the construction of a measuring section of the 
road, its regular maintenance, and calibration. The installation of such sensors is associ-
ated with blocking traffic during installation and violates the integrity of the road struc-
ture. In addition, over time, due to traffic and climatic factors, the coverage at the sensor 
installation site can degrade, deteriorating accuracy and requiring repairs. Alternative 
systems, such as bridge WIM (installation of deformation and vibration sensors on ex-
isting bridge structures), facilitate integration but are not applicable on all road sections 
and also require fine-tuning for each site [44]. Finally, over-road sensors (video cameras, 
radars, laser scanners) require the installation of poles, power supply, and network in-
frastructure, which is associated with significant costs on the scale of a long route [12]. 
Against this background, the proposed passive seismic system is favorably distinguished 
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by its relative simplicity and low cost of deployment [1]. Geophones are compact and 
inexpensive, and their installation involves small recesses in the roadside or pavement, 
which minimizes interference with the road structure. In the paper [15], it is explicitly 
noted that seismic sensors for traffic monitoring are cost-effective and easy to install 
compared to most traditional sensors [1]. Our system, in addition to the geophones 
themselves, uses only small artificial bumps (stripes) on the pavement, the implementa-
tion of which is technically simple and financially incomparably cheaper than, for exam-
ple, the embedding of load sensors over the entire width of the lane. Thus, the total cost 
of equipment and installation of a seismic system on a road section can be orders of 
magnitude lower compared to camera complexes or built-in WIM sensors. This is con-
firmed by the estimates of various authors: for example, Ahmad et al. note that seismic 
traffic monitoring provides higher efficiency at lower costs compared to existing methods 
[45]. Add to this the absence of radiating device costs (like radars) and minimal mainte-
nance requirements (geophones have a simple design without moving parts, designed 
for long-term operation), we can expect a low total life cycle cost of the proposed system 
[46]. 

9.4. Technical Feasibility and Scalability 

The results of the experiments confirm the practical feasibility of the proposed ap-
proach. The system successfully operated on a real road section, registering and correctly 
processing seismic signals from several trucks at speeds up to 70 km/h. A significant 
factor that ensured the efficiency of the method was the combination of several geo-
phones into a local network (in this case, eight sensors). The use of an array of sensors 
and special marks on the road made it possible to solve the problem of synchronizing 
signals from the wheels and increase the reliability of parameter estimation. The difficul-
ties of passive systems noted in the literature, for example, a decrease in accuracy when 
superimposing signals from several machines or when driving speed increases, can be 
overcome by increasing the density of sensors and improving the algorithms for ex-
tracting the signal [19,47] of each object. For example, ref. [18] proposed a method for 
correlation processing of signals from several geophones using a Kalman filter, which 
made it possible to reconstruct the trajectory of movement and estimate the weight of the 
car with an error of less than 10% at speeds up to 60 km/h [18]. This result is comparable 
to ours and confirms that with the correct installation of the sensor network and calibra-
tion of the model, it is possible to achieve high accuracy without direct measurement of 
the weight force. The scalability of the proposed solution is another significant ad-
vantage. Due to their low cost and ease of installation, such seismic monitoring nodes can 
be deployed at a large number of points in the road network. Unlike stationary weighing 
stations, which are installed at only a few control locations, geophones can be distributed 
over extended areas for continuous flow monitoring. In experimental projects abroad, it 
has already been demonstrated that a dense network of seismic sensors is capable of 
covering large areas: for example, an array of ~5200 geophones over an area of 7 × 10 km 
has been successfully used to record the movement of vehicles in urban conditions 
[34,48]. Of course, the practical deployment of such a system will require solutions for the 
collection and transmission of large amounts of data, but modern wireless technologies 
and distributed computing methods make this approach feasible. A general analysis of 
existing approaches shows that our system seeks to eliminate the key shortcomings of 
analogues: it avoids expensive engineering structures typical of WIM and, at the same 
time, minimizes the problematic aspects of passive methods (interference, mul-
ti-signaling) due to hardware and software. Thus, the possibility of creating a scalable 
network of passive control of vehicles is demonstrated, providing high-precision deter-
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mination of their parameters in a wide range of conditions without significant infra-
structure costs. 

9.5. Comparative Analysis with Existing WIM Systems 

To fully assess the effectiveness of the proposed method, it is important to compare 
it with recognized WIM technologies. Traditional “in-road” systems based on the instal-
lation of piezo and strain gauges in the road surface are characterized by an accuracy of 
about ±6–15%, in accordance with the requirements of ASTM E1318-09, while the most 
common piezo quartz and strain gauge elements provide an error of about ±10% [49]. 
Bridge-WIM systems (installed on bridges) demonstrate comparable accuracy ±5–10% 
and are used in areas with increased requirements for data reliability [49]. 

On-board systems that use accelerometers inside vehicles achieve significantly 
higher accuracy ±1–3% but require equipment in each vehicle and are economically and 
organizationally complex. For example, such solutions often use airborne telemetry data 
and are part of integrated transportation monitoring systems [50]. 

The method proposed in the article, based on seismic measurements using geo-
phones, makes it possible to estimate the weight of the vehicle with an error of about 8–
12% during the first field tests. This accuracy is already comparable to low-cost versions 
of WIM systems in the ASTM Type II class, where errors of ±10–15% are allowed [49,51]. 
These results are consistent with the limitations of ASTM E1318 for motion mass control 
systems [51,52]. 

The key advantage of our method is its non-invasiveness: geophones are installed on 
the surface of the road surface, which eliminates the need to cut asphalt, pour concrete, or 
install cable channels. Instead, compact shielded cables are used, and signal amplification 
and digitization are carried out in a central unit located in close proximity to the sensors. 
This makes the system particularly attractive for installation in the field, on temporary 
sites, or in areas with limited access to road infrastructure. 

From a practical point of view, the proposed approach combines ease of installation 
and maintenance, low installation costs, and compliance with standard accuracy re-
quirements. Pre-calibration with control vehicles is sufficient to provide results suitable 
for monitoring and pre-weighing, without expensive equipment and capital work. 

Of course, the accuracy of the proposed method is inferior to top solutions, such as 
On-Board WIM, where the error is only ±1–3%. However, the advantages of rapid de-
ployment, mobility, and cost-effectiveness make it suitable for everyday use by road 
services, especially with limited budgets and temporary installations. 

In the future, field comparative tests are planned at locations with industrial WIM 
systems installed. These tests will allow for a direct comparison of results, refine calibra-
tion factors, and confirm that the proposed method complies with ASTM E1318-09 [52] 
and GOST 32348-2013 [53], paving the way for large-scale application. 

10. Conclusions 
In this study, a mathematical model of a passive seismic system for dynamic de-

termination of the weight characteristics of vehicles in motion was developed and ex-
perimentally confirmed. The basis of the proposed approach is the registration of seismic 
signals arising from the collision of vehicle wheels with strips specially applied to the 
road surface, as well as their subsequent processing using a complex mathematical ap-
paratus, including the Fourier transform, coordinated filtration, regularized methods for 
solving inverse problems, and parameter optimization models. 

Thanks to the developed system, it was possible to achieve high accuracy indicators: 
the average error in determining the speed was 1.2 km/h, with a maximum recorded er-
ror of less than 2 km/h. The accuracy of determining the mass of vehicles based on the 
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recorded seismic signals reached the level of 8.7% at a speed of up to 70 km/h. The cor-
rectness of determining the number of axles was 96.5%, while most of the errors occurred 
under the conditions of overlapping signals from several axes and were successfully 
eliminated using non-uniform combs and phase-coherent filtering methods. In addition, 
for a sample of 60 vehicles, the speed measurement error had a standard deviation of 0.78 
km/h, which confirms the stability of the system. 

Two independent approaches were used to determine the velocity: the frequency 
method, based on the analysis of the distance between the harmonics of the signal spec-
trum, and the time method, based on measuring the delay between the edges of signals 
recorded at different points. The estimates obtained were consistent, as evidenced by the 
standard deviation of less than 1.5 km/h between the results of both methods. 

Particular attention was paid to the use of linear-frequency modulation signals 
generated when the wheels pass through specially formed combs with an uneven pitch. 
This made it possible to use consistent filtering, resulting in a narrow autocorrelation 
function of the signal. Due to this, it was possible to significantly improve the resolution 
of the system and increase the resistance to overlapping signals from different axes of 
vehicles. 

Numerical experiments and full-scale tests have shown that the proposed model can 
be successfully applied in real traffic conditions. Testing on vehicles with different pa-
rameters has demonstrated the applicability of the method in the speed range from 30 to 
80 km/h, with the number of axles from two to five, and a weight of up to 40 tons. Real 
signals obtained when driving along the measuring section on the Sovetskoye Highway 
were analyzed, and highly reliable results were obtained, coinciding with the database of 
reference data. 

Thus, the use of spectral analysis methods, in combination with consistent filtering 
models, as well as the solution of regularized inverse problems, made it possible not only 
to restore the parameters of vehicles but also to ensure the stability of estimates against 
external interference, noise, and signal superimposition. The approach is highly feasible, 
low cost to implement, and can be scaled up for use in the road network, including inte-
gration with intelligent transport systems and digital twins of road infrastructure. 
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Appendix A 
MATLAB program, which implements a mathematical model of seismic signals 

generation from vehicles 
close all 
clc clear 
K=[5; 7];%wheel coordinate matrix 
G=[0; 3];%axis matrix 
P=[38,38.5,38.976,39.42,39.828,40.198,40.531,40.829,41.095,41.333,41.545,41.735,41.907,42.061,42.2,42.326];%unev

en comb band matrix 
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N=1; %number of sensors 
D=[35; 0];% sensors for uneven comb 
Vm=20/3.6;%vehicle speed in m/s Vras=125;%wave propagation velocity tau=0.0042;%pulse duration fd=597; 

%Sample Rate 
T=(P-P(1))/Vm;%Lane Travel Time 
M=950;%number of implementations t=(0:1/fd:(M-1)/fd);%time 
S=zeros(N,M); 
Am=1; %signal amplitude tzo=G/Vm; %Axis Delay Time 
 
P2=[38:0.25:43];%uniform comb band matrix 
N=1; %number of sensors 
D2=[42.544; 0];% sensors for uniform comb 
T2=(P2-P2(1))/Vm;%Lane Travel Time 
S2=zeros(N,M); 
     
for x=1:N        
   for y=1:max(size(P)) 
      
    R1(x,y)=sqrt((P(y)-D(1,x))^2+(K(1)-D(2,x))^2);%distance from the first wheel to the sensor 
    R2(x,y)=sqrt((P(y)-D(1,x))^2+(K(2)-D(2,x))^2);%distance from the second wheel to the sensor 
    Z1=1/sqrt(R1(x,y)); %Signal attenuation in the ground 
    Z2=1/sqrt(R2(x,y));%signal attenuation in the ground 
    Tz1(x,y)=R1(x,y)/Vras; %Sensor Delay Time 
    Tz2(x,y)=R2(x,y)/Vras;%sensor delay time 
(top wheel) for i=1:max(size(G)) 
            %Latency 
            Ti1 = Tz1(x,y)+T(y)+tzo(i); 
            Ti2 = Tz2(x,y)+T(y)+tzo(i);         

S=(Z1*Am*exp(-(t-Ti1).^2/(2*tau^2)))+(Z2*Am*exp((t-Ti2).^2/(2*tau^2)))+S(1,:);%Envelop
e for two wheels and two axles 

            B=abs(fft(S));%Fourier transform of the signal. 
            % Filter Selected 
            f1=fd*(0:(M-1))/M;%Set the frequency domain f 
(For S2) 
            H=conj(B); 
            Sf=H.*B; 
            B2=ifft(Sf); 
                     end     end end   figure 
plot(t,B2),title(ʹConsistent filtering for non-uniform combʹ) xlabel(ʹt(c)ʹ), ylabel(ʹB(t)ʹ); 
  figure 
plot(t,S), grid, title(ʹModulated signal from an uneven combʹ) xlabel(ʹt(c)ʹ), ylabel(ʹS(t)ʹ); 
     
for x=1:N        
   for y=1:max(size(P2)) 
      
    R12(x,y)=sqrt((P2(y)-D2(1,x))^2+(K(1)- 
D2(2,x))^2);%distance from the first wheel to the sensor R22(x,y)=sqrt((P2(y)-D2(1,x))^2+(K(2)- 
D2(2,x))^2);%distance from the second wheel to the sensor 
    Z12=1/sqrt(R12(x,y)); %Signal attenuation in the ground 
    Z22=1/sqrt(R22(x,y));%signal attenuation in the ground 
    Tz12(x,y)=R12(x,y)/Vras; %Sensor Delay Time 



Mathematics 2025, 13, 2083 40 of 42 
 

 

    Tz22(x,y)=R22(x,y)/Vras;%sensor delay time 
(top wheel) 
            for i=1:max(size(G)) 
            %Latency 
            Ti12 = Tz12(x,y)+T2(y)+tzo(i); 
            Ti22 = Tz22(x,y)+T2(y)+tzo(i); 
            S2=(Z12*Am*exp(-(t- 
Ti12).^2/(2*tau^2)))+S2(1,:);%Right Wheel Envelope 
            %Aplut Spectrum 
            B22=abs(fft(S2));%Fourier transform. 
f1=fd*(0:(M-1))/M;%Set the frequency domain f 
(For S2) end 
      end end   figure 
plot(f1,B22),title(ʹAplite spectrum from a uniform combʹ) xlabel(ʹf(Hz)ʹ), ylabel(ʹB(t)ʹ); 
  figure plot(t,S2), grid, title(ʹModulated signal from a uniform combʹ) xlabel(ʹt(c)ʹ), ylabel(ʹS(t)ʹ); 
  figure subplot(2,2,1); plot(t,S), grid, title(ʹModulated signal from an uneven combʹ) xlabel(ʹt(c)ʹ), ylabel(ʹS(t)ʹ); 

subplot(2,2,3); plot(t,B2),title(ʹConsistent filtering for non-uniform combʹ) xlabel(ʹt(c)ʹ), 
ylabel(ʹB(t)ʹ); 

subplot(2,2,2); plot(t,S2), grid, title(ʹModulated signal from a uniform combʹ) xlabel(ʹt(c)ʹ), ylabel(ʹS(t)ʹ);  
subplot(2,2,4); plot(t,B22),title(ʹApliteal spectrum from a uniform combʹ) 
xlabel(ʹf(Hz)ʹ), ylabel(ʹB(f)ʹ); 
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